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Abstract

We describe an integrated system capable of walking over
rugged terrain using a single leg suspended below a carriage that
rolls along rails. To walk, the system uses a laser scanner to
find a foothold, positions the leg above the foothold, contacts the
terrain with the foot, and applies force enough to advance the
carriage along the rails. Walking both forward and backward,
the system has traversed hundreds of meters of rugged terrain
including obstacles too tall to step over, trenches too deep to step
in, closely spaced rocks, and sand hills. The implemented system
consists of & number of task-specific processes (two for planning,
two for perception, one for real-time control) and a central control
process that directs the flow of communication between processes.
Implementing this integrated system is a significant step toward
the goal of the CMU Planetary Rover project: to prototype an
autonomous six-legged robot for planetary exploration.

1 Introduction

The goal of the CMU Planetary Rover project is to prototype an
autonomous mobile robot for planetary exploratign. The design
is a six-legged walking robot with orthogonal legs and an over-
lapping gait [Bares, this proceedings). To successfully walk over
rugged terrain, the rover must combine perception, planning, and
real-time control in an integrated system.

Recent research toward such an integrated system has con-
centrated on the task of single leg walking as a special case of
six-legged walking. What distinguishes our work is the simplicity
of the walking mechanism and the completeness and comprehen-
siveness of the controlling system. Other researchers use a single
leg to isolate and study fundamental issues in balance and dynam-
ics [9, 11]. Our reasons for using a simple mechanical system—it
is stable both statically and dynamically—include testing algo-
rithms with relative safety and ease, and coordinating design and
development so that results from walking experiments influence
more quickly the evolution of design of the six-legged walker.
Previous efforts to create a coherent robotic walking system from
component research results have generated significant advances,
for example as reported in {5, 6, 7, 10) and many others. One of
the reasons that these efforts have not proven entirely effective is
the difficulty involved in developing each of the subsystems (e.g.,
locomotion, perception, planning, control); thus, each research
effort has concentrated on a proper subset of the issues.

This paper describes the comprehensive system that we have
implemented, and presents results from single leg walking exper-
iments. We refer readers interested in the objectives and accom-
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Figure 1: Single Leg Testbed

plishments of the overall project to [12].

2 Single Leg Testbed

The single leg testbed contains over 40 tons of sand and a variety
of obstacles in an 11x6m “sandbox” made from I-beams. It also
includes a robot leg, sensors, and electronics (Fig. 1).

The robot leg is a prototype design not currently used on
the six-legged Ambler (because integrated walking experiments
revealed problems early). The leg has three joints: a revolute
shoulder, a revolute elbow, and a prismatic vertical axis. Its hor-
izontal length is 2.5m and vertical travel is 1.5m. In the shoulder
and elbow axes, brushless DC servo motors couple to the joint
axes by an 80:1 harmonic drive speed reducer and a 3:1 bevel
gear. In the vertical axis, a brushless DC servo motor drives a 12:1
speed reducer and a lead screw.

The leg hangs from a carriage (or body) that rolls along rails.
The leg “walks” by planting the foot on the ground and actuat-
ing the shoulder and elbow motors to push or pull the carriage.
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Figure 2: Modules of the Single Leg Walking System

Although the rails are I-beams, they exhibit significant deflection
due to their length and the loads applied. This deflection provides
compliance for the system (which is good), but changes as a func-
tion of the leg position (which is bad, because it makes accurate
leg placement difficult).

Sensors on the leg include motor shaft encoders, limit
switches, and a six-axis force/torque sensor mounted near the
foot. Other sensors include a scanning laser rangefinder to sense
the terrain in the sandbox, a potentiometer that measures the dis-
tance travelled by the carriage, and two inclinometers to measure
rotation of the carriage with respect to gravity.

A control room houses three workstations connected by Eth-
emnet, hardware to control the laser scanner, and a VME cage
containing a real-time control system with its associated hardware
(68020 single board computer, Ethernet controller, A/D converter,
two 80186 motion control cards, and an interface card to connect
them to the motor amplifiers).

3 Task Control Architecture

Simmons et al. designed the Task Control Architecture (TCA)
to integrate sub-systems developed by different researchers into a
complete robotic system {8]. TCA provides mechanisms to sup-
port message passing between distributed processes, hierarchical
planning, plan execution, monitoring the environment, and excep-
tion handling. A system built using TCA consists of a number
of task-specific processes, called modules, and a general central
control process that directs the flow of communication between
modules. The single leg walking system consists of six modules
plus the central control (Fig. 2).

A prominent aspectof TCA is centralized control. Although
researchers have recently advocated decentralized control for mo-
bile robots, e.g [3], the TCA designers believe that centralized
control has many advantages for supporting the above capabili-
ties. First, it can more easily control multiple tasks by synchro-
nizing them, allocating resources, and determining which tasks

Figure 3: Task Tree
Bubbles represent query messages, rectangles represent comm and
messages, dnd rounded rectangles represent goal messages.

have priority. Second, centralized control makes the system more
understandable and easier to modify. Since there is a single point
through which all communication flows, one can easily monitor
and analyze the communication. Finally, we have not found cen-
tralized control to be a system bottleneck in our applications; TCA
can process a message in approximately 80msec, faster than either
the perception or control systems operate.

Modules can connect with the central process in any order
and at any time. If a module crashes, it can be restarted and re-
connected without bringing down the rest of the system. Modules
interact with TCA by calling utility functions, passing as argu-
ments standard C or LISP data structures. When modules connect
to the central contro}, they indicate which messages they can han-
dle by registering the message name, a handler procedure, and
the data format of the message. TCA also contains facilities for
displaying arbitrary data structures; we use this to log all message
traffic.

In TCA, planning and executing a task occurs by modules
sending a series of messages to one another. For the single leg
walker, after all modules have connected to central and registered
their messages and handlers, a message is sent to the gait planner
instructing it to begin planning. To plan and execute a complete
step involves sending about 25 messages.

These messages are of various types—each message class
has a different semantics and different effects. Query messages
obtain information about the external or internal environment.
Goal messages provide a mechanism for hierarchical planning.
When a module issues a goal message, TCA creates a node and
adds it as a child of the node associated with the handler that
issued the message. These nodes form a hierarchical task tree that
TCA uses to schedule planning and execution of tasks (Fig. 3).
Command messages are requests for some action to be performed.
Like goal messages, TCA adds them to the task tree; typically,
they form the leaf nodes of the tree.

In addition to specifying parent/children relationships in the
task tree, TCA provides mechanisms for temporally constraining
the relationships between nodes in the tree. Essentially, the task
trees plus the temporal constraints form TCA’s representation of



plans. For example, one can specify that command A must be
executed before command B is started, or that goal C cannot be
planned until command B has finished. TCA maintains separate
constraints for the planning and achievement of tasks—thus, one
could specify that the robot should go to a sample site and then
acquire a sample, but that it should plan how (and if) it can acquire
the sample before planning how to navigate to the site.

Unlike query messages, goal and command messages are
non-blocking, i.e., a goal or command message has not necessarily
been handled by the time control returns to the module issuing the
message. This asynchronous control makes the overall system
more reactive since the central process controls when to schedule
tasks and when to preempt them. The non-blocking nature of
goal and command messages also makes it easy to do planning
in advance of execution. The planning modules merely send
messages that create task trees, and TCA ensures that the tasks
will be executed at the appropriate times.

In addition to separating planning and execution, TCA uses
a separate mechanism to perform exception handling. Goal and
command messages, when they detect plan-time and execution-
time failures, respectively, issue exception messages. The central
control suspends the current task and routes the exception to the
appropriate user-defined handler. There, the exception handler
can analyze the failing task tree and decide how to manipulate it
to recover from the error, for instance, by killing part of the task
tree, or by adding new nodes to the tree to patch the plan.

4 Real-Time Control

The control software runs on the real-time system under the vx-
Works (TM) operating system, and communicates to the rest of
the system through TCA. The controller performs three tasks: it
executes leg and body movements and reports their positions; it
communicates with the user (either a person or a profess); and it
handles asynchronous interrupts generated by the motion control
cards. This section discusses only the first of these tasks.

Given a series of points in joint space (way-points), the
controller actuates the leg motors so that the leg passes through
each. It computes the time required for the slowest joint to move
between successive way-points, and then scales the speeds of
the other joints so that all arrive simultaneously at each way-
point. To smooth the motion, the controller links way-points with
constant velocity segments which in tumn it connects by constant
acceleration segments. If the user specifies the last path segment
to be in transition mode, then the controlier places the foot on the
ground and loads it up to a specified force.

Once it achieves the desired load on the leg, the controller
moves the body by actuating the shoulder and elbow joints to move
at given velocities, not to given positions. It performs this at about
60Hz, which differs sufficiently from the natural frequency of the
system to preclude resonance. The controller computes the joint
velocities by applying the inverse Jacobian to the Cartesian body
velocity, which is aclipped, linear function of the error between the
current and commanded body positions. Due to non-linearities of
the system, this causes overshoot of the joints from their nominal
position given a perfectly linear system. This overshoot takes the
form of stored strain energy. The controller dissipates the strain
before unloading the leg, otherwise the foot could drag across the
ground, possibly hitting an obstacle. If at any time the forces

exerted on the foot decrease rapidly, indicating that the foot has
lost contact with the ground, the contmller\halts,

5 Perception
The perception system consists of two major modules: the Imag-
ing Sensor Manager (ISM), which senses the environment with
a scanning laser rangefinder; and the Local Terrain Map Man-
ager (LTM Manager), which constructs elevation maps from the
rangefinder data. Readers will find a higher level account of the
perceptjon system in [1] and a lower level account in [4].

The ISM operates the imaging sensors, including initializa-
tion, status determination, data acquisition, calibration, aiming,
and other operationis. The ISM has been implemented and tested
for the Erim and Perceptron scanning laser rangefinders. These
sensors may be real (i.c., they acquire data in real-time from the
physical sensor) or virtual (i.e., they acquire data from storage,
not directly from the sensor). We have found virtual devices and
virtual images to be useful for developing and testing code without
hardware.

The LTM Manager constructs and maintains a local terrain
map (LTM)! for locomotion guidance, short-range navigation, and
sampling operations. An LTM describes the environment in the
immediate vicinity of the Ambler, and may extend up to tens of
meters on a side. An LTM is not, strictly speaking, a single map;
in practice, it is a registered collection of maps, whose descriptions
of the environment include geometric characteristics and material
properties of the terrain. We have organized the software into
three major submodules: one that builds the LTM, one that merges
LTMs, and one that focuses attention on parts of the LTM that are
closer to the vehicle (not described here).

The LTM Builder constructs an LTM from a single frame
of serisor data by transforming the raw sensor observations into
a structured description of the terrain in the local vicinity of the
vehicle. The implementation uses the Locus Method [4] to trans-
form the input raw range images into an output elevation map.
In addition, the LTM Builder computes the uncertainty of the es-
timated elevations, analyzes elevation map patches as footholds,
and estimates the mean slope over elevation map patches.

The LTM Merger maintains the LTM to reflect the infor-
mation contained in a sequence of maps constructed by the LTM
Builder. The implementation of the LTM Merger accepts as in-
put the LTM Lf constructed from range images lp, /1,..., Ix, and
the LTM L% constructed from range image Ji.1. It generates as
ouput the LTM LY,, by replacing overlapping elevation measure-
ments with the maximum likelihood estimate of the elevation. The
merging operation is necessary becausemaps created from a single
frame of data do not, in general, contain enough information to
accomplish even simple tasks. For example, consider the task of
planning the trajectory of a recovering leg. Because the scanner
looks forward, the map constructed from a single forward-looking
range image can not possibly see obstacles either below or behind
the vehicle. Theseobstacles posereal threats to the recovering leg,
which must follow a trajectory that avoids collisions with them.
Thus, the merging operation is necessary to create an LTM that

T eliminate any possible confusion about the terminology, we mean
to distinguish the LTM, which is a data structure, from the LTM Manager,
which is a process.



provides a wider coverage of the terrain than is possible with a
single frame of data.

6 Planning

The planning problems for single leg walking include deciding
where to place the leg, how to move it there, and how far to move
the carriage at each step. The planning system consists of two
modules: the gait planner chooses footholds and body advances,
and the leg-recovery planner identifies trajectories from the current
leg position to the planned foothold.

The gait planner computes cost maps that indicate the “good-
ness” of each potential foothold on a 10cm grid. It assigns costs
based on the following constraints: 1) flat terrain is preferable
both for stability and for providing traction in moving the body;
2) the carriage can advance farther from some footholds than from
others; 3) leg configurations in which horizontal links obstruct the
scanner field of view are undesireable; 4) the leg can not reach
areas outside its kinematic limits or ones surrounded by high ob-
stacles (including other legs, for the six-leg case); 5) the leg can
not reach terrain that is too high or too low (recall that the body
height is fixed). The gait planner combines the cost maps using
a weighted sum. It selects as the foothold the grid point with the
lowest cost in the composite cost map. It plans the body move that
is the minimum of 1) the largest advance possible from the chosen
foothold, and 2) a user-defined threshold.2

Advantages of this constraint-based approach are that the
planner does not have to commit a priori to which constraint is
most important, and it is easy to add new constraints as relevant
ones are identified. Although this approach could result in high
computational costs, in practice the planner is fast relative to other
computations.

While the gait planner decides where to set the foot, the leg-
recovery planner determines the trajectory to that position without
hitting obstacles. The leg-recovery planner uses a novel algo-
rithm that finds time and power efficient moves through three-
dimensional space while searching only a two-dimensional space,
thus considerably increasing the efficiency of the planning.

The planner creates a configuration search space for the el-
bow and shoulder joints. It divides the space into a discrete grid
approximately 0.1 radian wide, and fills the grid with obstacles.
It grows terrain obstacles and other legs (for the six leg case) by
the radius of the foot plus an uncertainty factor. The planner then
searches this space using the A* algorithm for the minimum cost
path (weighting power and time by a user-specified ratio) to the
goal, either by going around or over obstacles. It computes the
power consumed to reach a grid cell from an adjacent cell as the
sum of the power needed to move the elbow and shoulder joints
to get to the cell, plus the power needed to raise the leg above the
elevation associated with that cell. It computes the time required
to get to a cell by keeping track of 1) all possible paths that the
leg can take in reaching a particular grid cell, and 2) the maximum
and minimum heights that the leg can reach at any particular cell,
assuming that the leg lifts/lowers at full speed while moving hori-
zontally. At the end of the search, the planner determines the final

2The threshold cannot exceed the maximum body advance of 3.9m. In
order to take more steps per experiment, typically we use 1.5m.

Figure 4: Obstacle Course
The obstacle course is 10m long and consists of a box (right) too
tall for the leg to step over, a “steeplechase” arrangement of pylons
(center) lying on the ground, two larger obstacles (left and upper
center) separated by about 1m, and a dozen or so smaller obstacles.

trajectory by selecting vertical moves that minimize the risk to the
machine while maintaining the optimality of the path found.

7 Experiments

After the single leg testbed became operational in May 1989, we
performed a series of tests on half a dozen obstacle courses. Fig.
4 shows one of them, and Fig. 5 illustrates a map of it constructed
by the perception system. The courses combine obstacles that are
too tall to step over, obstacles separated by distances smaller than
the diameter of the foot, trenches too deep to step in, and sand hills
with a variety of slopes. The criteria for a successful traversal are
to reach the goal and to avoid contact with any obstacle.

For each trial, first we activate the integrated system shown
in Fig. 2. Then we issue a command to walk forward to the end
of the testbed (about 10m). After this, the integrated system is
entirely autonomous as it plans and exccutes the walking cycle of
moving the leg and propelling the body along the rails.

The integrated system successfully negotiated all of the ob-
stacle courses. It traversed the course in Fig. 4 seven consecutive
times during one afternoon. It traversed comparable courses more
than thirty times. In some of the trials, the system also walked
backward, using the map built by the perception system while
walking forward. This was surprisingly easy; the system could
always follow a successful forward traverse by a successful back-
ward traverse.

Not all forward walking trials were successful. Failures
include stepping on obstacles, and grazing them with the leg. To
diagnose these failures is challenging. To illustrate the difficulty,
suppose that the leg strikes an obstacle. What went wrong? The
fault could be in any of the subsystems. The perception system
may have computed an inaccurate map, incorrectly determining
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Figure 5: Elevation Map of Obstacle Course
The perception system built this elevation map from five range
images acquired at different positions. The map resolution is
10cm, 0 < X < 3m,and4 <Y < 12m.

the obstacle location. The planning system may have chosen a
poor foothold or an erroneous leg trajectory. The controller may
have executed poorly a perfect plan. Or any combination of the
former factors could cause the fault.

During the walking trials, we identified the the following
combination of factors to be responsible for the largest number
of failures: 1) the perception system sometimes underestimates
the possible error in the perceived location of an obstgcle, 2) the
controller does not compensate for the change in leg positioning
accuracy as a function of body position,® 3) the gait planner,
working without models of the above deficiencies, is sometimes
more eager to advance to the goal (i.e., plan longer steps) than to
steer clear of obstacles (i.e., plan steps that sacrifice body advance
for obstacle avoidance).

We find the average walking velocity to be on the order of
one meter per minute. Since we have not dedicated much effort
to optimizing either hardware or software, this statistic may not
be particularly meaningful. One version of the integrated system
achieves nearly continuous walking (Fig. 6). It concurrently
executes one step while planning the next step(s), exploiting the
temporal constraint mechanisms of TCA.

8 Discussion

We have described an integrated system that combines advanced
techniques in perception, control, and planning into a compre-
hensive whole. Experiments show that the system can perform
capable and fairly reliable single leg walking on rough terrain.

-

3Due 1o variable compliance of the rails, the errors in leg positioning.
grow with the distance along the rails from the bodyto the closest anchoring
wall. Thus, the errors are larger in the middle of the testbed than at the
ends.
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Figure 6: Nearly Continuous Walking
The figure shows when processes are active during one obstacle
course traversal using concurrent planning and execution. Num-
bers in the left column indicate time. The controller is idle between
Steps 2 and 3 because the leg recovery planner takes longer than
usual to plan a complex trajectory around (not over) the large box
shown in Fig. 4.
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The major impetus for the single leg walking research pro-
gram was to gain experience for six leg walking. In that regard,
the project is quite successful. We have gained insight into con-
trolling the legged mechanism, calibrating the leg and scanner,
planning in the face of uncertainties and conflicting constraints,
and coordinating a distributed software system.

Future work will concentrate on applying our experiences
to an integrated system for six leg walking. This will require
significantly extending the controller and the planners, but only
superficial changes to the perception system and the TCA.

One topic that we anticipate will be an issue in the future
is calibration of the leg and scanner frames. For the six-legged
walker, we may augment our current model-based calibration with
a direct, empirical method that, for example, locates the leg in
many images and uses a connectionist approach to build an inverse
kinematics table {2].

Another topic for future work is better performance in sit-
uations that conflate errors in perception, errors in control, and
optimism in planning (cf. the cause of the failures cited in Sec-
tion 7). To better understand situations that cause failures we
need more powerful debuggers (possibly graphical). To achieve
more reliable performance we must develop robust error recovery
mechanisms.

In this paper we have concentrated on the integrated system.
We conclude by discussing briefly the process of system integra-
tion. Perhaps the most important lesson that we leamed is that
integration is a contact sport; it cannot succeed without significant
“hands on" participation by researchers with a broad range of ex-
perience and expertise. While this may be self-evident, it is by no
means easy to accomplish.

We have adopted several approaches to facilitate the integra-
tion effort. First, we conduct regular weekly meetings to identify
the semantics for all interfaces between modules, answering ques-
tions about the type and units of information communicated. The
message-passing conventions of TCA promote this because they
force us to detail the interfaces. Second, we employ Unix manual
facilities to document the I/O behavior of a module or message.
We find this to be a useful lowest common denominator that all
programmers and users can use to advantage and that is not so
difficult to maintain. Third, we insist that software meet standards
of internal documentation (comments for modules, files, and func-
tions), follow conventions for naming (source files, include files,
defines, type definitions, and variables), and obey a variety of other
guidelines. We find this to be of great value both in debugging
and development. Finally, we standardize our software structure
in order to make common code more accessible. This includes
enforcing consistent directory structures and naming conventions.

These and other approaches have significantly assisted us
in integrating the single leg walking system. We intend to con-
tinue these practices as we combine our perception, planning, and
control techniques into a comprehensive system for six-legged
walking.
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