
Learning to Search: From Weak Methods
to Domain-Specific Heuristics

Pat Langley

CMU-RI-TK-84-21

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 USA

September 1,1984

Copyright @ 1984 The Robotics Institute, Carnegie-Mellon University

I would like thank Stephanie Sage, who helped in programming and debugging the SAGE system, as well as
Drew McDemott and Rich Korf, who provided useful comments on an earlier draR

This paper will appear in Cognitive Science.

- I -

Table of Contents
1. Introduction
2. ‘I’ypcs of Strategy Lcarning
3. Approachcs to Credit Assignment

3.1. Complete Solution Paths
3.2. Noting Loop Moves
3.3. Noting Longer Paths
3.4. Dead Ends
3.5. Failure to Progress
3.6. Illcgal States

4. Approaches to Altcring Search Behavior
4.1. Discovcring Evaluation Functions
4.2. Generalizing Conditions
4.3. Discriminating Conditions
4.4. The Vcrsion Space Approach
4.5. Implications for Scarch Behavior

5.1. Rcprcscnting States and Operators
5.2. ‘The Initial Search Strategy
5.3. SAGE.2’s Credit Assignmcnt Heuristics
5.4. Learning Conditions Through Discrimination
5.5. Directing Search Through thc Rule Space

6. An Example of SAGE.2 at Work
6.1. Learning From Solution Paths
6.2. Learning While Doing
6.3. The Importance of Goals

7. Applying SAGE.2 to Other Domains
7.1. The Slide-Jump Puzzle
7.2. Tiles and Squares
7.3. The Mattrcss Factory Puzzle
7.4. Algebra
7.5. Seriation

5. SAGE.2: A Systcm That Lcarns Scarch Heuristics

8. Discussion
References

1
2
4
4
5
5
6
6
6
7
7
7
7
8
8
9
9

10
11
13
16
17
17
21
22
23
23
24
25
26
27
28
31

Abstract

Ixarning from cxpcricncc involvcs thrcc distinct components - gcncrating bchdvior, assigning crcdit, and
modifying bchavior. Wc discuss these componcnts in thc context of lcarning scarch hcuristics, along with the
types of lcarning that can occur. Wc thcn focus on SAGE, a systcm that improvcs its scarch stratcgics with
practicc. 'I'hc program is implcmcntcd as a production system, and lcarns by crcating and strcngthcning rules
for proposing movcs. SAGE incorporatcs five diffcrcnt heuristics for assigning crcdit and blamc, and cmploys
a discrimination proccss to direct its scarch through the space of rules. Thc systcm has shown its gcncrality by
lcarning hcuristics for dirccting scarch in six diffcrcnt task domains. In addition to improving its search
bchavior on practicc problems, SAGE is ablc to transfcr its cxpcrtisc to scalcd-up vcrsions of a task, and in
one casc transfcrs its acquired search stratcgy to problcms with diffcrcnt initial and goal statcs.

-1-

1. Introduction

‘Thc ability to scarch is ccntral to intclligcncc, and tlic ability to direcl scarch down profitablc paths is
what distinguishes thc cxpcrt from thc novice. Howcvcr, sincc all cxpcrts bcgin as noviccs, thc transition from
onc to thc othcr should hold great intcrcst for Artificial Intclligcncc. In this papcr, wc cxaminc thc process by
which gcncral but weak mcthods arc transformcd into powcrful, domain-specific scarch heuristics. As the
rcadcr procceds, hc should bc ablc to dctcct two main themcs. In the early scctions of Ihc papcr, we have
attcrnptcd to classify the typcs of hcuristics learning that can occur, as wcll as thc cornponcnts that contribute
to such learning. After tlicsc prclirninaries havc bccn complctcd, we explorc a particular learning systcm -
S A G E 2 - in somc dctail, both in tcrms of its structurc and in tcrms of its bchavior in diffcrcnt domains. We
closc with a discussion of somc dircctions in which the systcm should be extcnded.

Within any systcm that improves its scarch stratcgics with expcricncc, wc can idcntify tlircc distinct
cornponcnts. First, such a systcm must be ablc to search, so that it can gencratc bchaviors upon which to basc
its lcarning. Second, the systcm must be ablc to distinguish dcsirable from undcsirablc bchaviors, and to
dctcrminc the componcnts of thc systcm that wcrc rcsponsiblc for thosc bchaviors: in othcr words, it must be
ablc to assign credir and blame. Finally, the systcm must bc able to USC this knowlcdgc to ~ n o d f j its scarch
stratcgics. so that bchavior irnprovcs over time. Since so much AI rcscarch has rcvolvcd around thc notion of
scarch, it is not surprising that the first of thcsc componcnts is the best undcrstood. Many altcrnative search
stratcgics havc bccn explorcd, ranging from vcry gcncral but weak methods, likc depth-first and brcadth-first
scarch, to much morc powerful mcthods that incorporate knowlcdge about spccific domains. I t is preciscly the
transition bctwccn weak, gcneral mcthods and specific, powerful mcthods with which we arc concerned.
‘l’hus, it is appropriate that a stratcgy lcarning systcm start with some weak scarch schemc that can bc applicd
to many diffcrcnt domains. Howcver, it is also important that the search control can bc easily modified to take
advantagc of domain-dependcnt knowledge that is acquired with cxpcrience. Thc areas of crccii t assignmcnt
and modification are less well undcrstood, and we discuss them in somc dctail in later scctions. However,
beforc turning to these matters, lct us consider the problem of learning search hcuristics in the context of a
simple puzzle.

Over thc years, the Tower of Hanoi puzzle has been uscd as a testbed for many differcnt AI systems. We
have chosen this task for our example because it is so well-known to the AI community, and bccausc it poses a
challcnging problem to humans dcspite its small search space. In this puzzle, one is presented with three pegs
on which are placed N disks of decreasing size. Initially, all disks are placed on a single peg, and the goal is to
get all of thcsc disks onto one of the other pegs. This task would be trivial except for two constraints on the
types of moves that are allowed. First, one can only move the smallest disk from a given peg. Second, one
cannot move a disk onto another peg if a smaller disk is alrcady resting on that peg. Taken together, these
restrictions considerably constrain the set of legal moves, and make for a challenging problem.

Figure 1 presents the state space for the three-disk Tower of Hanoi problem, originally formulated by
Nilsson (1971), while Figure 2 shows two of thcsc states in more detail. Note that although only 27 states exist
in the space, the number of connections betwcen these states is very large. One result of this high density of
connections is that loops are very easy to generate.’ Another result is that while many paths to a goal are
possible, only a few are optimal. In other words, within the state space for the three-disk problem,
considerable search may be necessary to find an optimal solution path. Suppose S1 is given as the initial state
(in which all disks are on a single peg), and the goal is to reach either state S20 or state S27 (in which the disks

’Imps are posqible because all moves are reversible. For example, one can move from State S2 to S1 as easily as from S1 to SZ
though longer loops can also occur.

- 2-

arc all on anothcr pcg).2 Further assiimc that we cmploy a very general but wcak scarch stratcgy such as
dcpth-first or brcadth-first scarch to solvc this problcm. Given such wcak scarch control, many non-optimal
movcs will bc considcrcd bcforc the bcst set of moves is discovcrcd. For example, a brcadth-first scarch
schcmc would considcr moving from statc 52 to S 3 , as wcll as the optimal move from S2 to S4. The goal of a
stratcgy learning systcm is to discovcr a sct of heuristics that will proposc moves lying on the solution path,
whilc avoiding thosc lcading off thc path. In the following sections, we consider somc of the ways in which
such scarch heuristics can bc acquired.

s7 s8

S20 s21 s22 S23 S24 S26 S26 S27

Figure 1. State space for the three-disk Tower of Hanoi puzzle.

2. Types of Strategy Learning
Throughout the history of science, the first step in understanding a set of phenomena has involved the

construction of taxonomies or classification schemes. Thus, the early chemists formulated classes such as
acids. alkali$. and salts before they began to discover quantitative laws for reactions. Similarly, in biology the
acceptance of the Linnaean classification system preceded Darwin's recognition of similarities between classes
and his explanation of their evolutionary relations. By analogy, it would seem useful to attempt to categorize
the various types of stratcgy improvement, before attempting to explain the processes responsible for them.

Ohlsson (1982) has distinguished between improvement, in which search decrcases on a single practice
problem, and frunsfer, in which practice on one set of problems leads to a reduction in scarch on a second set
of problcms. Building upon this distinction, it is possible to subdivide the class of transfer learning still
further. Onc type of transfer involves the scaling up of simple problems into more complex ones. We have
seen that for puzzles such as the Tower of Hanoi, one can draw a state space diagram representing the possible
states and the moves connecting them. The state space for the four-disk puzzle is very similar to that for the
simpler problem, and can be generated by replacing each state in Figure 1 by a triangle of statcs. Given this
similarity of structure, one might expect that heuristics learned for solving the three-disk problem would
transfer to the four-disk problem. However, more steps are involved in reaching a solution, so this problem is

21n most versions of this task, the goal involves moving all disks to a single peg; we will discuss the reason for allowing multiple
solutions later in the paper.

-3-

a scaled-up version of the three-disk p r o b l ~ m . ~

A second type of transfer occurs when one practices on one problem, and thcn is presented with another
problem that involves the same state space, but has a different initial state or a different goal state. For
example, one might learn a set of heuristics for moving from state S1 to S20 or S27 in the three-disk problem,
and thcn be asked to find a path between state S7 and S14. In general, this type of transfer would appear to be
more difficult that scaled-up transfer, since one must take goal information into account while constructing
one’s heuristics.

In domains such as algebra and integration, the state spaces for different problems bear little similarity
LO one another, sincc only a few of the many possible operators come into play on a given problem. However,
the goals always have very similar forms - to simplify an expression or to solve for some variable. As a result,
the above two types of transfer seldom occur in such domains. In these cases, one usually practices on one set
of problems, and is thcn tested on a different sct of problems that, while they differ in the structure of their
state spaces, have approximately the same complexify. This type of transfer constitutes the third member in
our classification scheme.

state S1 state S2
Figure 2. Moving disk-1 from peg-A to peg-C on the Tower of Hanoi puzzle.

Finally, one may sometimes attempt to use knowledge learned in an area that is only loosely related to
t!e current situation. In such cases, only some of the operators used earlier may be applicable to the space
currently bcing searched, and others that were not applicable before may come into play. Still, one may be
able to take advantage of some of the heuristics that were acquired in the first class of problems and apply
them to the task at hand; this form of transfer is usually called learning by analogy. ‘Taken together, these four
classes would seem to cover the ways in which transfer of learning can occur, though one might propose
alternate divisions based along other dimensions.

While we do not have the space to review earlier research on strategy learning in detail,4 it will be usefhl
to classify the existing work in terms of our categories. For instance, Anzai (1978) focused on improvement
within the threc-disk Tower of Hanoi task, but did not address the issue of transfer. In contrast, Brazdil’s
(1978) concern with arithmetic has led him to explore transfer to scaled-up problems and to problems of
equal complexity, and Neves (1978) has also cxamincd thc lattcr in the context of algebra learning. Mitchell,
Utgoff, and Banerji’s (1983) research on symbolic integration and Anderson’s (1981) work on geometry
theorem proving have also been concerned with the latter type of transfer. Langley’s SAGE.l(l982.1983) -
the predecessor of the current system - showed both improvement on a single problem and transfer to
scaled-up problems, while Ohlsson’s UPL2 (1982) showed both improvement and some ability to transfer to
problems with diffcrcnt initial states and goals. Rendell’s (1983) PLSl system was able to transfer its heuristics

3The difficulty of a problem can sometimes be altered in multiple ways. For example, one can formulate a variation of the Tower of
Hanoi puzzle that involves three disks and four pegs. In fact, this problem can be solved in fewer steps than the standard version, but the
point is that dificulty can sometimes be affected in more than one way.

%he interested reader is directed to Keller (1982) and Langley (1983) for reviews of some recent work in the area

-4-

to both scalcd-up problcms and to thosc with diffcrcnt initial and goal statcs. 1,ikc Anzai. Hagcrt (1982) has
focused on improvcment on thc ‘I’owcr of Hanoi task, whilc Korfs (1982) macro-operator lcarning program
was ablc to transfer its cxpcrtisc to problcms with diffcrcnt initial statcs. Finally, both Carboncll (1983) and
Andcrson (1983) have studied lcarning by analogy, in which knowledge gaincd in solving onc problcm is
applied to dircct scarch in a quite different problem. We summarize this information in Tablc 1.

1-atcr in thc papcr, wc will cxaminc thc behavior of a particular strategy learning system callcd SAGE.2.
‘lo anticipate our results, we will find that SAGE is capable not only of improvcmcnt, but that it is also
capable of transfcr to scalcd-up tasks, and to problems of equal complcxity. Wc will also find that thc current
system has difficulty in transferring its cxpcrtise to problcms with diffcrcnt initial and goal strltcs, but that the
potcntial for this form of transfer does exist. Finally, learning by analogy appears to lic bcyond thc mcthods
cmploycd by thc program. Hopcfully, thc rcadcr now has a bcttcr understanding of thc typcs of transfer that
can occur, and tliosc typcs wc will focus on in tlic following pagcs. Now, Ict us move on to thc cornponcnts of
thc stratcgy learning process.

3. Approaches to Credit Assignment
As wc have seen, thc first step in learning is to distinguish desirable from undesirablc behaviors, and to

dcterminc thc parts of the system responsiblc for those behaviors. lhis has bccn called thc credif assignment
problem, and has bccn explored in a numbcr of domains, ranging from puzzle solving to chcss playing. We
havc arrived at a number of hcuristics for assigning credit and blame that appcar to be quitc gcncral, some of
which wc havc borrowed from other rescarchcrs. All of thcsc methods involvc the same basic idea - that
steps lying along optimal solution paths should be preferred to those leading off those paths. However, the
various mcthods make judgements about prcfcrable moves in quite different ways. Below we discuss these
heuristics in the context of thc Tower of Hanoi puzzle and a few other simple tasks.

3.1. Complete Solution Paths

One option for distinguishing desirable from undesirable behavior is to wait until a complcte solution
path has becn found for a problcm. Moves leading to states on the solution path arc desirable, since they led
to a solution, whilc moves going off the path arc undesirable, since they led clscwhcre. Mitchcll, Utgoff, and
Banerji (1983) have employed this approach in their LEX system, while Langley (1983) has used a very similar
approach in his SAGE.1 program. Brazdil (1978) and Rendell (1983) have also employed the complete
solution path hcuristic. Sleeman, Langley, and Mitchell (1982) have discussed the generality and limitations of
this approach to credit assignment.

Let us consider how this technique can be applied to the Tower of Hanoi puzzle. Figure 1 presents the
state space for tlic tliree-disk puzzle, with the two solution paths connecting the top vertex to the two bottom
vertices. Given the legal operators for solving the puzzle, many problem solving systems can discover the
solutions by searching this space. Once the solution paths have been discovered, they can be used to assign
credit and blame. For example, since both moves from the initial state S1 lie on the solution path, both would
be labeled as good moves. Three moves are possible from each of the resulting states S2 and S3. The moves
leading to statcs S4 and S5 also lie on the solution path, and so would be marked as good moves. However,
the moves leading to states S3 and S2 lie off the solution path, as do the two moves leading back to the initial
state. Thus, all of these moves would be labeled as undesirable.

This approach is very general, since it can be used to assign blame and credit to any problem that can be
solved by scarch. However. this method is guaranteed to work only if all of the shortest solution paths are
available. Since some search techniques find only a single solution path, difficulties can arise. For example, a
system that solvcs problems using a form of depth-first search might find one of the solutions shown in Figure

- 5 -

1, but not tlic othcr. Givcn such incomplctc knowlcdgc, our crcdit assignment hcuristic would mistakenly
labcl onc of thc initial movcs as undcsirablc. Mitchell, Utgoff, and Ilancrji (1983) havc dcalt with this
problcm by carrying out additional scarch bcforc dcciding that a movc is bad. Anuthcr problcm is that while
almost a n y problcm can in pririciple bc solvcd purely by scarch, thcrc arc many problcms with scarch spaccs
so largc that somc othcr route must bc takcn. In thcsc cascs, other crcdit assignment hcuristics that do not
rcquirc complctc solution paths must bc cmploycd to cnablc lcarning to occur while thc problcm is bcing
solvcd, so that thc scarch prtxcss can bccomc dircctcd cnough to rcach thc goal statc. nclow we discuss a
numbcr of heuristics that allow crcdit assignmcnt during the search proccss, and which open thc way to
lcarning while doing.

Table 1. Typcs of lcarning addrcsscd in earlier rcscarch.

IMPROVEMENT SCALED-UP DIFF. GOALS EQUAL C0,MP. ANALOGY

ANZAI X
BRAZDII; X X X
NEVES X X
MrrcIiELId X X
LANGLEY X X
OHLSSON X X
RENDELL X X X
HJZGERT X
KORF X X
ANDERSON X X X
CA RBONELL X X

3.2. Noting Loop Moves

When one is attempting to solve a problem in as fcw steps as possible, returning to a previously visited
statc (or looping) may bc safely considercd undcsirablc. Thus, when a move leads to a state through which the
problem solver has already traveled, that move can be labeled as less desirable than another move that does
not complcte a loop. For example, supposc one is at state S4 in the threc-disk Tower of Hanoi problem, and
considcrs moving to statcs S2, 56, and S7. Since the first of these leads back to the previously visited state S2,
it can be labclcd as less desirable than the last two moves. Note that this form of credit assignment is relafive
rather than absolute, as was the case when complete solutions were known. There is no guarantee that the
move leading from S4 to S7 will ultimately be deemed desirable (as in fact it will not, sincc it leads off the
solution path). However, one can say that this move is mure desirable than the one leading back to prcviously
reached state, and this information may be usehl to the modification component of the system. Anzai (1978)
has used a loop move detector to good effect in modeling learning on the Tower of Hanoi, but it is clear that
this approach can bc applied to any domain in which loops can occur during search. Ohlsson (1982) has
employed a similar credit assignment technique in his UPL system.

3.3. Noting Longer Paths

In general, shorter paths to a goal are more desirable than longer ones. Thus, if a problem solvcr notes
that he has reached somc state by two different paths, he can infer that thc last move in the longer path should
have bccn avoided. For example, in the three-disk Tower of Hanoi puzzle, suppose one has moved from state
S4 to statc S7, as well as from S4 to S6. Further supposc that on the next move, one moves from S6 to S7, as
well as from S6 to SIO. Since the state S7 has been reached by two paths, the last move in the longer path

-6-

(from S6 to S7) may be judgcd undcsirablc. The alternatc movc from S6 to S10 cannot immediately be
dccmcd good in any absolutc scnsc (though latcr it would bc found to lic 011 the solution path), but it can be
judgcd as more dcsirablc than the movc from S6 to S7. Thus. this is anothcr casc whcrc thc assignmcnt of
crcdit and blamc takcs on a rclativc aspcct. ‘I’hc shortcr path hcuristic is closely rclatcd to the loop move
mcthod, and appcars to bc anothcr quitc gcncral techniquc for assigning crcdit during thc scarch proccss.
Anzai (1978) has applicd a very similar tcchniquc to learning on the ‘I’owcr of Hanoi task.

3.4. Dead Ends
In solving a problem, a path must bc found from thc initial to thc goal statc. Howcvcr, some paths lead

to dcad cnds from which no stcps can be takcn cxccpt to back up, and it is dcsirablc to avoid thcsc CUI de sacs
if possiblc. Anothcr gcncrally uschl crcdit assignment hcuristic labels as bad thc last movc in a path that has
lcd to a dcad cnd. For cxamplc, supposc in solving the threc-disk Towcr of Hanoi problcm, onc has movcd
from statc 54 to S7. Also supposc that after this, onc has tried moving from S7 to S4, from S7 to S6. and from
S7 to S8. If thc first of thcsc moves is labeled as bad by thc loop move hcuristic. and thc second two are
markcd as bad by thc shortcr path heuristic, then the state S7 may be classificd as a dcad cnd. As a rcsult, the
move from S4 to S7 may bc judgcd as undesirable, and thc move from S4 to SG may bc judgcd as a better
movc, sincc it docs not lcad to any undcsirablc state. Again, this heuristic cannot dccidc that thc S4 to S6
movc is absolutely dcsirablc (though it does lie on the solution path), but it can dctenninc that this move
should be preferred to its alternative.

3.5. Failure to Progress

We have so far referrcd to the initial search strategy only in the abstract. Howevcr, some scarch
strategies arc more powcrful than others, and this power can be uscd in assigning credit and blamc bcfore a
complete solution has been found. For example, search methods such as mcans-ends analysis and hill-
climbing cmploy an evaluation fknction which tclls whether one is closer to the goal after a movc has been
made than he was bcfore. Let us consider a simple example from the domain of algebra. In solving algebra
problcms in one variable, simplifying the cxprcssion will takc one closer to the goal (in which thc variable is
on one side of the equation and a number is on the other). Thus, if a step is takcn which does not simplify the
expression, this may be judged as an undesirable move. Anothcr move made from the samc statc that does
lead to a simplification may be judged as more desirable, though (in principle at lcast) it might not be the best
move possible. Neves (1978) cmployed such a credit assignment principle in his ALEX system, cnabling it to
learn algebra heuristics before a complete solution had been achieved. The implementation of such a
principle might be quite general, as in Ohlsson’s (1982) UPL2 system, which used a form of means-ends
analysis, or it might be relatively specific, as in knowing that algebra expressions should always be simplified.

3.6. Illegal States

A final heuristic for the determination of credit and blame revolves around the notion of illegal states.
In some cases, the problem solver may attempt to make moves which he latcr rccognizes as violating some
task constraint. For example, in the Tower of Hanoi puzzle, one might attempt to move the largcst disk, even
though one or more smaller disks were resting on it. Of course, such a move is undcsirablc, and any move
from the same state that does not violate a constraint may bc judged as better. This is yet another case in
which the desirable move is only relatively good, and that move may be judged as Undesirable at some later
point in the search process. In principle, this heuristic may be applied to any task that involves some form of
constraints. However, problem solvers often incorporate such constraints into their operators, and so avoid
illegal moves from the outset. Still, this type of mistake occurs among human problem solvers sufficiently
often for it to be included in the psychological literature (Simon, 1976), so we shall keep it on our list of
methods for solving the crcdit assignment problem. Now that we have considered approaches to thc first step
in the strategy learning process. it is time to move on to the second stage - the modification of behavior.

4. Approaches to Altering Search Behavior
Thcrc cxist two rather diffcrcnt approachcs to controlling scarch in an intelligent fashion. In the first

schcmc, some numcrical cvaluation hnction is uscd to rank statcs, and thosc with thc highcst scorcs are
sclcctcd for furthcr expansion. This mcthod is commonly uscd in gamc-playing programs. Thc altcrnative is
to cmploy hcuristics with symbolic conditions to dircct scarch, and this approach has oftcn bccn applicd to
puzzlc-solving tasks and mathematical domains. As onc might cxpect. both of thc mcthods lead to associated
tcchniqucs for alm-ing scarch bchavior, and both approachcs to learning havc becn explorcd in the literature.
llclow we suminarizc thesc approachcs to stratcgy acquisition.

4.1. Discovering Evaluation Functions

Thc approach to lcarning through discovering evaluation hnctions is an attractivc onc, and was
cxamincd early in the history of Artificial Intclligcnce. Samucl (1959) constnictcd a chcckcr-playing program
that chose its moves on thc basis of a lincar evaluation function. Thc systcm cxpcrimcntally introduccd ncw
tcrms from a set of prcdefincd fcatures and altcrcd the wcights of existing tcrms, and thcn notcd the rcsult in
its playing ability. In this way, Samuel’s systcm cventually progresscd to mastcr lcvcl chcckers play. Rcndell
(1983) has cxplorcd an altcrnatc approach to finding cvaluation hnctions. His PI,S1 program first solvcs a
problcm (such as the cights puzzle) using breadth-first scarch. Oncc a solution has bccn found, this
information is uscd to assign a score to each state in thc scarch tree. Using various curvc-fitting tcchniqucs,
Rendell’s systcrn generates a hnction that predicts these scorcs in terms of a sct of prcdcfincd fcaturcs. This
function can thcn be used as an evaluation hnction for dirccting the search process. While such tcchniques
are uscful in domains where numeric evaluation functions are appropriate, other mcthods must be uscd to
acquire hcuristics that can only bc stated in symbolic terms.

4.2. Generalizing Conditions

Onc technique for lcarning symbolic conditions begins with very specific rules and generafizes as more
information is gathered. In this incremental approach, the hypothesized conditions arc usually initialized to
the first positive instance. Whcn a new positive instance is encountercd, it is comparcd to the current
hypothesis and one or more rcvised hypotheses are generated, based on the features held in common by the
two structures. If some of these hypothcscs bccome ovcrly gcneral, they cventually lead to the incorrect
classification of negative instances as positive ones, and are rejected. Since more than one hypothesis may
result from this comparison, some method for controlling search through the rule space is required. Winston
(1975) has explored depth-first strategies for searching the rule space, while Hayes-Roth (1976) and Vere
(1975) have employed breadth-first search strategies. Since most generalization-bascd methods search for
features held in common by all positive instances, they havc difficulty in learning rules with disjunctive
conditions. However, Iba (1979) has used an extension of the depth-first scheme to successhlly learn
disjunctive rules.

4.3. Discriminating Conditions

An alternate approach starts with an overly general rule, and generates more specific versions through a
process of discriminafion. This occurs when one of the current hypothcses leads to an error, providing
evidence that it is too general. l’he context in which the faulty rule matched thc negative instance is compared
to the last contcxt in which the same rule matched a positive instance. During this comparison, differences
between the positive (desirable) instance and negative (undesirable) instance are found. For each difference, a
more specific hypothesis is constructed that matches against the positive instance but not the negative one.
Since multiple hypotheses can result, some search control is required. Brazdil (1978) has uscd depth-first
search to dircct the discrimination process, while Anderson and Kline (1979) and Langley (1982b) have

-8-

cmploycd morc complcx stratcgics involving notions of strcngthcning and wcakcning. Sincc the
discrimination mcthod docs not attempt to find fcatiircs common to all positive instanccs, (thc mctliod
comparcs instances to instances, rathcr than comparing instanccs to hypothcscs), it has no difficulty in
Icarning rulcs with disjunctive conditions.

4.4. The Version Space Approach

Mitchcll (1977) has cxplorcd thc version space approach, which incorporates aspects of both the
gcncralization and discrimination mcthods. This tcchniquc bcgins with a vcry spccific hypothesis, and
gcncratcs more gcncral hypothcscs (S) that act as an uppcr bound on the rulc bcing lcarncd. As with
gcncralimtion methods, this is donc by finding common fcaturcs bctwccn thc current hypothcscs (S) and cach
ncw positive instancc. ‘I’hc version spacc mcthod also also bcgins with a vcry gcncral hypothcsis, and produces
morc spccific vcrsions (G) that act as a lowcr bound on the rulc bcing lcarncd. At first glance, this approach
sccms to bc simply a combination of thc gcncralization and discrimination mcthods. However, instcad of
testing thc first sct of hypothcscs (S) against ncgativc instanccs to sce if thcy arc ovcrly gcncral, it tests them
against thc sccond sct (G). Similarly, morc spccific vcrsions of thc second sct (G) arc found by comparing
ncgativc‘instanccs to members of thc first sct (S) . Mitchcll employcd a brcadth-first stratcgy to dircct scarch
through thc spacc of hypothcscs. As morc instanccs arc gathcrcd. this bi-directional scarch convcrgcs (by
moving thc uppcr and lowcr bounds togcthcr) on thc hypothesis best suitcd to summarize the data. Since
Mitchcll’s mcthod also finds fcaturcs hcld in common by all positive instances, it has the samc difficulty with
disjunctive rules as most gcncralization-bascd learning systems.

4.5. Implications for Search Behavior

Notc that thc direction taken in searching for conditions has implications for the pcrformance
cornponcnt of a sxatcgy learning systcm. For examplc, if thc systcm moves from spccific to gciicral
hypothcscs through a gcncralization proccss, then the associatcd pcrformance system will bc Conservative. The
systcm will bcgin by making no bad moves and missing some good moves. but as thc systcm nears thc correct
hypothcsis, its crrors of omission will decrease. In contrast, if the systcm moves from gcncral to spccific
hypothcscs through a discrimination proccss, then the associated performance system will be a rash one,
omitting few desirablc moves but considering many undesirable ones as well, though the latter will decrease
as the correct hypothcsis is approached.

While a conservative strategy is useful when a benevolent tutor is available to present positive and
negative instances (as in the paradigm of learning concepts from examples), it is less adaptive in learning
search heuristics, where a system must generate its own behavior in order to accumulate positive and negative
instances of various rulcs. In this case, the price of commission errors is small, since the only result is added
search. However, the price of omissions is great, since learning is impossible in the absence of behavior. Thus,
in thc contcxt of learning scarch strategies, the reckless discrimination approach secms superior to the more
conservative generalization approach.’ The version space approach is capable of conservative or rash
behavior, dcpending on whether one uses S or G in the match process. However, in this paper we will limit
our attention to discrimination-based approaches to strategy learning.

’However, Ohlsson (1983) has devised a generalization-based scheme that sidesteps the problems associated with most such
approaches. His UPL2 system begins with a set of overly general rules which lead to search: based on good moves, the program creates
specific rules and generalizes them when possible. Although UPL prefers to use such learned rules, it retains the original rules, and so can
fall back on them if the acquired rules fail to propose any move.

-9-

5. SAGE.2: A System That Learns Search Heuristics
Having considcrcd thc thrcc componcnts involved in stratcgy Icarning. wc can now cxaminc a particular

stratcgy lcarning systcin in some dctail. Wc will focus on SAGE.2, thc sccond in a linc of programs (Langley,
1982a, Langlcy, 1983) that wc havc constructcd to study thc proccss of strategy acquisition. SAGE stands for
Stratcgy Acquisition Govcrncd by Expcrimcntation. Likc most othcr stratcgy lcarning programs, SAGE is
implcmcntcd as an adaptivc production systcm. In othcr words, it is statcd as a sct of rclativcly indcpcndent
condition-action rulcs or productions, and lcarning occurs through thc addition of new productions. The
program is implcmcntcd in PRISM (Langlcy. 1981), a production systcm languagc dcsigncd to cxplore
lcarning phcnomcna. Bclow wc considcr thc componcnts of SAGE, starting with its rcprcsentation of states
and opcrators. Aftcr this, we discuss thc systcm’s initial scarch stratcgy, its credit assignment hcuristics, and its
mcchanisrns for altcring its scarch stratcgy in thc light of experience.

5.1. Representing States and Operators

Any problcm solving systcm must have some represenlafiorz upon which to work. For a givcn problem,
it must be ablc to rcprcscnt the statcs that constitutc thc problcm spacc being searched, and to rcprcscnt the
opcrators that cnablc the systcm to move bctwccn those states. As wc have stated, SAGE.2 is implcmcntcd as
a production system. Others havc argued for thc advantagcs of production systcm formalisms (Ncwcll, 1972,
Anderson, 1976), and we do not have the spacc lo recount those arguments hcrc. However, thc choice of
production systcms leads to a natural style for representing states and operators, and it is appropriatc to spend
somc timc discussing that style.

A program that is stated as a production system consists of two main components - a set of condition-
action rulcs or productions, and a working mcmory against which those productions are matchcd. The
working mcmory tends to be dcclarative in nature. and changes contents fairly rapidly. In contrast, the
production mcmory tcnds to express procedural knowledge, and changes only slowly, when Icarning occurs.
During problem solving, new states are generated quite often, while new search procedures are added only
occasionally. Thcrcfore, it is quitc natural to reprcscnt states as elements in working memory, and it is equally
natural to represcnt operators for moving between those states as productions.

Given these dcsign decisions, a question remains as to the precise manner in which statcs and operators
are to be stored. For example, states might be rcpresented as single working memory elements, as with
(in-state S2 (peg-A contains disk-2 disk-3) (peg-B contains disk-1) (peg-C contains)) for the Tower of Hanoi.
Alternately, they might be stored as a number of separate elements, such as (disk-1 is-on peg-B in-state S2),
(disk-2 is-on peg-A in-state S2), and (disk-3 is-on peg-A in-state S2). Since most production system languages
have limited pattern matching capabilities, the latter of these two schemes is desirable, since it lets one express
finer distinctions. In fact, this is the representation for states used in SAGE, and it has worked extremely well
for our purposes.

Since production system formalisms require a close correspondence between the form of elements in
working memory and the form of productions, the choice of representation for statcs places strong constraints
on the representation for operators. For example, the following rule is a natural statement of the conditions
under which a disk can be legally moved in the Tower of Hanoi task:

6

6Anzai (1978) employed a representation very much like the first one shown above, and certainly managed to implement a running
system. However, this approach required that he build considerable knowledge into his learning mechanisms about the particular
representation he was using. In our opinion, this was one of the reasons why Anzai never managed to get his system to lcarn in more than
a single domain.

-10-

TO H
If you have disk on currenl-peg in current-slate,

and you have some othcrpcg different from current-peg,
and in curren/-s/a/e thcrc is no olherdisk on currenl-peg that is snialler than disk,
and in currenl-slale there is no lhird-disk on orherpeg that is snxillcr than disk,

then consider moving disk from currenf-peg to otherpeg.
Thc meaning of this production is self-explanatory, but thc correspondence bctwcen conditions and working
memory may not be so clear. For this rule to be applied. cach line must match against some clement in
working memory. For cxample, at the outset of the problem, the first line might match against against the
elements (disk-1 is-on pcg-A in-state Sl), (disk-2 is-on peg-A in-state Sl), o r (disk-3 is-on pcg-A in-state Sl).
Similarly, the second condition would match against thc clcmcnts (peg-b is-a peg) and (pcg-c is-a peg). ‘The
remaining ncgatcd conditions would match against elcrncnts like (disk-1 is-on pcg-A in-statc S1) and (disk-1
is-smallcr-than disk-3). Italicized tcrms in the above rule stand for variables which can match against any
symbol: in addition to matching within individual conditions, variables must bind consistcntly across
conditions for rhc production as a wholc to match. In c a m where the ncgatcd conditions arc succcssfully
matched; thcy kccp the production as a whole from matching. ‘l’hus, thcy can be used to kccp h i s rulc from
proposing illcgal moves, such as moving a disk when a smaller one is resting on it.

Note that thc above rule proposes a move, but does not actually carry it out: we will call such rules
proposers. Each proposer contains the lcgal conditions on an operator, whilc thc operator itsclf ic implemented
in a scparatc rule. This division of labor has two main advantages. First, since we arc conccrncd with
improving search strategies, our system need only alter the conditions undcr which actions are proposed. This
means that we can ignore the actions involved in an operator, and focus on the conditions. Second, as we shall
see later, SAGE learns by creating variants of proposers likc TOH. In some cases, variants of thc same original
production fire in parallel, proposing the same action. By introducing an additional stcp bctwccn the move
proposal and its implementation, we give the system time to recognize the identity of these proposals and to
avoid unnecessary effort.

When a proposal is actually carried out, an operator frace is deposited in working memory. These traces
refer to the operator that was applied, as well as to the arguments that were passed to it, as in the working
memory element (move-1 was move disk-1 from peg-A to peg-B). Information is also stored about the state at
which the operator was applied, and the state that resulted from its application, as in the elcmcnt (move-1
led-from S1 to S2). Such trace information is used once a solution has been found, allowing SAGE to chain
back up the path, marking traces lying on that path as desirable. The system’s other credit assignment
heuristics also take advantage of these traces, using them to infer moves leading to undesirable states and to
back up to earlier states. SAGE also considers such tracc information when it is searchins for conditions on its
proposers, and can incorporate knowledge of previous moves into the productions it generates. The need for
some form of trace data in strategy learning has been emphasized by Nechcs (1981) and by Langley, Neches,
Neves, and Anzai (1980), and our experience with the current system has reinforced our beliefs on this matter.

5.2. The Initial Search Strategy
In order to understand SAGE.23 initial search strategy, and the manner in which this stratcgy changes

over timc, we must consider some more details about the nature of production systems. A given rule may
match against the elements in working memory in more than one way; each such match is called an
instantiation. Given a set of instantiations, a production system program must have some means of
determining which should be applied, and which should be saved for later application; this process is called
conflict resolution. SAGE employs three conflict resolution principles, which are applied in turn. First,
instantiations which have been applied before are never selectcd again; this process of refraction keeps the

-11-

samc movc from bcing proposcd by thc samc production. while allowing prior statcs to be retained in case
somc othcr movc must be madc from thcm. Second. instantiations matching against morc rcccnt statcs are
prcfcrrcd to thosc relating to older statcs; this focuscs attention on new statcs, so that thc systcin continucs to
cxplorc promising paths. Third, cach production has an associatcd strength, and rulcs with high strcngths are
prcfcrrcd to wcakcr oncs; sincc rulcs arc strcngthcncd cach timc thcy arc relcarncd, this numbcr can be
vicwcd as a mcasurc of cach rule's success, with prcfcrcncc bcing givcn to morc succcssful rulcs.

I f two or morc rulcs have cqual strcngth, or if multiple instantiations of a single rulc match against
elcmcnts of the samc rcccncy, thcn morc than onc movc may be proposcd at a timc. 'l'his is thc standard
situation whcn SAGE first attempts to solve a problcm, sincc its proposcrs gencrally bcgin with idcntical
sucngths, or bccausc it starts with only one such rulc. In this casc, thc systcm carrics out n brcadth-first scarch
through thc problcm space dcfincd by its operators, and thc program continucs in this cxhaustivc fashion
until crcdit can be assigncd and learning can occur. Oncc ncw movc proposing rulcs havc bccn gcncratcd, and
thc strcngths of the old rulcs have bccn altcrcd, search bccomcs more sclcctivc. Although still prefcrring more
reccnt statcs, SAGE begins to prcfcr productions that havc been lcarncd many timcs, and to shun thosc that
have 1cd.to crrors in thc past. Howcver, it retains thc ability to consider multiple paths, as long as thcsc paths
arc gcncratcd by rules with thc same strengths. For cxample, it would still be ablc to fitid both solutions to
the Towcr of Hanoi puzzle, since thcse arc pcrfcctly symrnctrical. In summary, the systcm starts by carrying
out a blind brcadth-first scarch, and using information it gathers along the way, it cnds (perhaps aftcr a
numbcr of runs) with thc ability to direct its search toward the goal states.

The systcm must also know whcn it can stop searching. This is the responsibility of a separate
production that recognizcs when the goal state has been reached, and adds information to working mcmory to
this ct'fcct. For example, the goal-rccognizing rule for the Tower of Hanoi puzzle notes whcn all disks are
resting on the same goal pcg, and adds to memory the names of the states that satisfy this condition. 'h i s
information is uscd later in determining the complcte solution path. separate goa!-recognizing productions
must be provided for cach task domain, since the conditions for the solutions differ. Howcver, the samc rule
can gcncrally be used for scaled-up versions of a problcm; for instance, the goal production for Tower of
Hanoi does not refer to the number of disks on the goal peg, and so can be used for the four-disk and
five-disk tasks, as well as for the simplcr three-disk problem.

5.3. SAGE.2's Credit Assignment Heuristics

In an earlier section, we distinguished two basic approaches to altering search behavior. The first of
thcsc involved the discovery of evaluation functions, while the second involved the determination of the
symbolic conditions undcr which moves should be proposed. Since we are working within a production
system framework, the symbolic approach is most appropriate. As we indicatcd bcforc, SAGE cmploys a
discrimination mechanism (as opposed to a generalization or version space method) to dctcrmine the heuristic
conditions for applying its operators. Since this method inputs a positive and negative instance of some rule, it
is appropriate to first consider the manner in which the system assigns credit and blame, and thus
distinguishes desirable moves (or positive instances) from those which should be avoided (or negative
instances).

-12-

Table 2. Crcdit assignment heuristics based on complete solution paths.

ON-’I‘H &-PATH
If i now led from srare to good-sfale,

and srarr lies along the solution path,
and goodsrare lies along the solution path,

and store that instantiation as a positive instance of the rule.
then retrieve the rule and iiistantiation that proposed move,

OE’F-’I‘H E- PATH
If move led from slate to bad-srafe,

and s m e lies along the solution path,
and brrd-srare docs not lie along the solution path,

then retrieve the instantiation and rule that proposed move,
as well ;is the last good instantiation of the same rule;
wcahcri the rule and call on the discriniination process using

the last good instantiation as the positive instance
and the current instantiation as the negative instance.

SAGE can operate in cithcr of two modes. It can assign credit based only on complete solution paths, or
it can attempt to lcarn during thc scarch process. Sincc the program’s credit assignment heuristics are stated as
independent condition-action rules, they can bc added or removed without affecting the system’s ability to
scarch. though of course this does affect the manner in which learning occurs. Let us begin by focusing on the
mcthod relying on complete solution paths. Table 2 shows two productions, ON-THE-PATH and OFF-THE-
PATH. The first of these matches against traces of moves that lic along the solution path; upon application, it
rctrlcves the instantiation responsible for proposing the move and stores it as a positive instance of the rule
that was m a t c h ~ d . ~ The second production matches against traccs that originated on the solution path but led
off that path when the move was made; upon firing,.this rule retrieves the responsible instantiation and marks
it as a bad instance of the rule that led to the move. In addition, it weakens the responsible rule so that it will
be less likely to apply in the hturc, and calls on the discrimination learning mechanism. This retrieves the last
positive instance of the faulty rule and compares it to the current negative instance in search of differences.
Sincc this heuristic retrieves the most recent positive instance of a rule, SAGE may lose information when
more than one correct move is made in a row. However, it would be impractical to compare all positive
instances to all negative instances, and retrieving the last positive instance seems a plausible compromise.

SAGES other credit assignment rules avoid this issue by more completely specifying the instances that
should be comparcd. Table 3 presents three of the system’s rules for assigning credit during the search
process. The first of these, MARKED-BAD, matches when some operator trace has becn labeled as
undesirable, and some other operator trace originating from the same state has not been so labeled. In this
case, SAGE retrieves the rule that fired in each case. If the same rule was applied in both situations, the
discrimination mechanism is called with the first move as a negative instance and the second as a positive
instance. In addition, the strength of the offending rule is decreased. If the good and bad moves were
proposed by different rules, then the discrimination process cannot be applied, but the rule leading to the
undesirable state is still weakened.

7The traces matched by these rules are based on move information laid down by the various operators upon application; when a
solution is found, SAGE chains back up the solution paths, marking move traces that fall on these paths

-13-

l'iIblc 3. Crcdit assignment heuristics for lcarning during search.

hl,4 li I.(ED-BA 1)
If bad-srare is the current state,

and bad-move led from priorsfate to bad-state,
and bad-move was undesirable,
and good-move led from priorsrale to good-slate,
and good-move is not marked as undesirable,

then weaken thc rule that proposed bad-move,
and if the Same rule proposed good-move,

discriminate using the instantiation for bad-move as a negative instance,
and using the instantiation for good-move as a positive instance.

NO'IIC-IAONCER
If current-sfate is the current state,

and move led from priorslafe to current-state,
and current-sfale has been visited earlier,

and label move as undesirable.
then make priorstate the current state,

DEAD-END
If currenf-stale is the current state,

and move led from priorstale to current-stale,
and no moves are possible from current-stale

that have not already been made,
then make priorstate thc current state,

and label move as undesirable.

The remaining productions interact with MARKED-HAD, providing the labeling of states it requires
for application. One of these, NOTE-LONGER, matches when the system reaches some state that was visited
earlier. It marks the move that led to the revisited state as bad, and backs up, focusing attention on the state
From which this move originated. Note that as this rule is stated, it will match against loops as well as against
unnecessarily long paths, since a loop can be viewed as the longer of two paths to a state, where the shorter
path has length zero. Thus, while these two situations can be separated conceptually, there is no reason to
distinguish thcm as far as the implementation is concerned, as Anzai (1978) has done. The third rule in Table
3, DEAD-END, applies when a state is found from which no moves can be made; it marks the move leading
to that state as undesirable, and shifts attention back to the previous state. We have not shown rules for noting
illegal states or failure to make progress, since these must be implemented for specific domains individually.
However, while the conditions of such rules differ from those of NOTE-LONGER and DEAD-END, their
actions have the same effect. These actions mark a specific move as undesirable, causing MARKED-BAD to
select a better move leading from the same state, and to evoke the discrimination process with the good and
bad moves as arguments.

5.4. Learning Conditions Through Discrimination

As we have seen, once a strategy learning system has distinguished the positive from the negative
instances of an operator, it must have some means of altering the conditions under which that operator is
applied. In implementing SAGE.2, we chose to employ a discrimination learning process that bcgins with
overly general rules for proposing moves, and generates variants of these rules with additional conditions as
experience is gained. This mechanism is presented with a single positive instance of a rule and a single

-14-

ncgativc instancc of thc samc rulc (in tcrms of tlicir variable bindings), along with thc statc of working
mcmory in cach casc. Ihcndy and Silver (Ilundy. 1982) havc callcd thc variablc bindings and statc of mcmory
during thc good application the selection context, and the variable bindings and statc of mcmory during the
faulty application thc rejecfion cotzrext. ’l’hc discrimination proccss comparcs thcsc two contcxts, scarching for
diffcrcnccs which will allow it to distinguish onc from thc other.

l’hc simplest form of diffcrcncc involves a working memory clcmcnt that was prcscnt in onc contcxt but
not in thc othcr. For cxamplc, if the tracc of a previous movc wcrc prcscnt in thc sclcction context but not in
thc rcjcction context, SAGE would crcate a variant of thc ovcrly gcncral proposcr that includcd this fact (with
ccrtain tcrms rcplaccd by variablcs) as an additional condition. This variant would ncvcr match against the
initial problem statc, sincc no such tracc would be prcscnt at thc outsct of tlic prublcm. Similarly, if an
clcmcnt wcrc found to bc prcscnt in thc rcjcction contcxt but not the sclcction contcxt, this fact would be
includcd as a negated condition in a variant on thc original rule. l’hc rcsulting rulc would only match if this
fact (or a similar onc) wcrc nor prescnt in mcmory.

Table 4. Sclection and rcjcction contexts for thc TOH rule.

Selection contcxt: Kcjcction context:
~

Variablc bindings:
disk-, disk-2 disk+ disk-1
current-peg4 peg-A currenl-peg 4 peg-C
olherpeg 3 peg-R orherpeg 4 peg- A
curretimale+ S2 currenl-slale+ S3

Elemcnts in working mcmory:
(movc-1 Icd-from S1 to S2)
(movc-1 was move disk-1 from peg-A to peg-C)
(disk-1 is-on peg-A in-state S1)
(disk-2 is-on pcg-A in-state S1)
(disk-3 is-on peg-A in-state S1)
(disk-] is-on peg-C in-state S2)
(disk-2 is-on peg-A in-state S2)
(disk-3 is-on peg-A in-state S2)

(move-2 led-from S1 to S3)
(move-2 was movc disk-1 from peg-A to peg-B)
(disk-1 is-on peg-A in-state S1)
(disk-2 is-on peg-A in-state S1)
(disk-3 is-on peg-A in-state S1)
(disk-1 is-on peg-B in-state S3)
(disk-2 is-on peg-A in-state S3)
(disk-3 is-on peg-A in-state S3)

More complex differences can bc stated as conjunclions of elements that were present in one context but
not in the other. Such differences are generated by a path-finding process that travels through symbols shared
by working memory elements. An example will clarify the process. Table 4 prescnts both a selection context
and a rcjcction context for the TOH rule. The first of these proposes the move from state S2 to state S4 shown
in Figure 1, while the second leads to the move from state S 3 to state S1. The two contexts are expressed in
terms of the bindings between variablcs (in italics) and the symbols against which thcse variablcs matched.
Thus, in the selection context, the variable currenl-slafe was bound to state S2, disk to disk-2, currenf-peg to
peg-A, and orherpeg to peg-B, leading SAGE to consider moving disk-2 from pegA to peg-B. This move falls
on the solution path, since it removes an obstruction (disk-2) from thc largcst disk (disk-3). In the rejection
context, the variable currenf-sfale was bound to state S3, disk to disk-1, currenf-peg to peg-B, and orherpeg to
peg-A, leading to the action of moving disk-1 from peg-B to peg-A. Since this move takes the system back to
the original state, it is undesirable.

-15-

Tablc 4 also shows thc clcmcnts that wcrc prcscnt in mcmory during each context,* and from which
ncw conditions arc gcncratcd. 'I'hc path-finding proccss starts from analogous symbols in thc two scts of
bindings (such as disk-2 and disk-1), and attempts to find somc path through thc "good" clcmcnts that has no
analogous path through thc "bad" clcmcnts. Thus, if a path consisting of thrcc clcmcnts was prcscnt in the
sclcction context but not in tlic rcjection context, a variant of thc TOH rulc would bc bascd on this diffcrcnce.
This rulc would include thc thrcc clcmcnts (with somc constants rcplaccd by variables) as positivc conditions,
so that it would match in thc selcction context, but not the rcjection context.

l'hc path-finding proccss also searches for paths through thc "bad" clcmcnts that havc no analogous
path through thc "good" clcmcnts. Lct us trace thc mcthods discovcry of such a diffcrcncc in tlic clcmcnts in
'l'ablc 4. Starting from the "bad" symbol S3 and thc "good" symbol S2, thc path-finding prcxcss considers
bad clcmcnts and good clcmcnts that contain thcsc symbols. Sincc both contcxts contain an clcincnt
indicating that an carlicr movc Icd to the current state - (move-2 Icd-from S1 to S3) and (mow-1 led-from
S1 to S2) - SAG13 must cxtcnd thcsc (Icngth onc) paths by considering additional clemcnts in its search for
diffcrcnccs. Thus, the analogous symbols move-2 (for thc bad clcmcnt) and movc-1 (for the good clcmcnt) are
marked, and othcr clcmcnts conciining thesc symbols are considcrcd.'

For cxamplc, thc bad path can bc extcndcd to include the clement (movc-2 was movc disk-1 from
pcg-A to pcg-lj), sincc this also contains the symbol move-2. At first glance, thcrc appears to bc an analogous
extension to the good path, using the elcmcnt (move-1 was move disk-1 from pcg-A to pcg-C). However,
notc that the symbol disk-1 is already bound to thc variable disk in the rejection context, whilc this is not true
of disk-1 in thc sclcction context. Similarly, peg-A is already bound to ofherpeg in the rcjection context, while
pcg-C is unbound in the selcction context. As a rcsult, these two clcments cannot bc considered analogous,
and the path-finding process has found a difference between the two contexts. Based on this difference,
SAGE constructs thc following variant:

TOH-1
If you havc disk on curreiit-peg in current-state,

and you have some ofherpeg different from currenf-peg,
and in curmil-sfafe there is no ofherdisk on currenr-peg that is smaller than disk,
and in current-sfate there is no third-disk on orherpeg that is smaller than disk,
and it is not the case that:

priormove led-from priorstate to current-state, and
priormove was a move of disk from otherpeg to current-peg,

then consider moving disk from currenf-peg to ofherpeg.
In addition to the original conditions, this rule (let us call it TOH-1) includes the elements (move-2 led-from
S1 to S3) and (move-2 was move disk-1 from pegA to peg-B), with the specific disk and pegs rcyiaced by
variables. embedded within a single negated condition. This rule will match if either of the negated conditions
is matched, but not if both are matched simultaneously. As a result, it will still match against the selection
context in Table 4, but not against the rejection context, which is precisely the goal of the discrimination
method. Effectively, the new conditions prevent SAGE from reversing the last move it has made.

*Actually. SAGE considers only those elements which describe the current state, or which describe parents to the current state. Since
othcr states considered in parallel can have no effect on the current move, they are ignored. Thus, the state of working memory after
SAGES initial moves can be found by taking the union of the two sets shown in Table 4, together with state-independent elements such
as (peg-A is-a peg) and (disk-3 is-larger-than disk-1).

'Alternate paths are followed through other analogous symbols, such as peg-B and peg-C. peg-A and peg-A, and disk-1 and disk-1,
Note that a symbol may be mapped onto itself. provided it occurs in analogous positions in the two elements.

-16-

In some cascs, only a singlc difference cxists between the sclcction and rejection contcxts. Winston
(Winston, 1970) has callcd thcse situations iieur misses, and they considcrably simplify thc learning proccss,
sincc only one variant necd be considcrcd. Unfortunately, ncar misscs scldom occur in the task of learning
search hcuristics, and a robust systcm must bc ablc to handle the general case in which many diffcrcnces cxist
(Ilundy and Silvcr (1982) havc called these fur misses). SAGE dcals with far misscs by finding all paths up to
length N (in our runs, wc havc set N to 4), and constructing a variant bascd on cach of these differences, some
with ncw negated conditions like TOH-1, and others with new positive conditions. These conditions may
involve dcscriptions of the current state, previous states, previous moves (as in TOH-l), or any combination of
thcm. This lcads to a significant search problcm, and we discuss the system's rcsponse to this problem below.
However, let us first consider the notion of diflerence in more detail.

In scarching for differcnces, the discrimination process must know which symbols should be used in
dctcrmining significant differcnccs, and which diffcrences should be ignored. For cxamplc, it makcs scnse to
distinguish between working memory elcments including the symbol Has (which dcscribcs movc traces) and
thosc including led-from (which temporally connect these move traces), sincc they represcnt diffcrcnt types of
information. In contrast, there is no reason to distinguish bctwccn internally generated symbols like the states
SI and S2. sincc these are only the "connecting tissue" used to link together thc descriptions of cach state and
the temporal rclations betwecn states. Thus, when it is searching for differcnces, the discrimination routine
never considers two elements as analogous if one contains was in the Nth position and the other contains
led-from in the samc position. However, if one contains S1 and the other contains S2 in the samc position,
then the two elements will be considered analogous, unless some other (significant) difference exists, or unless
one of these symbols has already been associated with some other symbol (such as S3) during the path-finding
process. When a variant is constructed, significant terms are retained, while insignificant terms are replaced by
variables in a consistent manner.

The case is less clear for the names of operators and their arguments. These symbols are not generated
internally, yct if the variants are to retain any gencrality, some of them must be replaced by variables. Since
one seldom wants to generalize across the operatois themselves, SAGE treats operator names as significant.
However, thc arguments of these operators (e.g., objects and their positions) are created as insignificant, and
are replaced by variables when a variant is constructed. Note that such decisions are not inherent aspects of
the discrimination process; rather, they are parameters that are input to the learning method, and can be easily
modified. Later we will reconsider this decision, and its implications for SAGE'S learning behavior. For now,
though, let us continue with our examination of the current system.

5.5. Directing Search Through the Rule Space

Most condition-finding methods, including the standard gcneralization approach and Mitchcll's version
space technique, find conditions that are held in common by all positive instances of a concept or operator. As
a result, these methods are limitcd to acquiring conjunctive rules. In contrast, SAGE.2's discrimination
process compares a single positive instance to a single negative instance. Because of this, it is capable of
discovering disjuncfive rules as well as conjunctive ones, and this ability can be very important in some task
domains. In order to acquire disjunctive rules, the discrimination mechanism must search a larger space of
rules than methods based on finding common features, and it must have some means of directing this search.
For this reason, SAGE compares newly learned rules to those it has constructed earlier. If the new rule is
identical to one of the existing variants, that variant is strengthened. Since the strength of a rule plays a major
role in whether it is selected for application, rules that have been learned more often will tend to be preferred.
Thus, strength measures the success rate of each variant, and SAGE can be viewed as carrying out a heuristic
search through the space of rules, selecting those rules that have proven most successll.

-17-

In domains involving only a single operator, it would be sufficient to simply strengthen variants
whenever they were relearned, since they would eventually come to bc preferred to the rulcs from which they
were gcncratcd. However, some tasks involve multiple operators, and require that one of these operators be
prcfcrrcd to another. Given thc role of strength in selecting rulcs, the natural response to such situations is to
weakeri nilcs whcn they propose an undcsirablc move. In addition to letting SAGE learn to prefer some
operators ovcr others. this strategy also decreases the chance that a faulty variant will be selected for
application.

Although the combination of discrimination, strengthening, and weakening will eventually lead to
useful scarch heuristics, many spurious variants will bc created along the way. Sincc the matching proccss is a
major component of programs stated as condition-action rules, we should briefly consider how SAGE handles
the potential combinatorial explosion in the matcher. First, the system's condition-action rules are stored in a
discrimination network that takes advantagc of structurc that is shared bctwccn rulcs. Sincc variants of the
same proposer tcnd to be quitc similar to one another, the cxpcnsc involvcd in matching many variants of a
rulc is not much greater than that involvcd in matching the original rulc. However. othcr components of the
system (such as conflict resolution) arc also slowed by the presence of many variants, so sotnc further response
is required. In addition, SAGE incorporates a thresholding principle. Variants below the threshold are not
even incorporated in the discrimination network, and so have no effcct on either the match process or conflict
resolution (though they are retained for comparison with rules that are learned later). 'The strengths of new
variants are sct to a fraction of the rule from which they wcre spawned, and it is only whcn a variant comes to
exceed its parent in strength that it is considered for application. Since few spurious variants cvcr become
stronger than their parent rules, this mcthod has worked quite well in directing SAGE's scarch through the
space of proposers.

6. A n Example of SAGE.2 at Work
Our overview of SAGE.2 is now complete, but to give the reader a better understanding of how the

system learns search strategies, we must examine its workings in specific domains. Below we discuss SAGE's
learning sequence on the Tower of Hanoi puzzle, comparing its behavior when using only complete solution
paths to its bchavior whcn learning during thc search process. We have chosen this task as our main example
because it is familiar to many readers, and because most of the credit assignment heuristics discussed earlier
come into play. However, since generality is an important criterion for judging learning systems, we will later
examine the program's behavior in five other task domains in somewhat less detail.

6.1. Learning From Solution Paths

Since we have already discussed the Tower of Hanoi puzzle and its associated problem space, we shall
begin by discussing the system's behavior on this problem when using the first credit assignment strategy -
learning from complete solution paths. SAGE.2 was presented with a standard three-disk problem: the three
disks were placed on a single peg, and the goal was to get all three disks on either of the other two pegs. In
other words, the system startcd at state S1 in Figure 1. and was asked to rcach either state S20 or S27 (or both
of them). Starting with a breadth-first search strategy, the program first moved to states S2 and S3, and from
there considered six movcs: from S2 to S4, from S3 to S5, from S2 to S1, from S3 to S1, from S2 to S3, and
from S 3 to S2. While the system noted that the last four of these moves led to previously visited states, it did
not attempt to learn from this knowledge, and simply abandoned these undesirable paths. From the two
remaining states S4 and SS, SAGE moved to states S6, S7, S8, S9, S2, and S3 . The last two of these moves
were identified as loops, so only the first four states were retained for expansion. This search process
continued until the program reached the two solution states S20 and S27.

-18-

At this point, thc complctc solution path hcuristic was applicd. SAGE chaincd back up thc solution
path, marking thc traces of movcs that lay on thc path. Once this was complctcd, it worked its way back down
tlic marked path, lctting thc rulcs ON-THE-YA‘J’H and OFF-THE-PATH apply whcn they matchcd, ‘Ihe first
of thcsc circumstanccs occurred at statcs S 2 and S3, whcn four moves wcre madc that Icd off thc solution
path. One of thcsc movcs Icd to a loop from S2 back to S1, thc original state. Comparing thc good movc from
this point (from S2 to S4) to thc bad move, SAGE‘S discrimination mcchanisrn gcncratcd thc variant ‘I‘OH-1
that we considcrcd earlier. Thc sclcction and rcjcction contexts for this lcarning situation wcrc identical to
thosc we havc cxamincd, except that SAGE comparcd two movcs from state S2, rathcr than comparing one
movc from statc S2 and anothcr from statc S3. As a result, thc samc diffcrcnccs wcre discovcrcd, and the
variant TOH-1 was constructcd. ‘I’he rcadcr will recall that this rulc contains a ncgatcd conjunction that
prcvcnts it from proposing a move that will rcvcrse thc movc SAGE has just madc. Soinc four other
diffcrcnces werc found, leading to four additional variants, but ‘I’OH-1 was thc only rulc that cvcr became
strong cnough to apply. An identical set of variants wcre created whcn the contcxt for thc movc from S3 to
S1 was comparcd to that for the move from S 3 to S5, since thcsc situations arc complctely syrnmctrical; this
Icd cach .of thc existing variants to be strengthencd.

A diffcrcnt sct of thrce variants resulted when the good move from S2 to S4 was comparcd to the bad
movc from S2 to S 3 (and when the symnietrical movcs were examined). In this casc, thc rule wc are intcrcsted
in is subtly diffcrcnt from the variant we describcd earlier:

TOH-2
If you havc disk on current-peg in current-slate,

and you have some ufherpeg different from currenl-peg,
and in current-slate tlicre is no otherdisk on current-peg that is smaller than disk,
and in current-stale there is no third-disk on otherpeg that is sniallcr than disk,
and it is not the casc that:

priormove led-from priorslate to current-slate, and
priormove was a move of disk from any-peg to current-peg,

then consider moving disk from current-peg to otherpeg.
Thc new negatcd conjunction on this variant of TOH is nearly identical to that on TOH-1, but the difference
is significant. TOH-2 states that it is acceptable to move a disk from its current pcg to a new pcg, provided on
the previous move one did not move from any peg to the current peg. An example should help clarify this
diffcrence. Suppose we have disk-1 on pegb, and since disk-1 is the smallest of the disks, we can move it to
either peg-a or peg-c without violating any of the task constraints. Further suppose that on the previous step,
we moved disk-1 from peg-a to peg-b, so that TOH-1 will not propose moving the smallest disk back to peg-a
(which would result in a loop). However, this variant would propose moving disk-1 to peg-c. In contrast,
TOH-2 would not propose moving disk-1 to either peg-a or peg-c, since its negated condition forbids a move
of the same disk twice in a row. Thus, the second variant is more conservative than the first, and as a result, it
constrains the search process to a greater extent.

Upon comparing differcnt moves From state S4, SAGE produced another set of variants on its initial
proposer. When the discrimination process compared the context in which the desirable move from S4 to S6
was proposed to the context that led to the move from S4 to S7, some six new productions resulted. In this
casc, two of the rulcs are of interest:

-19-

'I'OH-3
If you have disk on current-peg in current-slate,

and you have sonic otherpeg different from currenl-peg,
and in currerri-slaie there is no otherdisk on current-peg that is snialler than disk,
and in curretit-stale there is no lhird-disk on otherpeg that is sniallcr than disk,
and it is not the case that:

priorinove Icd-from priorstale to current-slate, and
ear1ierr)iove led-from earlierstale to priorsrale, and
disk was on olherpeg in earlierslale,

then consider moving disk froni current-peg to otherpeg.
and

TOH-4
I f you have disk on currenl-peg in currenl-slate,

and you have sonic olherpeg different from currenf-peg,
and in current-stale there is no otherdisk on current-peg that is snialler than disk,
and in current-state there is no third-disk on olherpeg that is smaller than disk,
and it is not the casc that:

priorcNiove led-from priorstale to citrrenl-slale, and
earliermove led-from earlierstale to priorstate, and
earlierniove was a move of disk from otherpeg to current-peg,

then consider moving disk from current-peg to olherpeg.
In addition to helping direct search down profitable paths, these rules are interesting because they are
syntactically different, but scmantically equivalent. The first rcfcrs to the stale occupicd two steps bcforc the
currcnt statc, whilc the sccond refers to the move made at that point. Yet both rules effcctivcly kcep onc frorp
moving a disk back to thc position it was in two moves bcforc, avoiding such non-optimal moves as that from
S4 to 57 and that from S5 to Sa. Because of the structure of thc task domain, these rules are always guaranteed
to match togcthcr, and whcnever one is learned. the other will also be learned. The possibility for syntactically
distinct but scrnantically identical rules causes some extra search through the space of possible rules, but orher
than this no harm is done.

So far, we have considered only the initial cases in which the above variants were constructed. However,
each of these was relearned many times throughout the course of the first run. For example, the non-backup
variant TOH-1 is relearned and strengthened at each step along the way, since SAGE foolishly considercd a
backup at every point in its initial search tree. Similarly, the TOH-2 variant was strengthened whenever an
attempt had been made to move the same disk twice in a row (other than simple backups). Thus, the bad
moves from S2 to S3, from S6 to S7, and from S12 to S13 all resulted in an increase of this rule's strength,
along with the analogous faulty moves on the symmetrical path. Finally, the last two useful variants, TOH-3
and TOH-4, were learned whcnever SAGE had considered moving a disk back to the position it had occupied
two states earlier. Thus, the bad moves from S4 to S7. from S10 to S13, and from S16 to S21 all reinforced
these rules, increasing their likelihood of selection on the next run.

On the second run, the system's performance improved considerably, since TOH-1's strength had come
to exceed that of the initial proposer. As a result, no backup moves were considered and the search process
was Considerably more directed. Unfortunately, neither this rule nor any of the other variants were sufficient
by themselves to completely eliminate SAGE'S search on the Tower of Hanoi problem, so more learning was
required. Again the system chained back up its solution path, marking traces that led to the goal states, and
began to compare the contexts of positivc and negative instances in its search for useful variants. The learning
process on this run was quite similar to the first, except that variants of TOH-1 were created (since only it had
been applied), instead of variants of the original rule,

-20-

As onc might cxpcct, TOH-1 madc exactly the samc errors as its prcdcccssor, cxccpt for thc backup
movcs which its additional condition forbid. Thus, when at statc S2, it considcrcd moving to S3 as well as to
S4, and whcn at statc S4. it movcd to S7 as well as to S6. As a rcsult. tlic discrimination process gcncrated
variants of this production that wcrc very similar to thosc crcatcd for its morc gcncral ancestor. When
comparing thc contexts that Icd from S2 to S4 and from S2 to S3 , SAGE crcatcd a rulc containing a "don't
movc thc same disk twicc in a row" condition, as wcll as thc "don't backup" condition that was already
prcscnt. Similarly, whcn comparing thc moves from S4 to S6 and from S4 to S7, it constructcd two variants
with a "don't movc a disk back whcrc it was two states before" condition (again, thcsc wcrc syntactically
diffcrcnt but would always match against thc samc statc of memory). Thcsc rulcs wcrc rclcsrncd and
strcngthcncd at each of the points whcrc thcir analogs wcrc learncd during the first run.

Since thc ncw variants werc morc conscrvativc than TOH-1, and since thcy had surpassed this nile in
strength during thc second lcarning run, thcy bcgan to fmthcr direct thc search proccss on the third pass. In
fact, thc "don't movc the same disk twice in a row" variant (Ict us call it TOH-4) achicvcd thc highest
strength, so it was applied at cach stagc on this run. This ruic avoided crrors such as moving from S2 to S3,
and from S6 to S7. However. it continued to makc mistakes such as moving from S4 to S7, sincc it lackcd the
condition (contained in 'IOH-3) that would keep it from making such movcs. Fortunatcly. oncc thc solution
paths had becn found and thc learning stagc had begun, two (structurally different but scmnntically
equivalcnt) variants of 'IOH-4 wcrc constructcd that contained the "don't move a disk back to whcrc it was
two statcs before" condition. Once thesc two rulcs cxcecdcd the strength of TOH-4 (as thcy had by thc cnd of
the run), SAGE had available to it a scarch heuristic that proposcd moves lying on the solution path, but that
ignored moves that would take it off that path. Indced, when the systcm was prescntcd the three-disk problem
a fourth time, it succcsshlly solved thc problem without taking any falsc steps.

60
'D

5 50

0 1: 40

p 30
20

2

:
p1

I J

0 1 2 3 4 5
Learning rrials

Figure 3. Learning curve for the three-disk Tower of Hanoi task.
Figure 3 presents the learning curve for SAGE.2 on the Tower of Hanoi task. The figure graphs the

number of states considered during the search process against the number of times the problcrn had
previously been attempted. As can be seen, the systcm shows a distinct improvemcnt over time, until it
eventually solves thc task in the minimum number of steps. In addition, since the problem spaces for the
four-disk and five-disk puzzles have the same basic structure as thc simpler three-disk space, the learned

-21-

heuristics wcrc also uscful in thcsc more complcx tasks. In fact, whcn prescntcd with thc standard four-disk
and fivc-disk vcrsions of thc piizzlc (in which all disks must bc movcd from onc pcg to a diffcrcnt pcg), SAGE
applied its hcuristics to solvc thcsc problcms without search as well. Thus, wc can concludc that for this
domain at Icast, the systcm is capablc of transfer to scaled-up vcrsions of a problcm on which it has practiced.

Whilc SAGE was ablc to transfer its acquired knowlcdgc to other sraridard versions of thc Towcr of
Hanoi task, thc program would not have farcd so well if it had been givcn a non-standard problem. The
heuristics that tlic systcm lcarns for this task arc very good at directing scarch when all disks start on onc peg
and must bc movcd to another pcg, but thcy are not adequate for moving from one arbilrar~configuration to
another. I,atcr, wc will havc morc to say about this typc of transfer, and what would bc rcquircd to
accomplish it. Howevcr. let us first turn to the topic of learning while doing.

6.2. Learning While Doing

Although S A G E 2 is capablc of learning from complctc solution paths, it is not limited to this method.
As wc havc sccn. thc system also includes hcuristics for learning from longcr paths and loops, From dcad ends,
from illcgal movcs, and from a failure to makc progress. Thc first two of these tcchniques1° can be applied to
thc l'owcr of Hanoi puzzle to acquire search stratcgics identical to those dcscribcd in the prcvious section.
Lct us consider this process of learning while doing, and its relation to learning from complctc solution paths.

As bcforc, SAGE began the three-disk problem by carrying out a breadth-first search, moving from
state S1 to statcs S2 and S3. Since these moves led to new states, and since other moves could bc made from
them, none of the blame assignment heuristics applied at this point. Since the two solution paths are
symmetrical, we will focus on the left half of thc space shown in Figure 1. From the statc S2, three moves
wcrc possible - SAGE could move to S4, to S1, and to S3. The first of these was a new statc, but S1 and S3
had bcen visited bcfore. The move from S2 to S1 lcd to a loop, while the move from S1 through S2 to S3 was
a longer path than that from S1 directly to S 3 . However. thc NOTE-LONGER production docs not make
such distinctions, being concerncd only with avoiding revisited states, so this rule applied, marking the moves
from S 2 to S1 and S3 as undesirable.

Given the information that these two moves should not have been made, the rule MARKED-BAD was
applied to each in turn, calling on the discrimination mechanism. In both cases, it focused on the move from
S2 to S4 as the positive instance, since this was the only move from S2 that was not labeled as an error. Upon
comparing this move to the one from S2 to S1, SAGE constructed the variant TOH-1 that we saw before,
along with four othcr variant productions that never become strong enough to apply. When the move from S2
to S4 was compared to that from S2 to S3, the variant TOH-2 was created (along with two other rules). Thus,
up to this point, SAGE had assigned credit in precisely the same manner that it did when the complete
solution path was available.

Next, having abandoned the revisited states, SAGE applied its initial proposer (which was still stronger
than any of the variants) to the state S4. From this position, three moves were again possible - from S4 to S6,
from S4 to S2, and from S4 to S7. The second of these led back to the previous state, and was labeled as
undesirable by NOTE-LONGER. Given this judgcmcnt, MARKED-BAD applied twice, comparing this
move both to that from S4 to S6 and to that from S4 to S7, since neither had been marked as bad. In both
cases, the variant TOH-1 was recreated and strengthened, along with a number of other rules. Since SAGE

"In fact, the mles NOTE-LONGER and DEAD-END were used even in the run described above, in which credit was assigned after a
solution had been found. However. their role in this run was only to tell SAGE when it had reached untenable positions, so the system
could abandon scarch down certain paths and focus on others. Since the production MARKEDBAD was not presenf the program could
not learn using the information added to memory by these ~ l e s

-22-

did not yct havc any rcason to suspcct that thc move from S4 to S7 was undcsirablc, it considcrcd movcs from
both this statc and from S6, which lay on thc solution path.

'I'hrcc moves wcrc possiblc from S6, and all werc carricd out: thcsc includcd a movc from S6 to S10,
from S6 to S4. and from S6 to S7. Thc last two of thcsc opcrations led to rcvisitcd states, so NOWLONGER
was applicd in cach casc. MhRKED13AD comparcd cach of thcsc movcs to that from S6 to S10, rcgcncrating
TOH-1 in onc instancc and 'I'OH-2 in thc other, along with a numbcr of additional variants. Three moves
could also be madc from S7, to the statcs S6, S4, and S S . Howcvcr, each of thesc statcs had bccn visited
bcforc. thc last from thc syrnmctrical scarch in the right side of the space. NOTE-IdONGEK was applicd and
markcd cach of thc moves from S7 as undcsirablc, but sincc there were no good movcs originating from S7
with which tlicy could bc comparcd. MARKED-BAD could not be applicd. Mcanwhilc, NO'I'E-LONGER
had also rcfocuscd SAGE'S attention on S7, marking it as onc of the statcs currently undcr consideration for
expansion. Since no othcr movcs could bc madc from this statc, the rule l>EAD-ENI) applicd, marking the
move that lcd from S4 to S7 as undesirable. With this knowlcdgc in hand, MARKED-13AD applied, calling
on the discrimination routinc to comparc thc good movc from S4 to S6 to thc rcccntly dctcrinincd bad move.
Two of thc rcsulting variants wcre ?'OH-3 and TOH-4, which avoid moving a disk back to the position it
occupicd two states earlier.

Dy this point, SAGES crcdit assignmcnt heuristics had begun to losc ground to the strategy of learning
from complctc solution paths. Although NOI'E-LONGER continued to notice revisited statcs and to lead
MARKED-13AD to strcngthcn both TOH-1 and TOH-2, thc dcad-end noticing rule ncvcr had anothcr
chance to apply. As a result, the movcs from S10 to S13 and from S16 to S21 were ncver classified as
undcsirablc, and the two variants TOH-3 and TOH-4 were not relearncd until the complctc solution path was
markcd, and ON-PATH and OFF-PATH came into the picture. This did eventually occur, and the resulting
cvents were identical to those described in thc prcvious section, save that many of the variants already existed,
and so by thc end of the run they were considerably stronger than in the other case. After this, SAGE was
givcn a sccond chance to solve the three-disk task, and events followcd much the same route, except that
backups wcre missing, so NOTE-LONGER was applied much less often. By the fifth run, the system was able
to solve the problem without search, and to transfer its expertise to the four-disk puzrle. The learning curve
for these runs was very sixnilar to that shown in Figure 3. However, slightly less search was carried out in the
early runs, since the usehl variants were able to mask their predecessors before the run was complete.

6.3. The Importance of Goals
In our treatment of the Tower of Hanoi puzzle, we assumed two goal states and two symmetrical

solution paths to these goals. It is much more common to formulate the problem with a single goal peg,
resulting in only one optimal solution path, and our use of multiple goals dcscrves some discussion. In the
early stages of constructing SAGE.2, we made two design decisions that led us to state the Tower of Hanoi
puzzle as we have done. First, we decided to treat the arguments of operators as insignificant during the
discrimination process, as we described earlier. As a result, the system has difficulty in learning heuristics for
moving disks towards one peg rather than another, and we dealt with problem by including two goal pegs, If
we had chosen instead to treat pegs as significant symbols, SAGE would have learned more specific rules, but
at least the system would have been able to acquire heuristics for moving disks to a specific peg. However, a
more general and attractive alternative exists.

The sccond design decision involved assuming a procedural representation for the goal state, rather than
a declarative one. The readcr will recall that SAGE includes a production for recognizing when it has solved a
problem, and which stops the search process when this occurs. Since goal information is not available for
inspection by the discrimination mechanism, it cannot discover conditions that refer to the goal state. As a

-23-

result, thc scarcli hcuristics it lcarns arc incapable of dirccting scarcli down diffcrcnt paths dcpcnding on the
goal. Notc that this is not a limitation of the discrimination mcthod itself, but is rathcr a limiL7tion in the
information acccssiblc to the learning systcm. I f wc had chosen to includc cxplicit information about the goal
state in working mcmory, SAGE should havc bccn ablc to lcarn rules that would movc toward a single goal,
and still trcat thc argumcnts of its operators (such as pcgs and disks) as insignificant symbols. ‘Ihc system
would havc bccn ablc to dctcct refations between dcsirablc moves and the goal statc, and incorporatc these
relations into the variants it learned.

In addition, this approach opcns thc way for learning heuristics for solving non-standard versions of the
Towcr of Hanoi puzjrlc, in which both the initial and goal states arc arbitrary configurations of disks. Once
thc discrimination mcthod has acccss to the goal state, it might wcll be ablc to acquire rules that would
transfer bctwccn diffcrcnt initial and goal states, leading to a much morc robust systcm. Although wc have not
yet tcstcd SAGE in this manner on thc Towcr of Hanoi. we will latcr cxaminc another task in which this
approach does lcad to thc prcdictcd forms of transfer. Since goals arc so obviously important to problem
solving. it may sccm odd that we did not include dcclarativc knowlcdgc of goals at tlic outset of our rcscarch.
Such judgcmcnts arc all too easily made with thc aid of hindsight. In defense, wc can only note that vcry little
of thc othcr work on learning search hcuristics deals with goals in this manner, so that SAGE is far from alone
on this dimension.

7 . Applying SAGE.2 to Other Domains
One important dimension on which AI systems are judged is their generality, and the most obvious test

of a program’s generality is to apply it to a number of different domains. In this section, wc summarize
SAGE2’s behavior on five additional tasks. Some of these are puzzles similar to the Tower of Hanoi task, but
others have quitc different charactcristics. In cach case, we describe the problem or class of problems,
considcr the rules thc program learns in the domain, and discuss the types of transfer that occur. After this, we
examine the generality of the individual learning hcuristics employed by the system.

7.1. The Slide-Jump Puzzle

In the Slide-Jump puzzle, one is presented with N quarters and N nickels placed in a row. The quarters
are on the left, the nickels are on the right, and the two sets of coins are separated by a blank space. Legal
moves include sliding into a blank space or jumping over another coin into a blank space. In addition, quarters
can be moved only to the right, while nickels can be moved only to the left. The goal is to cxchangc the
positions of the quarters and the nickels, so that the former occur on the right side of the blank and the latter
occur on the left. For instance, given the initial state Q Q Q - N N N, one would attempt to generate the goal
state N N N - Q Q Q. 1,ike the Tower of Hanoi problem, the Slide-Jump puzzle has a relatively small search
space, yet it is quitc difficult for human problem solvers to master. Also like the Tower of Hanoi, it has two
symmetric solution paths; however, since moves are not reversible, loops do not come into play in this task.

SAGE.2 was initially presented with the four-coin version of this puzzle, in which the positions of two
quarters and two nickels must be exchanged. The program was given two initial proposers - one for
suggesting slide moves and the other for suggesting jumps. After an initial breadth-first search in which both
optimal solutions were found, the system attempted to learn from these paths. After some three runs through
the problem, SAGE had generated (and sufficiently strengthened) the following variant of the initial slide
rule:

-24-

SLIDE-1
If a type-of coin is in current-position in current-state,

and adjacen[-posifioti is hlitnk in current-slate,
and aa'jacent-posifioti is to the lefi-or right of current-position,
and Iype-of-coiri can niovc to the le$-or right,
and i)riorntove Icd-from nriorslafr to current-state,
and prior~mo\~e I# as a iumn of lylw-of-coin from aLiiaceril-nnsilioti to olhPrDosition,

thcn consider sliding type-of coin from current-position to adjacenl-position.
This rulc contains two (undcrlincd) conditions that were not present in the original slidc-proposing
production. l'hcsc conditions allow the variant to propose sliding a coin only if another coin of the same type
was just jumped from the adjaccnt position. Fivc other variants of the original slidc rule were constructcd and
contributcd to dirccting the scarch process, while some 14 variants were bascd on spurious fcaturcs of the
problem. and wcrc not learned cnough timcs to affect behavior. One variant of the jump rule was also
constructcd, which avoidcd jumping one coin ovcr anothcr of the same typc (which leads to to a dead-end).
I-Iowevcr, this rule was learned only once beforc a stronger variant of the slidc rule caused SAGE to avoid this
particular error.

In the lcarning while doing runs, the system proceeded in a very similar manner, except that some credit
and blamc was assigned during the search process. In this task, two credit assignment heuristics contributed to
Icarning. The IIIXD-END rule produced a variant that avoidcd sliding the same type of coin twicc in a row,
while NOTE-1-ONGER generated thc jump variant mentioned above. When SAGE was prescntcd with thc
six-coin Slide-Jump puzzle, it succcssfiAly solved this problem without search, again indicating that the
system can handle scaled-up transfer. Although the normal statement of thc puzzle does not allow reversible
moves, alternate initial and goal states can be formulated if they are allowed. However, in its current form,
the program woirld not have been able to transfcr its expertise to an arbitrary problem of this type, for the
same reasons as the Tower of Hanoi version.

7.2. Tiles and Squares
Ohlsson (1982) has described the Tiles and Squares puzzle, in which one is presented with N tiles and N

+ 1 squares on which they are placed. Each square is numbered from 1 to N + 1, and each tile is labeled
with a unique letter. Only one legal move is possible: moving a tile from its current position to the blank
square. The goal is simple: get all the tiles from the initial positions to some explicitly specified end position.
For example, the initial configuration might be B C - A, while the goal configuration might be A - C
B. Since any tile may be moved into the blank space, the moves are much less constrained than in most
puzzles. One of the interesting features of this task is that while the branching factor of the search space is
quitc high (3 for three tile tasks, 4 for four tile tasks, etc.), two simple heuristics are sufficient to avoid search
entirely. Indeed, one might even question whether the task is challenging enough to be called a puzzle. We
have included it here primarily to clarify SAGES ability to acquire disjunctive rules.

SAGE.2 was presented with the above problem, as well as a single rule for proposing legal moves. Based
on the two optimal solution paths it discovered for this task, the system generated (and sufficiently
strengthened) seven variants for directing the search process, along with some 73 less usehl rules. Two of the
useful variants'' may be paraphrased as:

''The other five useful variants were semantically equivalent to TS-2. and proposed the same moves in all cases.

-25 -

TS- 1
I f you have a tile on current-square in current-slate,

and olhersquare is blank in current-stale,
and in the lin:iI eoal YOU want lile in othersuuare,

then consider mobing file from currenl-square to ofhersquare.
and

TS-2
I f you haw a tile on current-square in current-state,

and othersquurc is blank in currenl-state,
and in the final ro;il YOU want o/her/ile in currenf-suuare,
and it is not the case that:

prior-ttiovr Icd- from nrior-slate to curretit-stale. and
prior-triore \\;is ;I rime of lile from olhcrsqimre to current-suuare,

then consider moving lile from current-square to olhersquare.
Note that thcsc rulcs arc disjunclive, in that thcy covcr diffcrent situations that arise in thc problcm. For
cxamplc, thc first variant is uscfid in suggesting that C bc movcd to thc third position at thc outset of the
abovc prcblcm, lcading to the state l3 - C A. Once this has been donc, the sccond rulc is uschl in proposing
that cithcr I1 or A be movcd into the sccond squarc, leading to the statcs - B C A and B A C - . At this point
the first rulc again coma into play, proposing the move of A into square 1 or I3 into squarc 4, and finally, this
same rulc proposcs moving B to 4 or A to 1, reaching the goal state. Thc point here is that ncithcr of thc above
heuristics is sufficient to complcteiy direct thc search proccss by itsclf, but takcn together they eliminate
search. Thus, thc ability of SAGEs discrimination proccss to consider disjunctive hcuristics shows its
potcntial in the Tilcs and Squares puzzle.

Another intercsting charactcristic of this problem is that SAGE incorporatcd information about the goal
state in the conditions it discovered. This was possible bccause the goal description was prcscnt in working
memory, and so was considered during the condition-finding process. As a result, the hcuristics the system
learned from the above problem can be applicd not only to more cornplcx problems with longer solution
paths, but to other problems in the same space with differing initial and goal states. Thus, SAGEs bchavior
on the 'I'ilcs and Squares task shows that the system is capable of acquiring goal-sensitivc heuristics, as we
proposed carlicr, providcd information about the goal state is present in working memory.

In addition to learning from complete solution paths, the credit assignment heuristic for noting loops
and longcr paths was also applicable to this domain, The detection of longer paths lcd to TS-1, the first
variant, which moves a tile into its goal square whenever possible. Similarly, the detection of loops led to an
initial version of TS-2 that contained only the no-backup condition. However, none of the lcarning while
doing heuristics were sufficient to learn the TS-2 condition "in the final goal you want ofhertile in
currenf-square". This resulted from the fact that whenever TS-2 was applicable, all of the lega! moves (other
than backtracking moves) lay along optimal solution paths of equal length. Since thc learning while doing
rule MARKED-BAD only compares instances originating from the same state, and since there were no bad
moves from such statcs, SAGE could never master the complete form of TS-2 during the search process. As a
result, the system fell back on its complete solution path strategy to learn the final version of this variant.

7.3. The Mattress Factory Puzzle

Like the Slide-Jump problem, the Mattress Factory puzzle requires two operators for moving through
its search space. In this task, one is told that N employees are working at a mattress factory. Due to losses, the
factory must be closed down, and so all the workers must be fired. However, union regulations require that
hiring and firing follow certain rules. The least senior worker may be hired or fired at any time; this

.

-26-

corrcsponds to the first operator. However, other workers may only be hired or fired if the person directly
bclow them in seniority is currently employed. and furthermore, provided that no other pcrson bclow them is
also employed. This complex rulc corrcsponds to the second operator. Since each of thcsc opcrators is
reversible, one can always immediately undo an action that was just taken. Thus, this task shares an
abundance of possiblc loop moves with the Tower of Hanoi. Although this problcni has an even smallcr space
than the Tower of Hanoi, it also gives human problem solvers considerable difficulty. Cahn (1977) has
studied human learning on the Mattress Factory problem.

SAGE.2 was initially presented with the three-person version of the problem. along with rules for
proposing the two types of moves described above. After finding the single solution path, it generated and
sufficicntly strcngthcncd a straightforward variant of the original lowest worker rule:

MF-1
If you have a worker with currenf-sfatus in cutrenf-sfafe,

and worker is not senior to any otherworker,
and curretii-slalus is the opposite of otherstatus,
and it is not the case that:

prior-rnove led-from nriorsinie to current-sfate. and
prior-rnove was a chanrc of worker from oiherstaius to current-status,

then consider changing worker from current-status to otherstatus.
In this production, the variables current-status and ofhcrstatus match against the possible states in which a
worker can find himself - either employed or unemployed. The additional negated conjunction on this rule
simply prevents one from undoing the previous move. Together with a similar variant of the second operator,
this production is nearly sufficient for directing search on the Mattress Factory puzzle.

However, one additional piece of information is required. Jf one avoids backups, then only two legal
paths can be travcrscd in this problem space, and these paths are entirely determined by whether one initially
fires the least senior worker or his immediate superior. In the thrce-worker problem, the correct choice is to
fire the lowest pcrson. SAGE acquires this strategy by weakening the variant on the second operator, so that
the MF-1 rulc shown above is preferred. This strategy transfers to scaled-up problems concerning five, seven,
or any odd number of workers, but not to problems concerning even numbcrs of employees. If we had been
willing to add to SAGE'S memory the parity of the number of workers, this could conceivably have been
learned as a condition across problem types.

A significant feature of this class of problems is that learning from complete solution paths does not
provide any more accurate credit assignment information than does learning while doing. In the latter case,
the majority of credit is assigned by the NOTE-LONGER rule in response to the large number of loop moves
that are made. In addition, although SAGE explores both of the paths leading from the initial state, one of
these eventually leads to a dead-end. At this point, the DEAD-END rule chains back up the search tree,
marking each state along the way as undesirable. However, no learning can occur until it reaches the two
moves made from the initial state, since it requires both a positive and negative instance before learning can
occur. Since diffcrcnt operators were applied at this point, no discriminations can result, but the rule
proposing the move down the dead-end path is weakened, giving preference to the other operator.

7.4. Algebra

We have also presented SAGE.2 with algebra problems in one variable, such as 4x - 5 = 3. The goal
here is to simplify the expression, arriving at an equation with the variable on one side and a number on the
other, such as x = 2. For this domain, the system was given a single operator for adding, subtracting,
multiplying, or dividing both sides of an equation by the same number. Moreover, the initial proposcr for this
operator required that any numeric arguments to these functions occur somewhere within the current

-21-

cxprcssion. In addition, SAGE was provided with a domain-specific crcdit assignment heuristic; this informcd
thc program that cxprcssions which wcrc not simplcr in form that thc prcvious cxprcssion wcrc no closcr to
the goat, and so wcrc undesirable.

Given this information, the system’s behavior whcn lcarning while doing was identical to that whcn
lcarning from complctc solution paths. During both runs, SAGE arrived at a variant of its original proposer
that would always direct it to an optimal solution. This rule can be stated as:

ALGEBRA-1
If you see a number as the argument offitnction in current-state,

and oihcrjiunction is a function,
arid firriciiuri is the inverse of olherfuncfion,
and furic~iori occurs iit the toD level of the exorcssion in current-slate,

then consider applying otherfuncfion to both sides with number as its argument.
This production contains two conditions beyond thosc in the initial mlc. both of which are undcrlincd. Thc
first of thcsc constrains attention to functions that arc the invcrscs of funclions occurring in the cxprcssion.
For example, givcn the exprcssion 4x - 5 = 3, ALGEBRA-1 would considcr adding a number (since
addition is thc inverse of subtraction) or dividing by a number (since division is thc inverse of multiplication).
but not subtracting or multiplying. The second condition further constrains thc function that is selected.
SAGE rcprcscnts such expressions as trces or list structures with forms like (= (- (*4 x) 5) 3). Since
subtraction occurs at the top lcvcl of this structure, it would bind against the variablefirnction, so that adding
5 to both sidcs would be suggcsted.

Since algebra problems such as the above always assume similar goals, transfer to problems with
diffcrcnt goals is not appropriate for this domain. Howevcr, scaled-up transfer is possiblc, and the variant
SAGE generated for the above problem can be used to solve morc coniplcx problems, such as (3 (x + 1) -
5)/2 = 2. Obviously, it can also be used to solve diffcrent problems of thc sanic complcxity involving
diffcrent functions. In principle, we could have given SAGE four different proposers at the outsct - one for
addition, one for subtraction, and so forth. If we had not given the system information about the inverses of
functions, it would still have becn able to learn not to add unlcss subtraction occurred in an cxprcssion, and
analogous rulcs with similar conditions. Howevcr, given a problem like 4x - 5 = 3 on which to practice, the
system would then have only partial transfer to a problem like 2x + 1 = 7, in which there occurred only one
of the opcrators with which it had experience. This form of transfer is similar to that studied by Mitchell,
Utgoff, and Bancrji (1983) in thcir work on symbolic integration.

7.5. Seriation

Scriation behavior has becn widely studied by developmental psychologists, starting with Piaget (1952),
and production system modcls of children’s behavior on this task have been constructed by Young (1976) and
by Baylor, Gascon, Lemoyne, and Pother (1973). In one version of this task, the child is presented with a set
of blocks in a pilc, and is asked to line them up in order of descending height (say from left to right). As
simple as this may sound, young children have considerable difficulty with this sorting task, and many adults
do not solve the problem very efficiently. Since this class of problems was somewhat different from the others
SAGE had been given, we felt it would be useful to include it in our tests of the system,

In this case, the program was given a single operator for moving a block from the pile to the end of the
current line (or to the first position in the line if none existed). Also, SAGE was given a domain-specific rule
for dctermining illegal states. This stated that if a taller block had been set to the right of a shorter block, the
move that led to this state was undesirable. For example, suppose the system were presented with four blocks
- A, B, C, and D - where A is the tallest and D is the shortest. Further suppose that on the first move,

-28-

SAGE moved D into thc linc. On thc ncxt move, the program could move any of A, 13, or C ncxt to 11, but
cach of thcsc moves would immediately be classificd as illegal.

S A G E 2 was prcscntcd with four blocks and given the goal of ordering thcm according to height.
Learning from complctc solution paths (and using only the illegal move detector to constrain the initial
search), the system generated onc uscfUl variant, along with some 67 others. This production cxcccdcd the
original rulc in strength after a singlc learning run, and led to perfect behavior on the sccond timc through the
problem; it can be stated as:

SERI ATE- 1
If you have a block in the pile in current-stale,

and it ic. not the case that:
there is some orhcrbluck in the Dile in current-slate,
and ofher-block is t:illcr t h n block,

then consider moving block to the end of the line.
This production contains a single ncw condition that is statcd as a negated conjunction. Effcctivcly, it says that
onc should move a block only if therc is no other block in the pile that is tallcr than that piece. This constraint
is rclatcd to conditions in tlic illcgal statc dctcctor, since the SERIA'I'E-1 variant will never place a tallcr block
to the right of a shorter one. However, onc can imagine a rulc that would never proposc illegal movcs, and yet
would still start off down the wrong path, say by placing the smallest block in thc linc first. Such a variant was
generated during the seriation run, but did not bccome as strong SERIATE-1, which ncvcr makcs this
mistake. Thus, the ncgatcd conjunction in SERIAlE-1 incorporates both the test for illcgal states and look-
ahead information, enabling the rule to avoid moves that will lead to dead-ends.

S A G E 2 was also capable of learning during the initial search on this task. In addition to the rule for
noting illegal statcs, thc DEAD-END heuristic also camc into play. Consider again our cxaniplc from above,
in which block D is placcd first in the line. In this situation, the system attempted moving each of A, B, and C
next to thc smallest block, and each move was marked as illegal. However, since no other moves werc possible
from this state, thc DEAD-END rule applied, marking the initial D move as undesirablc. Since the three
other movcs considered at the outset were still acceptable (the B and C moves did not lcad to dcad cnds until
later), thc D move was compared to each of these moves by MARKED-BAD. The resulting call on
discrimination led to the SERIATE-1 rule shown above. Later dead-ends led to similar comparisons, and this
rule was strengthened, until it came to efficiently direct the search process even before an initial solution had
been found.

8. Discussion
Now that we have examined SAGE and its behavior on a number of tasks, we can begin to evaluate the

program. In the case of a learning system, one of the most important dimensions is generality. One way to test
a system's generality is to run it in a number of domains, and as we have seen, SAGE fares well on this
criterion. However, one could in principle construct a program that employed one heuristic for one domain, a
different heuristic for another domain, and so forth. In other words, one must also test the componerifs of a
system for generality. On this dimension, SAGES discriminationlstrengthening stratcgy passes with flying
colors, since it played a central role in each of the runs described above. However, the situation with respect to
the credit assignment heuristics is more complex, so let us consider it in more detail.

Table 5 prescnts the six credit assignment rules used in SAGE.2, along with the six task domains in
which the system was tested. As can be seen from the table, and as has been apparent throughout the paper,
the complete solution path heuristic is very general, and was (or could have been) applied on each of the
tasks. The other heuristics were less useful, but still showed evidence of generality. Both the loop moveflonger
path rule and the dead-end rule led to learning in four of the six problem classes.

-29-

Table 5. Gcncrality of SAGE.2.s credit assignment heuristics.

SOLUTION LONGER DEAI) ENDS ILLEGAL NO PROGRESS

TOWER OF IIANOI X
SLII)L:.-JuMP X
TILES AND SQUARES X
MAITRESS FACTORY X
ALGEBRA X
SERIATION X

X
X
X
X

X
X

X

X
X

X

The illcgal state detector was statcd in a domain-spccific manncr and was uscd only in thc seriation task.
Howcvcr, onc can imagine vcrsions of the I'owcr of Hanoi, Mattrcss Factory, and Slidc-Jump puzzles in
which thc conditions for lcgal movcs must bc lcarncd along with thc conditions for good movcs. I t might even
be possiblc to sutc thcse constraints as elemcnts in SAGE'S working memory, so that a quitc gcncral illcgal
statc dctcctor could bc implemcntcd. Finally, the no progress rule was used only i n the algebra domain, but
onc can imagine a version of SAGE that always computed the distance between thc current statc and the goal
statc, and a vcry gcncral no progrcss heuristic that matched off thc rcsults of this computation.

Another issuc rclates to thc form of the acquired heuristics. As we have seen, the discrimination
approach is in principle capable of learning disjunctive rulcs, and this potential proved usehl on the Tiles and
Squares task. Sincc disjunctive heuristics are likcly to occur in a significant fraction of task domains, the
ability to acquire thcm is certainly desirable, and SAGE shows promise along this dimcnsion. On thc other
hand, we found that on most tasks, SAGE was not ablc to learn heuristics that incorporatcd information about
thc goal state. Such rules are important, sincc they would let the system to transfer its acquircd cxpcrtise to
problcms with diffcrcnt initial and goal states from those on which it practiced.

The one arca in which the systcm did achicve such transfer was the Tiles and Squares problem, and the
key in this case was the explicit representation in working memory of the goal state toward which the system
was working. Sincc this information was available for inspection by the discrimination mechanism, it could be
included in the conditions on variants spawned by this process. As a result, variants containing such
conditions could direct the scarch in different directions, depending on the particular goal that was being
sought. Presumably, before SAGE can be expected to manage similar transfers for other domains, its
representation for these tasks must be augmented to include explicit rcpresentations of their goal states.
Whether such an addition will be sufficient or merely necessary is a question that can best be answered
experimentally.

A second natural extension relates to the search strategy that SAGE employs. Many problems (such as
winning a chess game) are so complex that they can only be solved by breaking the task up into manageable
components. One such approach involves setting up subgoah, each of which must be solved before the
supergoal is accomplished. If SAGE'S search control were augmented to allow thc introduction of subgoals,
then the heuristic for assigning credit based on complete solution paths could undergo an important but
subtle alteration. Rather than requiring solutions to an entirc problem, the method could be applied
whenever a particular subgoal had been achieved. Variants learned from this path would be specific to that
subgoal; that is, thcy would include a description of the current subgoal as an extra condition, in addition to
the other conditions found through discrimination. Even if SAGE later determined that this subgoal was not
particularly desirable in the current context, the rules that had bcen learned might still prove useful in

-30-

satisfying thc subgoal in somc other situation at a later datc. This approach would also rcquirc thc systcm to
lcarn thc conditions undcr which various subgoals should bc sct, but this could bc handled by the existing
mechanisms for learning thc conditions on opcrators.

In summary, the existing version of SAGE has a number of desirable fcaturcs, but our undcrstanding of
thc strategy learning proccss is far from complctc, and more work remains to bc done. In our future rcscarch,
wc plan to restr~icturc thc systcm’s problcm solving and learning methods to takc advantage of information
about goals, as wc outlined abovc. In addition, SAGE has so far becn tcstcd only on problcins with rclatively
small search spaces. and wc are now rcady to cxplorc thc system’s bchavior on morc complcx tasks.
Undoubtcdly. our cxpcriences in these domains will lead to additional insights into SAGE‘S limitations, and
to hrthcr rcvisions that, hopchlly, will lcad to a morc powcrful and robust system for learning search
heuristics.

-31-

References

Anderson, J. R. Language. Memory. and Thought. Hillsdale, N.J.: Lawrence Erlbaum Associates 1976.

Anderson, J. R. and Kline, P. J. A learning system and its psychological implications. Proceedings of the Sixfh
International Joint Conference on Artificial Intelligence. 1979 , 16-21.

Anderson, J. R. Tuning the search of the problem space for geometry proofs. Proceedings of the Seventh
International Joint Corlference on AriiJicial Intelligence, 1981 ,91-103.

Anzai, Y. How one learns strategies: Proccsscs and rcprcscntation of strategy acquisition. Proceedings of the
Third AISIVGI Conference, 1978,l-14.

Anzai, Y. Learning strategies by computer. Proceedings of the Canadian Society jhr Computational Studies of
Inrelligetice, 1978, 181-190.

Baylor, G. W., Gascon, J., Lemoyne, G., and Pother, N. An information processing model of some seriation

Brazdil, P. Experimental learning model. Proceedings of the Third AISWGI Conference, 1978 ,46-50.

Bundy, A. and Silver, B. A critical survey of rule learning programs. Proceedings of the European Conference

Cahn, A. A Puzzle with a Goal Recursive Strategy: The Mattress Factory. Master’s thesis, Department of

Carbonell, J. G. Learning by analogy: Formulating and generalizing plans from past experience. In R. S.
Michalski, J. G. Carbonell, and T. h4. Mitchell (Eds.), Machine Learning: At1 Artificial Intelligence
Approach, Palo Alto, CA: Tioga Press, 1983.

Hagert, G. On procedural learning and its relation to memory and attention. Proceedings of fhe European

Hayes-Roth, F. and McDermott, J. An interference matching technique for inducing abstractions.

Iba, G. A. Learning disjunctive concepts from examples. Master’s thesis, Massachusetts Institute of

Keller, R. M. A survey of research in strategy acquisifion. Technical Report DCS-TR-115, Department of

Korf, R. E. A program that learns to solve Rubik’s cube. Proceedings of National Conference on Artificial

Langley, P., Neches, R., Neves, D., and Anzai, Y. A domain-independent framework for learning procedures.

Langley, P. and Neches, R. Prism User’s Manual. Technical Report, Department of Computer Science,

Langley, P. Strategy acquisition governed by experimentation. Proceedings of the European Conference on

Langley, P. Language acquisition through error recovery. Cognilion and Brain Theory, 1982,5,211-255.

tasks. Canadian Psychologist, 1973, 14,167-196.

on Artificial Intelligence, 1982 ,151-157.

Psychology, Carnegie-Mellon University, 1977.

Conference on Artificial Intelligence, 1982 ,261-266.

Communicarions of the ACM, 1978,21,401-410.

Technology, 1979.

Computer Science, Rutgers University, 1982.

Intelligence, 1982 , 164-167.

International Journal of Policy Analysis and Infonnafion Sysfems, 1980,4, 163-197.

Camegie-Mellon University, 1981.

Artificial Intelligence, 1982 ,171-176.

-32-

I>angiey, P. Idearning scarch stratcgies through discrimination. Iniernational Journal of Man-Mnchine Studies,

Mitchcll, 1’. M . Vcrsion spaccs: A candidate climination approach to rule lcarning. Proceedings of ihe Fifih

1983, I S , 513-541.

Iniernafional Joini Conference on Ariificial Inielligence, 1977 ,305-310.

Mitchcll, 1’. M.. Utgoff, P., and Banerji, R. 13. Ixarning problem solving heuristics by expcrimcntation. In R.
S . Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.), Machine Learning: An Ariificial Intelligence
Approach. Palo Alto, CA: Tioga Press, 1983.

Ncchcs, R. A computational formalism for hcuristic procedure modification. Proceedings of [he Sevenih
International Joini Conference on Artificial Intelligence, 198 1 ,283-288.

Ncvcs, D. M. A computcr program that learns algebraic proccdures by examining examples and working
problcms in a tcxtbook. Proceedings of the Second Nafional Conference of the Canadian Society for
Conipuiaiional Sfudies of Intelligence, 1978 , 191-195.

Newcll, A. and Simon, H. A. Human Problem Solving. Englcwood Cliffs, N.J.: Prcntice-Hall, Inc. 1972.

Nilsson, N. J. Problem Solving Methods in Ariificial Inielligence. New York: McGraw-Hill 1971.

Ohlsson, S. On the automatcd learning of problem solving rules. Proceedings of [he Sixth European Meeting
on Cybernetics and Sysfems Research, 1982 .

Ohlsson, S. Transfer of training in procedural learning: A matter of conjeciures and refulaiions?. Technical
Report 13, Uppsala University, Computing Science Department, 1982.

Piaget, J. The Child’s Conception of Number. : Humanities Press 1952.

Rendell, L. A. A learning system which accommodates feature interactions. Proceedings of the Eighth

Samuel, A. 1,. Some studies in machine learning using the game of checkers. IBM Journal of Research and

International Joini Conference on Artificial In felligence, 1983 ,469-472.

Development, 1959,3,210-229.

Simon, H. A. and Reed, S. K. Modeling strategy shifts in a problem-solving task. Cognifive Psychology, 1976,
8,86-97.

Sleeman, D., Langley, P., and Mitchell, T. Learning from solution paths: An approach to the credit

Vere, S. A. Induction of concepts in the predicate calculus. Proceedings of the Fourth Infernafional Joint

Winston, P. H. Learning sfrucfural descriptions from examples. Technical Report AI-TR-231, Massachusetts

Winston, P. H. Learning structural descriptions from examples. In P. H. Winston (Ed.), The Psychology of

Young, R. M. Seriation by Children: An Artificial Intelligence Analysis of a Piagetian Task. Basel:

assignment problem. AI Magazine, Spring 1982 ,3,48-52.

Conference on Artificial Intelligence, 1975 ,281-287.

Institute of Technology, 1970.

Computer Visi04 New York: McGraw-Hill, 1975.

Birkhauser 1976.

