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ABSTRACT 

In this report, a composite control scheme for the control of robot manipula- 
tors is proposed. 

Due to the modeling error or environmental uncertainties, robot motion may 
present a significant positioning error by using a conventional Computer-Torque 
Method. To improve tracking capability of robot manipulators, sliding mode 
control and nonlinear control algorithms have been introduced, but computation 
is costly, and thus a fast motion execution using simple computer sources is 
impossible. 

To solve this problem, we present a composite control algorithm to control 
robot motion combining a discrete feedforward component and a continuous feed- 
back component. The discrete feedforward component provides a nominal torque 
computed using the robot dynamics and compensates for dynamic coupling be- 
tween the links. This part can be updated in a luge  sampling time, and can 
be computed off-line generally, thus real time computation is decreased. The 
continuous feedback control component uses a structure of Variable Structure 
System and provides a robust control to disturbances during the sliding mode. 
This part can be digitally implemented using a short sampling time, and thus 
a fast motion of a multi-degree freedom robot manipulator can be executed by 
using a simple computer, or even a single board computer with an %bit CPU. 

The stability of the proposed multiple-rate control scheme is proven in the 
paper and efficiency of the control scheme has been demonstrated by simulations 
of a three-link robot subject to parameter and payload uncertainties. 

- ~~~. ...~. . -. . .. .. . . . . . . 



1 Introduction 
The lack of efficient and robust real-time control algorithms for high speed motions is one 
of the important reasons why the applications of the present robotic manipulators are lim- 
ited. The dynamic equation of robotic manipulator is highly nonlinear due to the inertia 
and strong coupling terms among the joints, such as centrifugal, Coriolis and gravitational 
forces [ l l ,  121. It is difficult to guarantee the tracking error bound in high speed motion, 
by neglecting the nonlinear dynamic terms which may act as a large disturbance to the 
controller. In order to improve the trajectory tracking accuracy, it is necessary to take the 
robot manipulator dynamics into consideration [12]. 

The well-known Computed Torque Method (CTM) normally provides a feasible controller 
if the exact knowledge of the manipulator dynamics is available. However, for a large amount 
of applications, it is impossible to obtain the complete dynamic model of robots, due to 
modeling uncertainties, parameter variation and unknown payloads. These uncertainties, 
especially the error of inertia matrix, may result in the instability of robot systems [ l T ,  
131. On the other hand, the computation time of such a complex dynamics also makes its 
implementation impractical in some cases. 

The sliding mode controller based on the Variable Structure System (VSS) method has 
the properties of rejection to disturbance and insensitivity to parameter variations. The 
method does not need to have a complete knowledge of the accurate model, and only knowl- 
edge required is the bounds of uncertain parameters of the system for the design of the 
controller [IS]. These two features are exactly the merits for the control of a manipulator 
which is subjected to the modeling uncertainties and large disturbances. Therefore, the 
sliding mode control [lo, 6, 4, 51 has been proposed in many robot control algorithms. 

Depending on the side of the hyperplane (Le., sliding surface) that the system belongs 
to, the VSS is of two structures. If the control structure can be switched with an ideally 
infinite frequency, the motion of the controlled system remains on the sliding surface. Then, 
the system is governed by dynamics of the sliding surface only, and the system is insensitive 
to parameter variations and disturbances. However, an ideal switching of the input with 
an infinite frequency is practically impossible due to the switching delays and neglecting 
time constants. Instead, the control input switches with a finite high frequency and the 
motion of the system is within some neighborhood of the sliding surface with chattering. 
This chattering is generally undesirable in practice, since it involves extremely high control 
activity and thereby excites the high frequency dynamics that is neglected in the model. 

To solve this problem, various algorithms have been proposed to replace the discontinuous 
control in neighborhood of the sliding surface by the continuous control [6, 4, 51, such as 
the VSS algorithm, if the trajectory is outside the boundary of the sliding surface. If the 
trajectory is within the boundary of the sliding surface, however, a lot of people suggested to 
interpolate the control by proper continuous function to minimize the chattering caused by 
a switching input. In the implementation of these algorithms digitally, we need to compute 
robot model and feedback of position and velocity at every sampling time. In spite of 
the efficient recursive dynamic algorithms [ l l ,  12, 81 and computing architectures [15], the 
computation of the model is relatively more costly. The time delay of control input, due to 
the computation time, deteriorates the performance in real-time control systems 191. 

1 



To reduce the time delay of control, it is desirable that the feedback is not involved in 
computation of the model, and the feedforward compensation using the nominal torque is 
good in this sense [3, I]. The adaptive control algorithm with feedforward compensation 
provides a robust method to control robot manipulators. Actually there are a lot papers 
about the stability of the adaptive control. The feedback component of the adaptive control 
needs a considerable amount of computation. We believe that the composite controller com- 
bining the discrete feedforward and continuous feedback controls provides a good trajectory 
tracking performance in the real-time implementation. 

In this paper, a composite control algorithm is proposed and the stability of the system is 
proven. The proposed algorithm is comprised of discrete and continuous control loops. The 
discrete feedforward component provides a nominal torque computed using robot dynamics 
and compensates for dynamic coupling between the links. This part can be updated in a 
large sampling time, and can be computed off-line generally, thus a real time computation is 
infeasible. The continuous feedback control component uses a structure of Variable Structure 
System and provides a robust control to disturbances of the system during the sliding mode. 
This part can be digitally implemented using a short sampling time, and thus a fast motion 
of a multi-degree freedom robot manipulator can be executed by using a simple computer, 
or even a single board computer with an 8-bit CPU. 

The rest of the paper is organized as follows. In Section 2, we describe preliminary 
Lemmas as a preparation for the main control algorithms. In Section 3, we present a new 
composite control algorithm with proofs. In Section 4, the efficiency of the proposed algo- 
rithm for the position control is demonstrated by the simulation of a three degrees-of-freedom 
manipulator. The robust property to the modeling errors, the time delay of computation, pa- 
rameter uncertainties and payload variations is discussed. We conclude the paper in Section 
5. 
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2 Preliminaries 
The motion equations of an n degree-of-freedom (d.0.f.) manipulator can be derived using 
the Lagrange-Euler formulation as 

where ~ ( t )  E R" is a joint input torque vector; q( t ) ,g ( t ) , t ( t )  E R" are the generalized 
position, velocity and acceleration vectors of the joint angles; D ( q ( t ) )  E RnX" is a symmetric 
positive definite inertia matrix, and h(q( t ) ,  i ( t ) )  E R" is a nonlinear coupling vector including 
centrifugal, Coriolis and gravitational forces 12). In the following, we denote D(q( t ) )  by D 
and h(q( t ) ,  i ( t ) )  by h for brevity. 

Let us define the state vector z ( t )  E R2" as 

Then the state equation of the robot system is 

Given the desired trajectories q d ( t ) ,  &(t) ,  &(t)  E R" and initial time to, we define the sliding 
surface vector s(t) f R" as 

1 
s ( t )  = i ( t )  + K,e(t) + K p  1 e(7)dT (4) to 

where e(t) = q( t )  - q d ( t )  is an error vector in joint space and K,,K6 E R"'" are gain 
matrices. For the use of the following derivation, we introduce intermediate trajectories, 
q*(t), i * ( t ) ,  &(t)  E R", which satisfies the following equation 

Z ( t )  + K.k(t) + K,e(t) = 0.  (5) 

Then we can rewrite (5) as follows 

k*(t) - k,j(t)  = A .  [ ~ . ( l )  - ~ d ( t ) ]  (6) 

where ~ . ( t )  = [q*(t)T,i.(t)TJT E RZn, a ( t )  = [ q d ( t ) T , q d ( t ) T ] T  E R2" and A E Rznxlrn is 

0 
( 7 )  

Since del[XZ-A] = det[X21+XK,+KpJ, we can choose K,  and K p  so that all the eigenvalues 
of the matrix A have negative real parts, which guarantees the exponential stability of the 
system ( 6 ) ,  and then there exist g > 0 and n > 0 such that 
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for all t 2 0 [IS]. Here, the Euclidean matrix norm of A is defined as 

IlAll = [ h ( A ' A ) ] i  (9) 

where AM(.) denotes the maximum eigenvalue of a matrix. Now, we will state the following 
two Lemmas as a prerequisite to the main theorems. 

Lemma 1 : If the sliding surface defined by Equation (4) satisfies Ils(t)ll 5 7 for any 
t 2 to, then 

Ilz(t) - z.(t)ll 5 [Ilx(t,) - z*(to)l + 271 . ellAll' 

is satisfied for all t 2 1,. 
Proof : Using (4) and ( 6 ) ,  we may rewrite (3) as 

i ( t )  - k*(t)  = A .  [ ~ ( t )  - ~ . ( t ) ]  + (11) 

Integrating both sides of (11) yields 

Taking the norm of both sides, we get 

Ilz(t) - z.(t)ll I [Ilz(tJ - z*(to)ll + 271 + /tIIAll .IIz(.) - 4T)IldT. (13) 
t o  

If we apply the Bellman-Gronwall Inequality [14] t o  (13), we obtain 

~lr( t )  - z.(t)ll 5 [llz(to) - Z*(L)II + 271 . ellAllt (14) 

for all t 2 to, and thus Lemma 1 is true. 
If we take z.(to) = z(to) at the initial time, Equation (IO) becomes 

Il+(t) - z.(t)ll 5 27 . ellAll*. (15) 

The above Lemma implies that the distance from red  trajectory z( t )  to the intermediate 
trajectory s.(t) is bounded for a finite time. The Lemma 2 below shows that the boundness 
of the tracking error holds also for an infinite time interval. Considering p as a positive 
number and vector u E Rn,,we defme the neighborhood set as follows 

S(p; u) = {w E R"; llw - VI1 5 p } .  (16) 

Lemma 2 : Suppose I ls(t) l l  5 y is satisfied for all t 1 to for some to, and the system 
(6) is exponentially stable and satisfies (8). Then z(t) converges exponentially into the set 
S(q;zd( t ) )  with t which is given by 
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where p is defined as 

Proof : Since the intermediate trajectory satisfies (8), there exists T = T(a) < 03 

T = -  ln(a/s) 
n (19) 

= B .  ll4L4 - S d ( b ) l l .  (23) 
Now if ( (s( t )  - r d ( l ) l l  > E(a, 8) . 7  holds for t = to + T, we repeat the previous process 
with the initial condition z.(t. + T) = z(t. + T) at time t = t ,  + T .  Then 

(lz(to + 2T) - z d ( t o  + 2T)Il < B ' Ilx(to f T )  - Z d ( t a  + T)ll 

< p a  ' I l s ( i o )  - r d ( t s ) l l .  

I l z ( to  + "T) - 2 d ( t o  + nT)II < B" . Ilr(to) - I d ( t o ) l l .  

(24) 

(25) 

If this process is repeated n times, we have 

Equation (25) implies the exponential convergence of ~ ( t )  into the set S(E(a ,  p ) ;  zd ( t ) ) .  
It remains to find out the supremum of the trajectory errors for all Q and p with the 

constraint 0 < a < ,@ < 1. Clearly, the infimum of E ( u , p )  with respect to p occurs as P --t 

1. and this results in 

We differentiate E(a ,  1 )  with respect to CY and let the derivative be equal to 0, i.e., 

- = 0. 
d E ( a , l )  - 2(l/g)(a/g)-'eU+'). ((1 +  CY - +} 

d a  (1 -CY) '  (27) 
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We can obtain the minimum of E(a, 1) when 

and the upper bound of the trajectory error, t = E ( a * , l ) ,  is given by (17) and (18). This 
completes the proof of Lemma 2. 

Note that the equivalent trajectory is only a virtual intermediate function between ~ ( t )  
and Zd(t) and does not exist in a real system. If Ilz(to) - sd(to)ll  5 e . y is satisfied at the 
initial time t = to, then the system trajectory satisfies Ils(t) - zd(t)ll 5 t .  7 for all t > to. 
In the next section, we will propose a controller which guarantees Ils(t)ll I: y, then the 
trajectory error is bounded in virtue of Lemma 2. 



3 Composite Control Algorithm 
To compute the input torque using the nonlinear control algorithms, we need the dynamic 
model of a robot system. For many cases an exact model is impossible due to the parameter 
uncertainties and payloads variations. Therefore, we express the model of the robot system 
(1) as follows 

m t ) )  .4w + &dt),4(t)) = d t )  (28) 
where b(q(t)) . ;i(t) and i (q( t ) ) , t j ( t ) )  represent the corresponding terms of the real system 
(1) with modeled values of the parameters. 

In general, we may consider the control as two parts, a feedforward term and a feedback 
term, Le., 

T ( t )  = rfj(1) + T c ( ~ )  (29) 

The feedforward term ~ j j ( t )  and the premultiplying coefficient, b ( q d ( t ) )  of the feedback 
term ~ ~ ( t )  can be computed in off-line, and thus are step functions with time interval To 
which is supposedly greater than the necessary computation time for the model (28). In spite 
of the development of various algorithms and enhancements of computing architectures, com- 
putation of the model is still costly and thus the required time interval To is still not small. 
We used the notations &(t) ,  a d ( t ) ,  i d ( t )  to denote the sampled values of the correspond- 
ing desired trajectories q d ( t ) , C j d ( t ) , i d ( t )  with a sampling internal To (i.e., q d ( t )  = q d ( k T p ) ,  
Gd(t) = q d ( k T p ) ,  and c d ( t )  = G d ( k T p )  for dl t E [kTp,(k + 1)Tp)) .  For brevity, b ( Q d ( t ) )  is 
denoted by b d  and i ( q d ( t ) , & ( t ) )  by i d  . If the robot system (1) is controlled by the input 
torque computed by (29)-(32), we obtain 

- 
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Define the constants N and M as such 

In what follows, we prove the stability of the system using the controller given by (29)- 
(32). 

Theorem 1 : For a robotic system (1) using controller given by (29)- (32), if at the 
initial time t = to for any 7 > 0, 

and the gain ko is bounded by 

for the given K,, K,, IC. and for a small positive p ,  then the system tracking error satisfies 

I l s ( t ) l l  5 7 3 E S ( f 7 ; z d ( t ) )  (40) 

for all t 2 to.  
Proof : We consider V ( t )  = $s( t )Ts( t )  as a Lyapunov function and differentiate it with 

Using the matrix inequality 171, 

we obtain 

If we assume that z( t )  # S(c7;zd(t)) for some t = t z ,  there exists tl E [ to , t2 )  such 
that s ( t )  E S(7)  for all t E [t, ,ti) and Ils(t1)ll = 7, since Ilz(t,) - z d ( t o ) l l  5 e .  7 and the 
motion trajectory is continuous. Then r(t1) E S(q; z d ( t l ) )  is satisfied (from Lemma 2), and 
Iln(h)ll 5 N and Il6D(ti)ll L M are satisfied from the definitions of (37) and (38). Hence, 
we can rewrite (43) as 
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at t = tl. If the gain I s ,  satisfies the condition (39), then 

dV 
dt - ( t )  < - p  ' s(t)Ts(t)  (45) 

at t = t l ,  which contradicts the assumption that s ( t )  # S(q;zd(t)). This completes the 
proof of Theorem 1. 

If we use a small sampling time T p  and have a relatively accurate model, then the 
maximum values of N and M can be small. In this case, the lower bound of k, can be 
made to be small and the upper bound of ko can be made to be large enough to ensure the 
existence of the gain k,,. Since the role of feedforward component . r j j ( t )  is compensation 
for the dynamics and nonlinear coupling torques between the joints, we may take a large 
sampling time To for the discrete terms b d  and i d  to reduce the computation. Of course, the 
sampling time should not be too large. With increase of the sampling time, the magnitude 
of modeling errors, Iln(t)ll and IlbD(t)ll may become large, and thus the required bounds of 
the gain ko become severe and the trajectory error is increased. This will be discussed in 
detail in Section 4. 

Using the smaller 7, s ( t )  remains closer to the surface s ( t )  = 0 and the trajectory error 
becomes smaller. In this case, the lower bound of the gain ko is not necessarily increased 
since the constant N of (37) is decreased. If we take the smaller A in the control algorithm 
(32), then both the lower and upper bounds of the gain ko are decreased. However, it is 
difficult to expect that the control changes smoothly. 

In order to achieve a smooth change of control output, we may consider the interpolation 
of the discrete terms b d  and h d  in (30) and (31). Since these terms are functions of the 
desired trajectories and can be computed in off-line, the interpolation of these terms can be 
achieved by various simple methods. 

Substituting the continuous feedback terms q(t )  and q(t)  to the sampled nominal tra- 
jectory q d ( t )  and &(t) ,  we may get the continuous control input in a combined form as 
follows 

70) = &z(t)) ' 4 t )  + M t ) ,  4.(t)) (46) 

Then, we can prove the bounddness of the tracking errors of the system (1) by the controller 
(46) and (47) in the same manner as in Theorem 1. 

If the model is relatively accurate and the sampling time of discrete components (To) is 
small, it is not so severe to aSsume that M < 1. In this case, we can obtain the following 
Corollary which gives another condition for ko. 

Corollary 1 : Consider the robot system (1) using the controller given by (29)-(32). If 
M < 1 and at the initial time t = to, Ils(t.)l] 5 7 and Ils(t,) - Zd( to ) l l  5 e .  y for any y > 0 
is satisfied at the initial time to,  and if the gain k, is bounded by 
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for given K,, Kp and positive le,, then the system tracking error satisfies 

Ils(t)ll 5 7 1 s( t )  E S(E7; Z d ( t ) )  (49) 

for all t 2 to. 

respect to t, 
Proof : We consider V ( t )  = f ~ ( t ) ~ s ( t )  as a Lyapunov function and differentiate it with 

If we assume that Ils(t)ll 5 7 for all to 5 t 5 t l ,  and Ils(tl)ll = 7 for some tl ,  then it yields 

at t = t l .  Hence, if the gain E ,  satisfies the condition (48), 

dv 
dt 
- < -k*s(t)Ts(t) 

at t = tl which completes the proof of Corollary 1. 
The Corollary 1 also gives some insight of the role of the term, -k , s ( t ) ,  in the feedback 

component. Combining Theorem 1 and Corollary 1, the sufficient condition for the stabil- 
ity of the system with controller (29)-(32) is that ko satisfies the lower and upper bound 
conditions given by (39), or k, satisfies the lower bound condition given by (48) if M < 1. 

If we eliminate the norm of s(t) in uc(t) ,  we can compute uc,(t) independently for each 
joint and the more efficient computation is possible. Thus, instead of using the feedback 
control (32), we propose to use the feedback component as follows, 

uE(b) = -K,i(t) - Kpe( t )  - k,s(t)  - k0u(t) 

S i @ )  

Isi(t)l+ A '  

(53) 

(54) 

where 
a(t)  = lull. .  ' , u;, . . . ,u$ , a@) = 

#en the gain matrices K ,  and Kp are diagonal, we can rewrite (53) as 

uEi(t) = -k,ei(t) - kpie;(t) - kss;(t) - kou;(t). (55) 

Using the controller given by (29)-(31), and (53) for the robot system (l), the differential 
tracking error 

where the disturbance vector n(t) is given by (34), and its i- th element is denoted by ni( t ) .  
The ( i , j ) - t h  element of SD(t) is denoted by 6Dij(t) and the constants N ,  and M ,  are 
defined as follows 

i ( t )  = -k , s ( t )  - k . ~ ( t )  - k,. SD(t)o(t) + n(t) .  (56)  

10 



where the neighborhood set Z(p; u )  is defined below, for any scalar p and vector w E R" 

where 11. I l m  is the infinity norm of vector which is the maximum of the absolute values of 
its elements. 

Now we study stability of the system using the controller (29)-(31) and (53). 
Theorem 2 : Consider the system (1) with controller given by (29)-(31) and (53). If, 

5 7 and s(to) E Z(q;zd( t ) )  at the initial time to, and the gain ko for any 7 > 0, 
satisfies 

for the given K,, KP, I; ,  and for an arbitrary small positive number p ,  then the system 
tracking error 

Il4t)ll 5 7 I 4 t )  E Z ( e 7 ;  4 t ) )  (61) 

for all t 2 to. 

respect to t ,  
Proof : Consider V ( t )  = ?js(t)=s(t) as a Lyapunov function and differentiate it with 

Equation (62) can be rewritten as 

If we assume 1 at lls(t)llm 2 7 is true for some 2 = t?, there exists tl E . , , t ~ )  such that 
Ils(t)llm 5 7 for all t E [ t , , t i )  and Ils(ti)llo5 = y and % ( t l )  > 0. Lemma 2 implies that 



.(ti) E Z ( € 7 ; X d ( t i ) )  and thus Iln(ti)ll 5 N ,  and Il6D(ti)ll I M, are satisfied from the 
definition of N ,  and M,. In this case, we can rewrite (64) as 

at t = tl. Hence, when the gain ko satisfies the condition(60), we have 

at t = t l ,  and this completes the proof of Theorem 2. 
If we assume A in the feedback component (55)  as to be zero, then it takes the form of the 

sliding mode controller. The role of A is to change the discrete function to the continuous 
function. 

By substituting the sampled nominal trajectory q d ( t )  and i d ( t )  by the feedback measure- 
ment q(t )  and i ( t )  respectively, we obtain the continuous control input in a combined form 
as follows 

u(t) = & ( t )  - K, i ( t )  - K,e(t) - kds ( t )  - kou(t). (68) 
We may also easily prove the boundedness of the tracking errors of the system (1)  by using 
the above controller in similar way to that used in Theorem 2. 

Provided that M, < 1 is satisfied, the following Corollary gives a different bound of the 
gain ko from the bound in Theorem 2. 

Corollary 2 : Consider the system(1) with the controller given by (29)-(31) and (531. 
If, for any 7 > 0, ~ ~ ~ ( t ~ ) ~ ~ ~  5 7 and ~ ( 2 , )  E Z(.57;zd(t,,)) at the initial time to,  and the gain 
k, satisfies the following condition for the given Ky, Kp, and positive ks, 

then the system tracking error is bounded by 7 ,  

IIS(t)llm 5 7 I Z ( t )  E z(67; zd( t ) )  (70) 

for all t 2 to. 
Proof : Consider V ( t )  = $ ( t ) T s ( t )  as a Lyapunov function and differentiate it with 
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Provided that I Is( t ) l lm 5 7 for all t E [ t . , t ~ )  and IIs(tl)llm = y for any time 11, then, 

hedwck Con(ml8 

Thoroml 

Theonem2 

at t = t l .  Consider the condition (69), 

The Number of wUmpir;muwr Ru N u m b  of W b o n  S q u m  Root 
mb-) 

m+6(1B) 2n+5(17) 1 

n+6(12) n + 6 (12) 0 

dV 
dt 

- ( t )  < -kss( t )Ts( t )  (73) 

at t = 21. This completes the proof of Corollary 2. 
For the digital implementation of the proposed algorithm, the controller may take the 

multiple-rate structure, where the sampling time T, of the feedback component is much 
smaller than the sampling interval Tp of the feedforward component. The feedback compo- 
nent uc(t) of (32) and (53) is simplein structure and less computational time is needed. If we 
consider the gain matrices K, and K ,  to be diagonal, we may compute uc( t )  for each joint 
independently. When f i d  is computed in off-line, the number of multiplication and addition 
required to compute ~ , ( t )  is shown in the Table I. The values in the parentheses correspond 
to the case n = 6, and the integral term in the sliding vector is computed, as an example, 
in the following way. 

in@) = dnt(k - 1) + &(k) (74) 

s ( k )  = i(k) + K,e(k) t int(k), ( 7 5 )  
where s (k )  is the value of the sliding vector at the k-th sampling time (t = kT, ), and 
int(0) = 0 and A', = T,. K,. 

The computation of the robot model is 132n multiplications and llln - 4 additions where 
n is the number of the degree-of-freedom of the manipulator, when the Recursive Newton- 
Euler algorithm is used. In case n = 6, the number of required multiplications is 792 and 
additions is 662. Thus the feedback component is of higher frequency up to 40-times than 
the feedforward component. 



4 Simulation Results 
The purpose of the simulation is to show the robust property of the proposed algorithms. 
The simulation result is compared with that using the computed torque algorithm. A three 
degree-of-freedom manipulator is used as a case study shown in Figure 1. 

Top V i  Slde V i  

Figure 1 A Three Degree-of-Freedom Manipulator 

The parameters are D = 0.0213kg.m, ml = mz = 0.782kg, and 11 = l z  = 0.23rn. To 
examine the robustness to modeling uncertainties, the modeling errors of each parameter, 
i.e., mass, length of link and moment inertia, are considered to be 1%. In simulation, the 
payload of 0 kg., 0.3 kg., or 0.5 kg. were carried by the manipulator, The execution time 
was 2 seconds and the desired trajectory was 

where the initial position qinit = (0.4, -0.1, O.2lT (rad.), and the final position qfinol= 
[-0.1, 0.3, 0.65IT (rad.). 

In the simulation, the sampling time To of the feedback component (32) and (53) were 
selected to be 1 ms. The sampling time TJ of the feedforward component (30) can be selected 
to be much larger than T,, due to the rationale mentioned previously. Two values of Tp, 10 
ms and 50 ms, is used in simulation, assuming that the time required for the computation of 
the model (28), T,, is 10 ms. The block diagram of the CTM and the proposed algorithms 
are shown in Figure 2 and Figure 3. 
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Fl~ure 9 Block Diagram of the PropcSed Control Algorithms 

The gains K, = 100. I ,  Kp = 100 . I were used in the CTM algorithm, and K ,  = 
20. I ,  Ki = 100. I ,  k, = 100, I;, = 10, 7 = 0.1 in the feedback components (32) and (53) 
of the proposed method. The simulation results of the CTM algorithm and the proposed 
algorithms are shown in Figure 4, Figure 5, and Figure 6. 
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(a) Joint 1 

* (S) 

(b) Joint 2 

n.. l s r l  

(c) Joint 3 

rme-3 

Figure 4 Simulation Results of CTM Algorithm 
(A : 0 kg Load, B : 0.3 kg Load, C : 0.5 kg Load) 



Joint 1 

Joint 3 

Figure 5 Simulation Results of Theorem 1 
(A : Load = 0 kg and Tp = 10ms, 
B : Load = 0.3 kg and Tp = 
C : Load = 0.5 kg and T,g = 50ms) 
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Joint 1 

(a) Joint 2 

T-* ( s 4  

( e )  Joint 3 

fh 1%) 

Figure 6 Simulation Results of Theorem 2 
(A : Load = 0 kg and Tp = 10m3, 
B : Load = 0.3 kg and Tp = 107713, 
C : Load = 0.5 kg and Tp = 50ms) 
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For Comparison, the maximum absolute values, and the root-mean-square values of the 
errors and torques are summarized in Table XI. 

Table II Slmulalion Results of the Proposed Algorkhms 



When the payload is 0 kg and TO = 50 ms, the s u m  of the root-mean-square values of 
three joint errors is 0.2747 (degree) using the CTM algorithm, while it is 0,0009 (degree) 
using the proposed algorithm. Both proposed two algorithms presented better performances 
than the CTM algorithm in the sense of the tracking errors. As the payload increases, the 
root-mean-square error is rapidly increased from 0.2747 (degree) to 4.4950 (degree) using the 
CTM algorithm, while using the proposed algorithms the resultant error maintains nearly 
unchanged. Especially, note that using the proposed algorithm the tracking error is not 
increased so much as the increase of the payload error, for the case Tp = 50 ms. 

The simulation results have shown that by the proposed algorithms the input torque 
changed smoothly, which is desirable in the implementation. When the payload is 0.5 kg 
and Tp = 50 ms, the sum of the root-mean-square values of the three joint torques is 4.334 
(N . rn) using the CTM algorithm, while it is 4.410 (N . rn) using the proposed algorithm. 
To compensate for the disturbance of the payload error, a slightly large input torque is 
necessary. For the proposed algorithms, the input torques with Tp = 50 ms are slightly 
larger than that in the case T p  = 10 ms. 

From the simulations, we have found that the proposed algorithm provides an excellent 
robust performance to the disturbance of the modeling error. 



5 Conclusions 
In this report, a composite control algorithm for the control of robot manipulators is pro- 
posed. The discrete component is a nominal torque for the feedforward compensation for 
the nonlinear coupling torques between the links. 

The feedback component uses the sliding mode control of the Variable Structure System 
which presents a stable performance. The proposed algorithm does not impose an additional 
computation on the real-time implementation, since the computation of model is necessary 
only for the feedforward component which can be computed off-line. In the digital implemen- 
tation, the controller takes the form of the multiple-rate structure. The feedback controller 
does not need much computational time and allows the short sampling time, and thus a 
fast motion of a multi-degree freedom robot manipulator can be executed by using a simple 
computer, or even a single board computer with an 8-bit CPU. Moreover, the time delay of 
the measurement can be negligible, since the measurement is utilized only in the feedback 
component. 

The simulation results have shown the efficiency of the proposed algorithms for the tra- 
jectory tracking and the robust property to the modeling inaccuracy and unknown payloads. 
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