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Abstract

In this paper, we discuss the problem of how a free-floating space manipulator can be
mapped to a conventional, fixed-base manipulator which preserves both its dynamic and
kinematic properties. This manipulator is called dynamically equivalent manipulator
(DEM). The DEM concept not only allows us to model a free-floating space manipulator
system with simple, well-understood methods, but also can be physically built using a con-
ventional manipulator system to experimentally study the dynamic performance and task
execution of a space manipulator system, without having o resort to complicated experi-
mental set-ups to simulate the space environment. This paper presents the theoretical devel-
opment of the DEM concept, demonstrates the dynamic and kinematic equivalence,
discusses the effect of model uncertainty with respect to the mapping, and presents simula-

tion results to illustrate the equivalence in both open-loop and close-loop controls.



1 Introduction

Space robots offer potential benefits for future space exploration [11]. Their use minimize
the risks associated with extra-vehicular activities (KVA's} and cnable astronauts to dedicate
their altention to primary rather than secondary activities, which can be delegated 1o a group
of robots. There 1s a drawback, however, to the use of robots aboard spacecralts, naely, the
nonholonomic nature of the combined manipulator and free-floating base system (henceforth
dencted Space Manipulator System, or SM for short) [5]. The nonholonomic characteristic
of SM’s prevent their widespread use in three ways: first, obtaining the dynamic model of an
SM is more complicate than obtaining the model of a conventional fixed-base manipulator.
Several different approaches have been proposed in the past, involving Lagrange’s equations,
Newion-Euler's method, Hamilton's equations, the use of barycenters, and the Virvnal Ma-
nipulator (VM) method (3], (4], {7], [9], [12]. Second, SM’s are subject not ouly to classical
kinematic singularities, but also to dynamic ones [7]. Third, experiments desigued to provide
researchers with an understanding of how a space robot behaves and affects ils base position
and orientation during motion usually requires complex equipment for gravity compensation
and free-flotation simulation [10], such as counterweights, buoyancy pools, Stewart platform

parallel mechanisms, or air tables.

The VM is a very useful tool not only for the development. of the dynamic equalions of the
SM, but also for the analysis of the robot’s workspace. The VM is a fixed-base robot whosc
first joint is a passive spherical one, representing the frec-floating nature of the SM’s hasc.
Its use reduces the number of dynamic equations by 3, because its definition incorporates the
constraints imposed by the principle of linear momentumn conservation. The VM, however,
is an idealized massless kinematic chain and can only be simulated in a computer program.
It cannot be mechanically built and therefore cannot be used as an experimental testhed
for space manipulators. Having noted this, we propose iu this paper the coucept of the
Dynamically Equivalent Manipulator, or DEM for short. The DEM goes hevond the VM
cancept, in that it represents the SM both kinematically and dynamically. The DEM is
a real fixed-base robot which can be physically built and experimentally used for studving
the dynamic behavior of the SM. The dynamics of the DEM under the action of any given
confrol law map identically to the dynamics of the SM; therefore, a deep understanding
of the behavior of a space robot and its base can be obtained through experiments with a
conventional fixed-base robot. Besides experimental evaluation, the DFEM can be used as a
tool for the development of the dynamic model of the SM. The dynamic equations of the

two systems are identical, but obtaining them via the DEM amounts to simply writing down



the equations of a [ixed-base robot. These are simple, very well understood. and several
computer programnis are availahle for this purpose.

[n this paper, we will develop the dynamic madels of the SM and those of a hixed-base
manipulator with a passive, spherical joint at the base. Comparing these mocels we obtain
the conditions for kinematic and dynamic equivalence between the DEM and the SM. This
cquivalence is valid not only for free-floating SM's, whose base attitude is not controlled,
but also for the case where the base attitude is actively controlled. We demonstrate this
fact by showing that the angular mormentum of both systems are identical. This is the same
as saying that the presence of a passive spherical joint represents the SM’s conservation of
angular momentum. We present a comprehensive simulation study showing the kinematic
and dynarnic equivalence between the SM and the DIEM, both under opeu-loop and closed-
loop control laws. Last, we investigate the effect of model uncertainty in the mapping from

the SM paramcters to the DEM omnes, and illustrate graphically such error mapping.

2 Nomenclature

The following is the nomenclature we will use throughout the paper. unless otherwise noted.
Additional symbols will be explained following the paragraphs where they first appear. We
will use left superscript numbers to indicate the frame a vector is referred to. A lack of such
superscripl indicates that the vector is written with respect to the coordinate [rame fxed on

the respective body.
R(k,a) = rotation matrix describing a rotation of & around axis k
R, = the rotation matrix that describes the coordinate frame j relative to frame ;

z, 2 = boldface letters represent vectors; the same letter, in non-boldface type, represents

the vector's magnitude
(0 = coordinate frame attached to the SM’s total center of mass

I.....,n+1 = coordinates frames respectively attached to the center of mass of the SM's

Ist, .... (rn + 1)-th hnk
Cy = 5M’s total center of mass
(. = center of mass of the SM’s i-th link
J; = joint connecting the SM's (¢ — 1}-th and ¢-th links

t; = the relative rotation of the SM’s (7 4 1)-1h link around joint J,44



(¢, 0.4) = Z-Y-Z Euler angles representing the orientation of the SM’s base (link 1)
p; = vector connecting Cp and C; written with respect to the incertial frame
p; = inertial linear velocity of C;

w; = angular velocity of €

0 —sing cosgsind qb cD
wp= |0 cos¢ singsing 1\ =847
1 0 cos f o "

u; = the axis of rotation of joint J; with respect to frame :
Du{ = Fi'nl.l1
v, = the unit vector in the direction from % to joint .J; with respect to frame |

v, = the unit vector in the direction from joint J, to the center of mass of the SAM's

{r + 1)-th link with respect lo frame n + 1
v; = the unit vector in the direction from joint J; to joiut J;,; with respect to frame !
Yv; = RYv;
R; = vector connecting C; to J;4
L; = vector connecling J; to (7;
m;, I; = mass and inertia tensor of the SM’s +-th link
M, = my+ ...+ mny; = SM’s total mass
1" = SM’s kinetic energy

L = SM’s Lagrangian

1,....(n+ 1) = coordinates frames respectively attached to the center of mass of the
DEM 1st, ..., (n + 1)}-th link
('] = center of mass of the DEM’s 4-th [ink

J; = joint connecting the DEM’s (i — 1)-th and -th links

f. = the relative rotation of the DEM’s i-th [ink around joint J;

(.8 ,4") = Z-Y-Z Euler angles representing the orientation of the DEM’s first joint
v, = inertial linear velocity of 7}

w: = angular velocity of
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u. = the axis of rotation of joint .J; with respect to frame ¢

ou; = Ru;
v, +1 = the unit vector in the direction [rom joint J, to the center of mass of the DFFM's

(12 + 1)-th link with respect to frame (n + 1y
v, = the unit vector in the direction from joint 4] 1o joint J;H with respect to frame i’
“vi= Riv;
W, = vector connecting J; to J,,

. ! )
l.; = vector connecting J; to C;

3

;. I. = mass and inertia tensor of the DEM’s 7-th link

t

£

T = DEM’s kinetic energy
I' = DEM’s Lagrangian

3 Dynamic model of a free-floating space manipulator
system

(Clonsider an n-link serial-chain rigid manipulator mounted on a free-floaling basc. as shown
in Figure 1. The combination of both the manipulator and its base forrus the so-called space
manipulator system, or SM, with n + 1 rigid bodies connected by n revolute joints. We will
denote the base of the SM as link 1, the links of the manipulator as links 2 throngh w4 1.
and the joint connecting links 7 — 1 and ¢ as joint J;. We assume that no external lorees
and torques act on the SM. Consequently, its center of mass () remains fixed i inertial
space and can be selected as the origin of the inertial coordinate frame (frame 0 in Figure
2}, Frames 1,..., and n + 1 are the coordinate frames attached to cach of the links” conter

ol mass.

The Lagrangian of a free-floating space manipulator system is equal fo its kinetic energy,
since it is assumed that the system does not have elastic components and is not acted upon
. . . . T 7 T
by gravitational forces. Adopting g = [ o B v # - M, ] =G s } as the

vector of generalized coordinates, Lagrange’s equation can be written as:



o (9T T _ :
—_ — - — = is ‘ — [ ..... :;- (\ } :I
T (aqé) g ) ? : n+ ,

where €2, is the generalized force corresponding to the generalized coordinate g;:

Qi = [)1 ?: 1.‘213,
Qi = Ti—3. 121,ﬂ+{{..

and 7; is the torque exerted on the #th joint,

To obtain an expressionu for the SM's kinetic encrgy we must find the expressions of the
linear and angular velocities of each link with respect to the inertial [rame, as a function of
the weneralized coordinates g. We use the Virtual Manipulator method [9] to obtain these
quantities, Let H; be the Virtual Manipulator whose end point is the conter of mass of the
th link. It s defined as:

H,(1} Yvi i)
Oy H (2
H!. — Hz(‘z) — V2H1( ) |”
H:(n +l} OVH+1H,'(?1+ 1)
where H;(j) = ||Hi(7}|} and each component of H; is defined as:
Ht(lj = Iy,
Hz(j) = r;+ l_»,;._ L <3<, o
I{(j) = r;+1— R, i=1 o
H{j) = r;+1, -R, - L,. 7> i,
witlh ‘
r; = R.iZTnk[ﬂ{{h [r}J
k=1
i—1
l; = LiZ'mk;’ﬂv’ﬂ. (6}
k=1
The translational velocity of the center of mass of the i-th link can be writlen as:
{.Jz' = [wlx WX e Wy X ]Hl
= | -Hi{l)x -H{2)x - —Hn+Ux |w
= J.(H; q). (7}

where [w; x| represents the 3 x 3 skew-symmetric matrix obtained from the elements of the

vector w;. The angular velocities of the SM’s links, w;, are stacked 1o form the vecior . the

o



angular velocity of the SM:

B O T ]T
e w1
(B, 0 0 0 1] & ]
B, "us 0 0 2
= Bs Uz ng 0 (}?
L Bs 0“2 Uu.} Uu'n+1 1L (1}:1+3
(B, 0 0 .- 0 17 o ]
Bs RgUQ 0 0 Qz
= Bs R(Q]UE Rgul’» T 0 dﬁ
L Bs ngz Rgu;3 R R?2+|un,+1 1L qri+3 J
= B,q. (8}
Then
i ]
q2
W, = [Bs Ru, Rlus - Ry, 0 - D} 43
| Gn+s |
= B.q. (%)
The total kinetic encrgy of the SM system is then
r+1 1 T 1 T T
T = 3 (ijiPs pit g% RLR] “"5)
t=1 =
1.p, .. |
= -¢"Ma, (10
2
where
n+1 T
M =3 (mdlJw + BLELRY B..). (1)
=1

Substitution of (10) into (1) vields the desired dynamic equations of the space manipulator

SY SO,



4 Dynamic model of a fixed-base manipulator with a
passive spherical joint

In this section we will develop the dynamic model of an {n + 1)-link fixed-base robot manip-
ulator whose first joint is a passive spherical one. In the next section we will compare this
model to the SM's obtlained previously Lo propose the equivalence beiween the DM and
the SM.

We attach the frames 1', ..., (n+1) to the center of mass of each link of the manipulator

r r ’ ' 4 3 }
(Figure 3). The vector of generalized coordinates is g = [ & & 4 8 -0 ] =
L i T . - . - . -
[ Gy "t Guga ] . Similarly to derivation for the SM, we can write
’ r ' I ' T
W= W Wy o wn+1]
[ B, 0 0 0 &
Ba Du2 0 0 (EQ
= | B %u; ‘u, 0 G
\_ B, "u; ‘u, “Wopr I Gogs
= B4, (12)
and
wi = B4 (13)

Let H; be the vector defined as

H,(1) v H;(1)
\ ie Oy Filee
H - H_z‘(.) _ vzf“fi(zi \‘ )
Hin+1) Ovi L Hin+1)

where H/(j) = |[H;(7}[ and the components of H; are given by

W, 1< < i,
Hi(j} =< Lo, j=1i (15]
00 0, J>i

The linear velocity of the center of mass of the Ul link is given by:

]

I + ! 1
v, = [wlx Wy X - un+1><]Hi

= [ -Hix —Hj2)x - —Hin+1)x |

1

= J.H,q)q. (16)

-1



We assume that the manipulator operates in the same environment as does the 5M, Le.
in the absence of gravity; consequently, the potential cnergy of the system is equal 1o zero

and the Lagrangian is equal to the kinetic energy:

[ ' ntl 1 P T o 1, s ¢
L‘ = T = Z (aﬂlivci U(:E '*‘ iwiTR?'Ii R?JTLL’,;)
i=1 -
_ Leryr -
= §q Mq. LT

So far we have obtained the expressions of the Lagrangian of the SM. and that of the
fixed-base manipulator with a passive, spherical joint. In the next seetion we study their

relationship and the conditions under which they are equivalent.

5 The DEM and its equivalence to the SM

5.1 Definition of Dynamically Equivalent Manipulator

Definition: The Dynamically Equivalent Manipulator {DEM for short) is a fixed-Irase ma-
nipulalor whose [irst joint is a passive spherical one, and whose kinematic and dynanic
models are identical to those of a given space manipulator system. The parameters of the

DEM satisfy the following algebraic equations:

Mg .
Tn»i' = o Tr:' ) = 2, I =+ ]._.
My ‘Z: mE
. k=1 k=1
IL = L. i=1,...,n+1,
Wl = I. ‘]‘q]
W, = r +1;, 1=2,....n+1
IL]. = U!
=1
3
L. = hi-f, L:, t=2,...,n+1.

The vectors W, represent the DEM link lengths and their inertial orientations with
respect to the SM's inertial frame; m; is the mass the DEM’s i-th link: I, € £ is the
inertia tensor the DEM’s i-th link; and 1 is the vector from the DEM’s +th joint to the

center of mass of the i-th link.

Remark 1: Asit will be seen in the sequence, the dynamic equivalence between the SM

and the DEM does not depend on the value of m;.

Remark 2: Not surprisingly, the DEM’s links’ length and orientation were chosen identi-
cal to those of the SM’s Virtual Manipulator. This choice will he clear in the next subsection

when we address the kinematic eqnivalence hetween the SM and the DEM.

8



Note that. without loss of gencrality, we assume that the center of mass of the SM’s /-th

link ( = 2,....n) lies on the line conuecting the SM’s ¢-th and (i + 1}-th joints.

5.2 Kinematic equivalence between the SM and the DEM

The DEM s shown in Figure 4. lts coordinate {rames are parallel to the corresponding frames
of the M. and its base coincides with the total center of mass of the SM. Consequently, the
DEM is geometrically identical to the end-effector Virtual Manipulator of the S¥ [9] and it
inherits all the nice properties of the Virtual Manipulater, namely:

1. The axis of the ith DEM jeint, “u;, is always parallel to the axis of the i-th SM joint.
;.
2. The displacement of each of the DEM’s joints during motion is identical to the dis-

o

placement of the corresponding SM joint.

3. The DEM end point will always coincide with the SM’s manipulator end eflector.

Mathematically, we can write:

q q.
w = w,
o _
[,R*' B fﬂ (19)
u = "u, '
I
OVZ‘ = GV{!
r
Jv,n+l = J‘l:!n-[-l'

5.3 Dynamic equivalence between the SM and the DEM

To establish the dynamic equivalence between the DEM and the SM, we will separately
study the coniributions of the linear and angular components of the kinetic energy to the
systems’ Lagrangian. From (19) and the fact that I, = I;, we can immediately conclude that
the angular components are identical. 1t rests then to consider the linear compuonent of the

kinetic energies, 7; and 71}.
We start by presenting the following lemma.

Lemma 1;
n+1

S mdh(j) =0, j=1...n+L
=1

Proof: Recall that the center of mass of the SM’s i-th link lies on the line supported by



the i-th and (¢ + 1)-th joints. Therefore, the vectors r;, 1, R,, and L;j are all collinear, and
the norm of H; in {4), denoted H.. is equal to the sum of the magnitudes of the imdividual
components in the summations. We can therelore write:

n+1

j—1
SoniH) = Somide b= Ry — L b+ R
=1 i=1

n+1
+ 2 midry + 1)
i=i+1
J =1
= Myr; — Zméﬁj + ML — Z nfs. {20
=1 i=1

Substituting (5) and (6] in the above equation we get the desired result.

The Lnear velocily of the center of mass of the SM's i-th link, 4;. can be written as:

;jt‘ = [l’.u‘1>< Wy X s Wy X ]Hz
- {(Wlx]ﬂ"l (w2x)%vg oo (wngr X )%Vag ]H:
= [(W1X)R?\’1 (wEX)Rng (wn+lx:>R2+1V11+1 ]Hi
= Ju1I. {21)
Then
T - T
P pi = [JuH]) S H;
'}thi
= [H;‘I-Ji;rl HzTJh.Tz H?’;{s} S H
S
3 e
- ZJthiH{TJ}fk-. ’23}

k=1
where Jy f; = HE-TJE;:, since Jui H; 1s a scalar. The linear component of tle SM’s kinetic
energy is then given by:

n-l-ll -
T = Y _gmubi
i=1"

n+1 3

1 ,
= EZm{ZJth{ HT};ﬂ
== k=1

13 T -
= 52 I Eid {23)
k=1
where
n—+1 »
Bi= 3 miH:H{ (24
=1

10



is a svmmetric matrix whose (7, &) element is given by:

n+1

Edg k) = D mHi(7)Hlh
i=1

= ZI?I{H{(‘}')(I';C + 4 — By — L)+ IT-‘,I‘H;L(]\)[H‘ — 1l — )

n+1
+ Z () (e + 43)
1=k+41
n+1 n41
= ZW% d e )+ e H G e + YD maHAG) (R + L), {25]
1=k+41
n+1
Because 3 m, H(j) = 0 (Lemma 1), we can simplify the above equation to:
i=1
, n+1 .
Ei(j, k) = medLl 0L+ > muIL(7) Ry + L) (26]
i=k41
When i > j, Hi(j) =r; + {; = Hapa{J). Therefore,
n+1 )
Eigk) = [mulet 30 milRe+ L)l Huia ) (271
1=k+1
n+1 7
Eilk. k) = muH (k) Ly + > miHi(k)( Ry + L)
ik 1
) n+1
= meLp(Hu(BY = Bi)+ >0 miH{(k)(Be + L)
i=k4+1
n+1 n+1
= —muLeBy + Y miH (R L+ Y miHa (k) R (28}
1=k i=hk+1

We now repeal the above steps for the DEM. The linear velocity of the center of mmass of

. . 4 .
the #th link, v_. can be written as:

v, o= [ X Wy WX }H;
= {(wlx)vl (2 )0V, ooe [ %)V ;HLI}H;
= [ RGV1 '\sz)Rz"z [.WnX]RnHV-n.H’ ]H}
- A%- [29)

Recall that the kinematic properties of the DEM are identical to those of the SM; con-
sequently, f, = J, and:

o Tl = WHT I H

i ci

11



B Ju H,
= [ & an ' ah ol Ih || el
Jin H.

4 f P A : |

= S ThaH I FL (30)

k=1

The DIEM's translational kinetic energy is expressed as

pu—_—
1, = ngiva Uy
41 3

= S
k=1

=~ =1

13 ;o .
= 52 B (31

“hk=1

where

' ntl v T
=1

is a symmetric matrix.

[rom {4} and {15) we can write:
H, (k) = Hoo(k), E=1,....n+L (33)

Therefore,

i1
Bk = [mda+ S miH ()] He (), (34)
i=k+1
, ) . n+1 , , 2
E(kk) = 'mk"ff.k‘i' Z g (H (k)
i=k+1
n+1
= mll 4+ 30 milHan (k) (35)
i=k+1

We now assume that £; = £}, or, equivalently, that T; = 7, and that the SM and the
DEM are dynamically identical. We will show that the definitions of the DEM parameters
as in (18] form a set of sufficient conditions for this assurmption to he true. The proof is
by induction from link n + 1 to link 2, with link 1 being treated as a special case. When

t—=n+4 1,
Ei, ) =Ein+1,n+1) = mpu (Hop (v + 1))° (36

12



Ef(} 3) = EI'(J -+ J—} — ]nn+1Hu+1 [,}I)LPH-I |iT'
Flii)=Em+ln+1y=m, 2 (38
Ejji) = Ef{g.n 1) = myilene Hop (5] (39)

4 - -7 - -
Since we assumed that £; = £, we compare the above expressions and obtain:

Tl

z my
k= f A
lemi1 = 54? Losts {10)
. Mom., -
ML, = e (41)
5oy
k=1
Now take 1 > & (k > 2), and assume that
i—1
> THE
ly = =—1L,, (12}
11-’13 ' ) )
; MIm; o
m; = o (1)
STy v g
k=1 k=1
For k& = 2 we can compare the (7, k) elements of E; and E; and write:
, n+1 n+1 ,
mpley = mply + Z m{ Ry + Ly) — Z m Hopr (k)
i=k+1 = k1
M, .
= miLy p L (14]
2 m;
=1
Also, for the k-th diagonal element we can write:
; n+1 7 n+l n+1 , 5
m 3, = —myLi. R+ ZméHnH(k)Lk + Z ey Hopy () R — Z e (Hy o (A))
=k i=k+1 i=k+1
k=1
2oy
= L'ﬁ“?—, i45]
I
1=1
Because masses are posilive quantities we can divide (43) by (44}, which results m:
k=1
2, mi
E = 1=1 L". |_1[:
A YA o

13



Substituting (46) back into {44} we obtain:

' '1!3 e PR
M, = 1 B . |.7'1I 1
Soomg Yoy
i=1 =1
Finally. for the special case & = 1, we can write £i(1,1) = Fi(1.1). or, equivalently,
m;.ff! =0 i18)

r - " . .
Because my # 0, it must be {,; = 0. Therefore the dynamic equivalence does not depend on

the value of m, and the mass of the DEM’s first link can be assigned arbitrarily.

At first sight it might be striking thal we can assign the value of m arbitrarily. ‘I'he
explanation is as follows. To obtain the 2(rn-+ 1] values m; and {; we compared the {identical]
matrices £ and E,. Because these matrices are symmetric, we only have to compare the
(rn+1)(r+ 2)/2 elements at and above the main diagonal. But the elements at any column.
excluding the ones at the diagonal, are not independent. In fact, every clemeul £(7. L),
J # k. is proportional to £;(1, k). Consequently, we only have to compare the 4 1 diagonal
elements and the n elements £5{1, &), for a total of 2rn + 1 Independent elements. Therefore.
when we equate E) to £, we end up with oue more unknown than equations. and we can sel

- . N L - .
this unknown (which is m,) arbitrarily.

Suminarizing, we showed that both the linear and angular components of the kinefic
energies of the 5M and DEM are identical. This is the same as showing that their Lagrangians
are identical, since both are rigid and operate in a zero-gravity environment. Because the
peneralized forces acting on both are assumed to be identical, we can conclude that the

dynamics of the SM and that of the DEM are the same.

5.4 Mapping a DEM to a SM

We now present the inverse mapping problem, i.e., the problem of computing the kinematic
and dynamic parameters of the SM given those of the DEM. Solving cquations {13) we

obtain;
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ALZ

m = i1
M+ Em’k
k=2 ,
A Zm, .
my = ntl L i1 Lor=2,0 0 n 4 1
(J\ﬂ—%—z-mfk) (_'Ut+ E m;)
k=t k=il
’
ﬁ-‘.ﬁm 1
Mgy = ___n}-l-_
n+ "Hl‘}'m‘n.q.l ; 1[] .'|
r . v oLed )
L = I i=1,....n—1,
n+1 f
A4 Z my
R, = (W, —1;)— =+ —, i=1,....n.
. : M
Rn.-l-] = (Wt - lci)u
n+1 .
M+ ka
L, = lc,-$, t=2,....n+ 1.

Note that the set of equations (49) does not uniquely determine the mass properties ol the

SM. The solution is unique, however, when either the SM’s total mass or the mass of each

link is specified.

6 Angular momentum

We have so far demonstrated that the proposed DEM is equivalent to a free-floating SM {i.e..
a SM whase attitude is not controlled). In this section we demonstrate that the 1M s
also a valid concept when the SM is free-flving, i.e., when the SM base attitude is controlled
via reaction wheels, This amounts to showing that the angular momentum of the DM s
identical to that of the SM.

Using the VM concept we can express the position of the center of mass of the SM's -th

link as:

Pi= R?Vl Rgvz e H?1+1Vn+1 H;
= GH,. (30}
We can thus express the velocity of the center of mass as:

aG aG 26 . . ;
ey, L .. 29y, ]qz Dy (

w1

M= dgy

The angular momentum of the SM is equal to:

n+41
Hi = 3 poxmup +° Liwy

i=1



1+1 fi+1 .
4 . le] 83 rr. A , a1y
_ (EC:Hixm;[;?Hi R L AR WY Bw,-)q
=1 i=
= Aq. (52)

Using {51}, we can express the 5M’s kinctic energy as:

n+1-l » J.
S”smeplpi + swl ROLRY
=1 2
= E'T’f (DTmiD + B RILRY BY) ¢
= 34 mald + B Ly u,'i)q
=1

= %qTMq. (53)
Let M, be a matrix formed by the first three rows of the inertia matrix M:
a1 ] T -
M, = | SoH: Z0H, SSH: | | 35H, BEH, - Zn, |
= nt1
+87 S RLRY BT, (54
i=1

At this point we invoke the following lemma, whose proof is deferred to the end of this

section:

Lemma 2:

T aG aG aG T -
B, -[GH;XJ = [ Tq, Hi JEHi —'?‘EHE J , {7h)
' , aG g7 AG gt o gt 4 .
B! (G %] = [ hl H; E{H‘ EEFHZ‘ } . (H6)
Using Lemma 2 we can rewrite M, as:
M,=B%A (57)

Following the same steps above, we can obtain the expressions for the DEM s ansular

momentum and kinetic energy:

I, = Aq (58]
/ 1_!-1" r, ! P B
T = 54°Mq (391

We additionally define M as the matrix formed by the first three rows of A7’ conse-

quiently:

M, =DBT4A

(60}
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Since we have shown that the SM and the DEM are kinematically and dyoamteally

cquivalent, we have that T = T M= M and B, = B;. Therelore, Af, = ;U:‘_._ A= 1" and

Iy =H,. (61)

In summary, we have shown that the angular momentum of the SM and of the DM
are identical. 'The identical momentum implies the identical dynamic behavior of thie two
systems under the action of the same external moment. This conclusion ensures that, when
the SM’s hase altitude is controlled via reaction wheels, the DEM concept is still valid.
In other words, the DEM is dynamically equivalent to the SM. with or without external

moments applied.

We now give the proof of Lemma 2. The explicit expression for B - (G, %] is:

Bl [GHx]

i U 0 1 0 —G;},Hz‘ (;2 Hg
= —81 (5] {1 Ggfl{ a —GlH{
L €182 S1857 O3 —GQIL‘ G1 H.;' a
[ —Gp H, G H; 0
= oG H; 510G H; s G Hy — e Gl |0 {62]
L 5132(}‘3h'2' — C;;GQHJ' —81.5263H5 + CQG] H,’ C]S?GQII,’ - .5152(1’] f?f.

T
where s; stands for sin(g;), ¢ for cos{g;), and G = | &) (G2 G3

To compute an explicit expression for the right-hand-side of the equality tn Lenumna 2. we

first compute:

D Frep
Ry = H(z,q )y, ¢)F(z, q5) (63)
C1C303 — 8183 —(1Ca83 — 51C3 (42
= 810203 + €183 — 8083 + €103 8182 |, If[‘.l 1 :l
— &2y SaSy Ca
and
. [ —Si6905 — €183 S 0283 — €163 —S( S
dR{B 16243 123 14223 163 122
7 = 10303 — 5153 — {83 — &103 Ci1 87
a i 0 0 0
[o -1 0
= |1 0 0|r, (65
0 0 90
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\ RG [ —O18a0 £195285 €103
a ! = —C1 8920y 18283 €102
EE L —acy CpE3 —&3
ﬂ 0 ]
| —C —5 D
S50 —CyCp8y — S163  —O162C3 + s183 ()
1
3 = —581C283 + €103 —S&1000y — 83 O
43 | HalSa Sg€ 0
0 —C3z 81589
= Cq ] —1 89 R? l[)"—"
| — 512 182 U

With the above equalities we can write:

CiCala — 8183 —C1C83 — S103 (182

= 810903 + €183 —81Ce83 + €103 (852 . (O3]
—Sala Sa8g 2
and
9RO [ —s810203 — €183 &1€283 — €103 —&189
_(arﬁ_l- = C1CaC3 — &183 —{C1Ca8y — 5107 €159
N i 0 0 0
[0 -1 07
= |1 0 0|R) Rv Rlva - R v, |IL
0 0 0
0 -1 0]
= 10 0|GH,
0 0 0]
[ Gy H;
= CGhH; . {69)
0
Analogously, it is straightforward to obtain
?Hé = s 0 . {7
4z | *S]C:QHE—C‘.[G]H',
le [ SngGgHz' — CEGQH{
E—H{ = —epsulinHy + eol@ H; | {71
@ i CISQG‘zHi - 5152(1‘1 Hg




From {62}, {69}, (70), and {71) we obtain {55) as the desired result. Analogous steps can
he used to establish (56).

The reader who is familiar with the current literature on underactuated manipulators [1].
[2]. [6] might be puzzled by the above result. After all, the conservation of angular niomentim
of the SM is a constraint involving only velocities, while manipulators with passive joints
are systems whose constraints involve velocities and accelerations [6]. The explanation 1= the
following: the dynamic equations of a rabot manipulator do not depend on the angle of the
first joint [8]; in other words, the first joint is always cyclic. On the other hand, inthe absence
of gravity, the acceleration constraints imposed on a fixed-base manipulatar by a cyclic joiut
are integrahle Lo velocity constraints [6]. Consequently, the acceleration constraiuts inposed
by the spherical joint of the DEM can be integrated to velocity constraints, which furn out
to be identical to the SM’s conservation of angular momentum. With this remark we hope to
hridge the gap, up lo now unexplored, between the rescarch on underactuated mauipulators
and space manipulator systems. Hopefully, control techniques developed for ane category

will be useful for the other and vice versa.

7 Effect of model uncertainty

Since the DEM parameters are computed for a given SM model, uncertainties in the later
will naturally produce errors in the former. In this section, we study how the modeling
error affects the mapping between the two systems., and the degree to which parameter

uncertainty on each of the SM’s links reflects as errors on each of the DEM’s links.

From the definition of the DEM (18}, we know whal SM parameters affect what DEM
pararneters, and we can quantitatively compute the error mapping as either the ratio hetween
the absolute or relative errors of the SM parameters and those of the DIEM. Let v, represent
any geomelric or dynamic parameter of the DEM’s i-th link, and dy; its corresponding
uncertainty. Such parameter is a function of one more of the SM's parameters; for example.

- - - . .
m, is a function of all m;, or, of the vector m. We will represent the error mapping by

relations of the form
dm
d1 s
dy = F JR {
JdL

with the matrix I having appropriate subscripts to distinguish different cases. We will use

~T
S

[ to represeni the matrix mapping the relative errors from the SM parameters to the DEM

OIes.
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We start with the simplest of the mappings from the SM parameters to the DIXM ones,

. - . . '
namely, the computation of the DEM s inertia tensors. I'rom (18) onc can see that [, depends

only on the value of f;, and that:

Fir = fnstx(nan)
F:f[ — jl—(-r1-¢-1]><('r1+1]

I

ar L

{(73)
(71

where Fy(i.7) = (;I I?'&q(z'._j} = W and iy 1yxinsn) represents the {n 4+ 1) > {n + 1]
) 2

identity matrix.

The error mapping for the DEM’s links masses is more complex, for uncertainties on the

value of m:; are a consequence of uncertainties on the values of all m;, 2 = L....,n+ 1. When
J >,
5?11; ) Mim; _
= 2- ] . (73]
dhn; = i
Y Mgy Iy
k=1 k=l
When 7 =1,
5’m drn;
3
Mom; M, s
= 25 — (763
Z: g Z My 5
k=1

Finally, when j < 1,

ﬂil
o 2 IR
O M, mt My k=i+1 P
- = — - - - (7
a.m , i—1 [ 1
J Z mkz me VS ome Y my 3 omy
b=l k=1 A=1
The ahove equalities can be written in malrix form as:
dm = Fy,dm (T3)

[
L. Iz
where fyn(i,)) = 9::

The matrix Fy,, has following properties:

Property 1: The diagonal and upper triangular elements are positive; the lower {rian-

gular elements are negative, and

Fam(l,j) = 0,
de(i J) = -f"_{;-n(z-\l_]-} < ﬂ._,
Fd-m i J) = de(f,f-l-l) > 0,
de ? ?) > de(ZT—F]) > 0,
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Property 2: If
K= <2

i =

" (801
m; < (% — 2) ?f L. ;
E=1
then

i.e., the DEM's ¢-th link mass value is affected more strongly by errors on the SMs (v — [)-th

link than by errors on the SM’s (i 4+ 1)-th link. Otherwise,

| Fam(d,1 = 1)]] > [[Famli, i+ D). (82)
Property 3: If
:
31,
my > = M,, .
k§1 ’ 4t [{‘5.5]
mlEi‘%L‘.
then
| Fam (328 = DI < [[Fim (22 4 T} (31)
The above analysis can be repeated for the ratio of the relative errors if we compute the
. P s\ m
elements of £y, where Fg,(i,7) = (a—:;j) %:1 and
. - o
f’rim{?q_}] = JT";:L-. 73 >
=1
R . 2 " ,
B o m — - .
de(?'ﬁj,] — El'i‘k:'l _:1+ﬂlz' M il . 7 =1
=t =t [85]
n+1
2 E my
" Lo am Mg k=1t : '
Fam(2,7) = 5S¢ | = —t == | j<A
z ) E my Z mk
k=1 k=1 F=1

Note that if 3 my > 2, then Fy, (1.4} > 1.
k=1
lincertainties on Lthe location of the center of mass of the DIEM links as a function of the
errors on the SM’'s masses and link geometry can be written as:

dm } : (36

dl. = [ oo Lz } [ L



Qo and Fypfi,5) =

where Fyu (1,7 = ey

AL,

arc given by:

0,

n+1l

z my

“
YR L:,
=1
Z my
k=1

T Af ,2

Farm(1,7)

Farm(i,7)

fl‘u‘!Cm(?—:j) L*l'.*

and

Fa (i, j)

Fa (i, J) A,

As for the relative errors we can compute

CIPIR LT A R %‘)E‘L
(TT) o Bl g) = (BL; I

Fin(li) = 0.
n+1
A m; E Mk
mcm(?f.?_}l) = ,;::: :
Ay E my
R k=1
c o - ™m
ﬂ{-?n(_zsj) = _JTfi-’

and

Fiaig) = 1.

2o The elements of the error mapping matrix £

J=12,. ..n+1
7 <, (87)
72t
J#F
(85)

7=1,2, n+4 1.
J<u (89)
J 2z

J#E (90)

Finally, uncertainties on the value of the DEM links’ length is due to errors on both the

SM’s mass and its geometry:

dW = [ Fowm Fawr FdWH] dL |,

. . : e AW, S ab,
wliere th,.1."m(3,_j'_:l = F}L’ Fg:ﬂfj':(z_,j) = E:-‘ Fawe

[ S]
]

dm
{a1)
IR

HI¥;
R AN d

(2.7) =



my
Fawm(1.1) = %;TRD
2 .
Fawml(l,g) = _k=.\l—ff R, 7> 1,
i—1 w1l
- - - Emk k—z_:*_]mk |(j”l
Fave(2.2) = =57 L+ =R,
nt1 ! npl
Z.mk E ™M
Fawm(i 7} = kf\}f L; + h',tf} R;, J <.
1—1 1
Fowm(i 7)) = — 13 L:— 7 R, >
Fawnlt.7) = 0, 37
Z L ([)'}}
Favalii) = S, =i,
Faowr = Fuer- (94

The above analysis can be repeated for the ratio of the relative errors by computing
- - -~ - o aw . - P '{1 5 ..
the elements of .., Fwr, fwr, where F. (i, 7) = (—1L) ?—;L Fiwi(i g) = (%) T

g,
P oy AWy Ry
Fuwnli g = (53) -

8 Case study

To illustrate the equivalence between the SM and its correspouding DEM, we sclected a
planar 5M equipped wilh a 2-link rotary manipulator . The corresponding DEM is a lixed-
base 3-link planar rotary manipulator whose first joint is passive. LThe cquivalence hetween
the SM and the DEM will be shown in two different ways. First, we will apply the same open-
loop torque to the SM’s manipulator and to joints 2 and 3 of the DEM. With this experiment
we intend to demonstrate that the kinematic behavior {e.g. the location of the end-elfector
in inertial space) and the dynamic behavior (e.g. the joint angles and basc rotation) of hoth
systemns are identical. Second, we will perform a closed-loop control experiment in joint
space, driving both SM’s actuators and the DEM’s joiuts 2 and 3 fo a specified seti-point.
Witll this experiment we intend to demonstrate that, when under the action of the same

controller with the same control gaius, the SM and DEM behave identically.



8.1 Dynamic modeling

Table | presents the kinematic and dynamic parameters selected for the SM. Table 2 presents

the corresponding parameters of the DEM.

Table 1: Geometric and dynamic parameters of the 2-link SM.

LINK | L;(m) | I.(m) | mkyg) | Likg-m?)
1 - 0.5 4 (1.4
2 0.5 0.5 1 0.1
3 0.5 0.5 1 0.1

Table 2: Geometric and dynamic parameters of the 3-link DEM.

LINK | Wi(m) | lci(m) | mi(kg) | kg - m?)
1 0.333 0.0 4 0.4
2 0.750 | 0.333 1.8 0.1
3 0.917 { 0.417 1.2 0.1

The SM dynamic equations are expressed as:

0
Ma+hiq,q) =7 |- {95
T
where M and % are detailed in Appendix A.
The DEM dynamic equations are given by:
0
My +hiq,q)r=1| 7 |, (96)
T3

where Af and &' detailed in Appendix B.

8.2 Open-loop control experiment

We applied sinusoidal torques with amplitude 0.5 Nm and period 1 s to hoth SM's actuators
and the DEM’s joints 2 and 3 (see Figure 5). Figures 6 and 7 present the results. showing
that (1) the joint angles trajectories of both systems (including the rotation of the base)
are identical; {ii) the trajectories of both end-effectors in inertial space are identical. We
measured the maximum error between these quantitics, and verified that: (1) the maxinnm

deviation hetween ¢ and ¢, i = 1, 2.3 was equal to 1.7 seconds of arc {or 4.75 x 10~ degrees);
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(1] the maximum deviation between the inertial location of the SM and DEM end-effectors
was (1,016 min. These errors are due to the fact that the dimensions of links 1 and 3 of the
DEM are recnrring decimals, which are represented in truncated form iuside the computer
program. This experiment confirms the kinematic and dyvnamic equivalence between the SM

and the DEM.

8.3 Closed-loop control experiment

In this experiment we control the angles of both joints of the SM’s manipulator {0 a constaul
T
sel-point. Let fa3 = [ g: Q3 ] ; factoring out ¢ in the first line of (93) and substituting

the result in the second and third lines, we obtain the open-loop relationship hetween the

driving torques and the controlled joint angles:
e M(2,2) — k& M(1,2) M(2,3) — ki M(1,3) boo v L2)y = bl
™ M(3,2) — ko M(1,2) M(3.3) — kM1, | RI3Y — deahi )
) )

= M0y + b, (97
where &) = M{1, 1)/ M{(2,1), ks = M{1,1)/M(3.1).

2,
3.

[ SSR p]

We selected a variable structure controller (VSC) to control the SM’s actuators. To this

end we define the 2-dimensional sliding surface
5 = Dy + Oy, (93)

where [' 1s a diagonal matrix with positive entries, and Z represents the error on the variable =
hetween its current value and its desired value 24, The following is the reference acceleration
of the actluators that guarantee that the state space trajectories converge to the sliding

surface s = () and then to the origin of the state space:
0" = [y + 6];3 + Psgn(s), (99)

where P is a diagonal matrix with positive entries, The control torque is obtained by
substituting (99} in (97). To eliminate the chattering introduced by the term sgnis) in (99)
we add a boundary layer around the sliding surface s = 0, L.e., we substitute sgnis) by the
saturation function set(s) defined by:

. sgnfa), if r>s; o
Sat(r)={ gr;(?)‘ ;f::: (100)

e

The control gains were sclected as P = diag(10,10). ' = diag(5,5), ¢ = diag(0.3.0.3).

The torques computed for the conirol of the SM were applied to both the SM and the DEM
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(sce Figure 8). The desired joint angles were chosen as 85, = [ 30°  —30° ], Figure 9 shows
the resulting joint trajectories, including the rotation of the base. As we can see, the SM and
the DEM behave identically when under the action of the same controller. The maximum
deviation between the joint angles is equal lo 0.29 seconds of arc (8.1 x 107" degrees) and
the maximum deviation between the end-eflector locations is 0.0028 mm. This experiment
demonstrates that it is possible to simulate the behavior of a complex frec-floating space
manipulator system through the control of a simple, easy-to-assemble fixed-base manipulator

wilh a passive joint at the base.

8.4 FError mapping

We close this case study analyzing the influence of modeling errors on the SM parameters ou
the mass, length, and location of the center of mass of the DEM’s second link {(naturally, the
analysis can be repeated for the other 2 links). We adopted absolute errors with magunitude

varying from 0 to 0.1 (Kg or m), and relative errors with magnitude varying from 0 to 10

Figure 10 shows the absolute error on m, given absolute errors on my,i = 1,2,3. As
expected, from the slopes of the error mapping surfaces one can sce that dm; is much more
influenced by errors in m; than by errors in mj {recall that F4,,(2,2) > F4,.(2,3) according to
Property 1). Additionally, one can see that d‘rr;',f2 is inversely proportional to drm, a property
that agrees with the fact that Fj,,(2,1) < 0. Identical conclusions can be drawn from Figure

. ' ' . . . .
11. where we show the relative error dm,/m, for given relative errors drn;fm;, i = 1,2,3.

Figure 12 shows the absolute error on the location of the center of mass of link 2, .5, for
given absolute errors in the SM masses and L, (recall that Fy.r(i,7) = 0fori # 7). That
figure consists of 9 surfaces divided into groups, the lowermost corresponding to df, = 0.1
m, the middle one to df.; = 0 m, and the uppermost to df.; = —0.10 m. Within cach group
dm varies (from top to bottom) {rom 0.1 Kg to -0.1 Kg. One can see that the influence ol the
dr;, 1 = 1,2,3 on dl.z 1s very small when compared to the influence of dL,;. The same fact
can be seen on Figure 13, where we show the absolute error on dW; given absolute errors on
the SM masses and geometry. We can conclude that, for this particular space manipulator
syslem, errors on the masses of each of the DEM links are mostly due to errors on the masses
of the corresponding SM link; and that errors on the DEM kinematic parameters {/.; and

W;} are mostly due to errors on the SM kinematic parameters (2, and L;).

The foregoing analysis will be of utmost importance when one designs a fixed-base ma-
nipulator to represent a given SM. If the designer knows the uncertainty bounds on the DEM

parameters, (s]he can {ind out the corresponding errors on the SM parameters using a set
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of curves like the ones shown in Figures 10-13. With these, (sjhe can decide whether or not.
the SM modeling errors are acceptable and cither redesign the DEM or make use of robust

controllers to cope with the uncertainties.

Iinally, the error mapping analysis can also be used to guide the design of the DEM.
For example, from Appendix B, one can see that i, appears only in A (1,1) and not in the
other elements of M'; and it is multiplied by the mass of the DEM’s first link. If the value
{.1 has a substantial uncertainty, the equivalence between the SM and the DEM may still be
kept if one designs the DEM’s first link as light as possible. {Note that ils inertia should be
equal to that of the SM’s first link, the base).

9 Conclusion

We propose in this paper the novel concept of the DEM, the Dynamically Equivalent Ma-
nipulator. The DIEM hLas several advantages: (1) it is real in nature and can be built from
off-the-shelf components for realistic experiments in the laboratory. The concept is diflerent
from the VM, which is an idealized massless kinematic chain; (2] The DEM can be used
as a tool for dynamic modeling of space manipulators, based on Lagrangian dynamics or
any olher formulation used for fixed-base, conventional manipulators; (3} control methods
developed for fixed-base manipulators can be easily examined for feasibility of use in space
manipulator systems through the DEM; (4) the DEM concept can be extended to represent
attitude-controlled SM’s; in this case the corresponding DEM is a fixed-base mauipulator
whose first joint is an actively controlled spherical one; {(5) The DEM concept bridges the
gap between space manipulator systems and fixed-base underactuated manipulators; it al-

lows control methods developed for the former to be applied to the later and vice-versa.
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Appendix A: Dynamic model of a 2-link space manip-

ulator

The elements of the inertia matrix of the free-floating SM equipped with a 2-link wanipulator
are given hy:

I‘I(S, 3) == tgc:: + !.?n

M(2,3) = M(3,2) = M(3,3) + Spcts.
M({1.3) = M(3,1)=M(2,3) + S,ccon, ALY
M(2,2) = 31(2 3)+b§+[g+~mn‘>3 VY
M(1,2) = M(2.1)= )+ Sapca + Spetas,
Ml = [1,2)4—5 +fl+‘§'a5cg+‘§'
where
Soz = ﬁml(mg -+ my) R,
S = ﬁ[ml(mg + ma) L2 + () + ma a2 + 2myms Ly Ry,
See = sy (ma 4 ma)msls, e
Sap = .:f my (e + ms)ha + ma Ry Ry, L=
S, = \f Lmyma Ry La,
She = gplmule + (mu 4+ my)Relmala.
The non-inertial torques are given by:
3 3
h(z] = Z E h—ijkijj(jk-. t=1,2.3. (A1)
i=1k=1
where
hin = 0,
Fuze = —Sass — Sar:SZS):
hizs = —Siesa+ Sics0s),
hiig + haa = 2h2,
hus +  has = 2hygs,
hugs +  hiza = 2hyaa,
hop = _}3'12'21
hae = 0,
hoza = —Seesa. :
hata + hgpy =0, (A]
hais +  homi = 2has;,
hags +  hasa = 2hana,
h-.?.u — —h-l;a:s,
fl-azz = —hyas,
Ry = 0,
hary + h321 = 2hsy;,
hata +  hgm =0,
haaa + hazz = 0.



Appendix B: Dynamic model of a 3-link DEM

T'he elements of the inertia matrix of the 3-link DEM are giveu by:

mllcl 4+ I + ‘mz(Vt 2412+ oW x{cg(‘z) 4+ I
Lrng (W + Wi+ 12, + zu TWac, + 2Wolaes + 2W Lac) + Fi
msz.z + I + (ﬂ 2 + 2+ 2[-‘1-’5!936;) + Ié,
Mgy + 1,;.,
M2,1) (B
m, (1% + Wila r’z] + I ; +my (W24 + W, H-"gc;
F2Wolacy + Wilaes) + 1o,
M'(3, Limy (1%, + Walaes + Wilacy) + 1,

M'(3,20m (1%, + Walacy) + L,

The non-inertial torques are given by:

where

a3
} Z Zh;jkqjqk = 1,23 (Bz)
i=1k=1

I'I1J111 = 0,
h'l?? = “m;wyl leasy — ma(W) I‘"Vz-S; + W fc33r23 Js
hyzs = _771:‘3“‘{';2&38; + Wilasy,),
hyra h':121 = 2h’:1221
}3':113 + h}Sl = Qh}331
11}23 + }?'13‘,2 = 2hy5,
'{1,211 = —hig;
hy = 0,
hogs = —mWalass, N

: ’ i B%l
';1?12 + h??l =0, ’ .
hrzla + h?;ﬂ = 21’1.?33?
h.?23 + hggg = 2}32331
h?H = _}?'1133?
h;ﬂ? = —hyaa:
h;aa = 0,
h?d? + hle = 2h322&
h';‘lﬂ + h331 =0,
h'3’23 + hsaz = 0.
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Figure 1: The space manipulator system (SM), composed of a robot manipulator mounted
on a free-floating base.
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Figure 2: Coordinate frames attached to the the SM’s links.
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Figure 3: Fixed-base robot manipulator with a passive spherical joint at the base.
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Figure 4: The SM and its corresponding DEM.
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Figure 5: Open-loop control experiment block diagram.
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Figure 6: SM and DEM joint angles when a sinusoidal open-loop torque is applied to their
actuators.
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Figure 7: SM and DEM end-effector positions when a sinusoidal open-loop torque is applied
to their actuators.
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Figure 8: Closed-loop control experiment block diagram.
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Figure 9: SM and DEM closed-loop joint angles.

Figure 10: Absolute error mapping (in Kg) from the masses of the SM links to the mass of
the DEM second link.
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Figure 11: Relative error mapping (in %) from the masses of the SM links to the mass of the
DEM second link.
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Figure 12: Absolute error mapping (in m) from the masses and geometry of the SM links to
the location of the center of mass of the DEM second link.
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Figure 13: Absolute error mapping (in m) from the masses and geometry of the SM links to

the length of the DEM second link.



