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i x  

Abstract 
In this paper, we discuss the problem of how a free-floating space manipulator can be 

mapped to a conventional, fixed-base manipulator which preserves both its dynamic and 
kinematic properties. This manipulator is called dynamically equivalent manipulator 

(DEM). The DEM concept not only allows us to model a free-floating space manipulator 
system with simple, well-understood methods, but also can be physically built using a con- 

ventional manipulator system to experimentally study the dynamic performance and task 
execution of a space manipulator system, without having to resort to complicated experi- 

mental set-ups to simulate the space environment. This paper presents the theoretical dcuel- 

opment of the DEM concept, demonstrates the dynamic and kinematic equivalence, 

discusses the effect of model uncertainty with respect to the mapping, and prescnts simula- 
tion results to illustrate the equivalence in both open-loop and close-loop controls. 



1 Introduction 

Space rohots offer pokntial  benefits for fiiture space exploralion 1111. Tlirir u c r  uiinimizr 
the risks associated with extra-vehicular activities (EL'A'sj and cnablc astronauts to drdic.at.c 
lheir attent,ion to primary rather t ,hm secondary activitics, which can he drlegat,ctl l o  a g r o ~ ~ p  
of rohot,s. 'rhcre is a drawback: however. to the use of robots aboard spacecrah. naiilrly. ilir 
nonholononiic na!urc of tlie combined manipulator and free-floating hase systrrn (heric.chort~l~ 

denoted Space Manipulator Syst,eml or S M  for short) 151. The noiiholonorriic rliarac:trrisi~ir. 
of SM's prcvent their widespread iise in three ways: first, obtaining the dyrianiic iiintlcl of an 

S M  is more complicate than obtaining the model or a conventional fixed-haw maiiipiila.lrir. 
Sevcral different. approaches have been proposed in the past. involving Lagrauge's wlmtioris. 

Xcwtoii-Euler's method. Hamilton's equations, the use of hargcenters. and tlir Virtiial M:i,- 
nipulat,or ( V h l )  mctliod (31- [d], (71, 191: [12]. Second, SM's arc subject not only 1,n (hssical  

kinematic singularities, but also to dynamic ones [TI. Third, experimcntk desigiied to  providr. 

researchers wit,li an understanding of how a space robot. beha,lrs and aflects iis lmsc l x ~ ~ i t ~ i o n  

arid orieiit,atiun during motion usually requires complex equipment fov grai-ity- ronipwsatioii 
arid free-flotation sirnulation [lo], such as counterweights, buoyancy pools, St.cwa,rt plat,for.rn 

parallel mechanisms, or air tables 

The VM is a very useful tool not only for t h e  devclopment,of the dynamic eqiiadioiis of thr 
SM. hiit, a,lso for the analysis of ihe robot's ruorkspa.ce. The VM is a fiserl-basr rolmt. wliosc 

first joint. is a passive spherical one, representing the freefloating natiirr of the SM's I)a,w. 

Its use rerhiccs the number of dynamic cquations by 3 .  because its definition incorporates the, 

coristra.ints imposed by t,hc principle of linear momentum conservation. Tlic l!M. IIOLI.C\'<T. 
is a n  idealized massless kinemat,ic c h i n  and can only he simulated in a r.oniput.cr p r o g ~ i ~ i i .  

I t  cannot be rnec.hariically built, and t,hprefore cannot. lse used as a11 experimcnt,a.l tci t , l icr l  

for space manipulators. Having n o k d  t,his, we propose i n  this paper thr coiicept of  t h r  
Dl;namically Equivalent Manipulator, or DEM for short. The DEM goes beyoncl !,lit. L'M 
concept, in that  i t  represents the S M  both kinematically and dynamically. 'YIP 1)KX.l is 

a real fisecl-ha.se robot which can be physically built and experimentally used for ?!iid!iiig 

the dynamic behavior of &he SM. The dymmics of the DEM under thc a.ction or any $ w i i  

control law map identically to tlie dynamics of t h e  SZI; therefore, a dre l i  iind?rst.a,iidiiig 

of lhe behavior of a space robot, and its base can be oht,ained 111rough expcriiiiriit,c \+;it11 a 

conveiit,ional fixed-ba.se robot. Besides experiIiiental evaluation: the DEM ('a11 I)<' u i rd  as a. 

tool for t.he development~ of the dynamic model of the Ski. The dynamic eqriaticriis of tlir 

two systems are identica.1, but obt,aining them via t h t  DEM amounts t u  simply writ,iiig ~ V I I  

1 



the  equat,ions of a fixed-base robot. 

coIripint,cr progra,nis a,rc availahle for t.his purpose. 

These arc  simple, very well undcrst~oud. a n r l  wvi~c ;d  

In this pa.per. w e  will  de\:elop the dynamic models of thc S M  a,nd t.liow of a Iix\.c+i)rlsc 

manipulat,or wi th  a passivc, spherical joint a t  rhe basc. ConipuiIig thcsc Iriotlcls IW i h i a i i i  

the ronditionc for kincmat.ic and dynamic equivalence between thc LIEM and  t,lir Sh l .  'l'liis 
cquivalence is valid not only for free-floating Slll's. whose basc a l t i tudr  is iiot m n ~ , ~ d l c , l .  

but also for the  case where the base attitude is actively cont,rolled. \,\:e ileiiionstriiir iliis 

fa.ct by showing that t,he angular morneIit.uin of both syst,eIris arc identical. 'l'his is 1 Ihc s a i i ~  

as saying t,hat, the presence of a pa,ssive spherical joint represent,s the SM's conscnxtiim of 
angular niunient,um. IVc present a comprehensive siniulation sludy showing tlic I<iiic-matic. 
aiid dynamic equivalence between the SM and the DE.M, both under ope~i-loop m i l  closcd- 

lool1 control laws. La,st, we investigate t,he effect. of model iincerta,int,y in t.he n ia .ppip  fvoiii 

the S1.I paramct,ers to  t,he DEM ones: and illust,rate graphically such error ma.pping. 

2 Nomenclature 

'I'he following is thc nomenclature wc will use t,hroughoiit t.he paper: d e s s  otlierwisc i ~ o t c d .  

Additional symbols d l  be explained following the paragraphs whcre they first, appmr.  WP 
will use left superscript numbers to indicate t,he frame a vector is referred ta. A la,cli of srrch 

superscript indicates that the vector is written with rrspect to the coordiiiat,e hamr fixid o i i  

the rcspectivc body. 

R ( k , n )  = rotat,ion niat.rix describing a rotation of a around axis k 

R( = the rotat,ion mat,rix that describes the coordinate frame j rrlat.ive to  htnr i 

zI  z = lmldfact. lett,crs represent vectors; the sainc letter: in nori-l>olrlface typp ,  rrpiwsenis 

t. h e  vector's magn i t,ude 

0 = coordinate frame at,tached to  t,he SM's t.otal cent,er of mass 

1:. . . , n + 1 = coordinaks frames respectively attachcd t,o the cent,er of ina,ss of t,hr SV's  
Isl,  . . .: (n. + 1)-t.h link 

Co = SM's total center of I I ~ S S  

c.'? = center of mass of the S3f;l's 2-th link 

,I, = joint, connecting the SM's ( i  - 1)-th m d  i-t,h links 

H ;  = the rclat,ive rotation of the SM's ( i  + l)- lh link around joint .I,+, 

n 



(4, O,:’.) = 2-I-Z Eiiler aiigles represent,iiig h e  orieritat,ion of the SM.l‘ bas(, I l i i i l c  1 )  

pi = \:ec.tor connecting Co arid C; writ,trn with. r-tspfcf t o  l h t  incvt inl  frurrli 

fj, = inertial linea,r velocity of C; 

st = angular velocity of Ci 

A’l = 0 cos& si r idsine I a 1 = B, [ 1 
u; = the  axis of rot,ation of joint .I; with respect. to frame i 

0 - s in+ cos6sinB 

[ I  0 cos B p ‘C‘ 

nu; = RPu; 

v, = the unit vector i n  the d i r e d o n  from C.T1 tu joint , I 2  with resprct 1.0 fra,in. I 

v,L+l = t,he unit vect,or in t,he diroc.t,ioii from joint J ,  to  the centrr of imss oC 1,Iii.  S U ’ q  

(17. + 1) - th  lid< wit,h respect to frame n + 1 

v; = t.he unit vector in the direct,ion from joint Ji to  joiut Ji+l with rrspeci to f r a i i i ~  i 

o v .  - pvi 
I -  1 

R; = vcct,or connecting C; t,o J;+j 

L, = I w t o r  connecting J, to Ci 

T J I . ; ,  I; = mass and inertia tcnsor of t,he SM’s i-t,h link 

Mr = m l  + . . . + nr,+l = SM‘s total mass 

7 ’  = SWs kinetic cnergy 

L = SM’s L,agrangiaii 

l ’ ,  . . . . (71 + 1)‘ = coordimtes frames respect,ivelp attached to the c,ent.rr of nia+ of t,lw 

1)EM ls t ,  . . ., ( n  + 1)-th link 

CZ’ = center of mass of the DEk1.s 2-th link 

.I: =joint  coiinec.t,ing the DEbi’s ( i  - l ) - th  and i-th links 

0: = t,he relat,ive rotation of t,he DEM’5 i-th link aroiind joint ./( 

(4’: 0’: + ’ )  = Z-I’-Z Ruler angles representing the orient.atioii of t ,~ le  DEM’S [irsi ,joitit 

if,‘., = inertial h i e a r  veIocit,y of C,: 

.J: = angular veIucit,y of c~! 

3 



[ 
flu: = p,u:  

- s r "  cost 'sin8'  

-.I = o cos (6 sinQ'sin8' 
r.os 0' 

"1 = the axis of rotation of joint with re-jpect t o  hame i '  

v: .+~ = the unit vector in the direction from joint J:, to t,he cmt,er of mass of t,lrr Dllhl ' s  
( J I  + 1 j-th l ink with rcspect t o  frame (n + 1)' 

vi = the unit vector in the direction from joint Jt' bo joint, .J>:+l with r e s p ~ r i  to fi-iimc i' 

"7,: = R?,Vl. 

wi = vector connecting J: t o  J,:+~ 

I,; = vector connec.t,ing J,' to C'; 
1 1 L i .  I, = Inass and inert,ia tensor of the DKM's i-th linli 

T' = DEM's kinetic energy 

f,' = DEM's Lagrangian 

I ,  

3 Dynamic model of a free-floating space manipulator 
system 

C h s i d e r  an .?!-link serial-chain rigid manipulator mounted on a, frec-floa.tiiig Ixw. a s  sI~ic)wii 

i n  Figure 1. The combinat,ion of both t,he ma,nipula.tor and its has? forms t h ~  so-c-all(d s p n u  

maniplotor  sysfrm, or SM, wit,li 11. + 1 rigid bodies connrcted by 77. revolute joiuts. \ATP will 
rlcnot,r the hase of thc SlLI as link 1: the links of the nia~iipulator as links 2 Ihrol~gli I I  + I .  
arid the joint connccting links i - 1 and i as joint, J;.  Wr assunie that IIU esi.rr.iia,l f o ~ c - c ~ . ;  

and t,orques act on the SM. Consequently. its center of mass I ! ,  rrmaiIis fisctl ii i  iircvt,ial 
space a,~id ran he selected as thc origin of the inertial coordinat,c frame (frame 0 ill l+giu, 

2) .  Fra.mes 1:. . ., and n. + 1 are the coordinat,c frames att,a.ched to  aach or thr  linlis' crwtcr 

uf ina.ss. 

The 1.agra1igia.n of a free-floating space nianipulat,or system is equal to i t s  I<iiietic. ruc'rpy. 

sirice it, is assumed that t.he systeni does not, h a w  clastic component,s a,nd is not i i d r r l  I I ~ O I I  
7~ I 'I 

by gravitational forces. Adopting q = [ 6 B 81 .. 0 ,  ] = I (I, . .. cl;.+'$ 1 a5 1,IW 
t 

vector of generalixd coordinates, Lagrange's eqnat,ion can be writt,en as: 



wherr Q; is t11~ geneIalized force c,orresponding t,o h e  grneralizrd coordinat,r 11,: 

Q, = 0: i = l : 3 > 3 .  
Qi = ~ i - 3 :  i = l :  . . . .  n + 3 .  

!?:I 

and 7; is the torque exerted on the 2-th joint. 

To obtain an expression for the SM's kinetic energy we inust find the rxprrssiow of i h r  
liiirar and angular velocities of each link with respect to the incrtial frarnr. a.s ri. fiitlctioii 0 1  

the generalized coordinates q. We me the Virtual Manipulator method [9] t,o olitai t i  t . l i c w  

quantities. Let H; be the Virtual h,Ianipiilator \vhosc end point, is the crnt,ei- of tiias; of t l w  

Cth l ink.  It, is defined as: 

where H , ( j )  = ]]Ht(j)]l  and each component of H, is defined as: 

H;(l) = rl: 
H,(j)  = r, + lj: 1 < j  < % .  
H,(j)  = ri + Ii - R;? j = I ,  
H;(j) = rj  + l j  - R, - L,: j > i ,  

i-i = F L i x m k / i I : f t >  i 5 j  
I;= I 

i-I 
1, = LiC,nzI,/M,. ( f i )  

k=l  

'The t,ranslational velocity of the center of Inass of the r-th link ca,n br wrillcv as: 

/i2 = [ q x  ui'zx " '  ~ n t i x  ] H i  

= [ -H,( l )x  -H,(2)x . . .  -H;(n + 1)x I-. 
= .IL.z(H;.  q)4 (7 

where id; x ]  represents the 3 x 3 skewsymmetric mat,rix ubtaincd from the clcllteu[,s 0 1  1111,  

i w t o r  s i .  The angular velocities of thr SM's links. are sta,ckrd to  forin t.hr w c i o r  i. i 1 1 ~ 1  



Thrn 
r 

1 4 n i - 3  

= B,,q. 

'Ikw total kinetic enrrgy of t h r  Sh,l syst,em is then 

(9.j 

( I l j  

Suhst,itut,ion or (10) into (1) yields the desired dynamic equat,ions of thr spar r  ~ r i a ~ i i p i ~ i a t ~ o t  

swt,rm. 



4 Dynamic model of a fixed-base manipulator with a 
passive spherical joint 

111 t.liis section r i e  will de\:elop the dynamic niodcl of ail (n. + 1 j-link fiwtl-basc roi)ot i i i a i i i l ) -  

ulator whose first, joint, is a passive spherical one. In the nest. sectioii wc will colilpiiw t,liis 
model to the SM's obtained previously to propose th? cquivalenrc between the DE.1.1 ; u i r l  

the SM. 
We at,tacli the frames 1'. . . . , ( n  + I j '  t,o t,he ccnter uf mass of each l i n k  of the tiiaiiipiilaior 

8' .?' 0' . . . (I: ,  1'' = (Figure :J). The vect,or of generalized coordinat.es is q' = [ b' 1 

[ . . . 4:2+3 1'. Similarly t o  derivation for thc SAI.  we can write 

and 

J d  H: he t,he vector defined as 

I _ < j  < i .  
. .  H:(j)= 1,:j. 3 = I ,  { w J I  [O 0 o y .  j > i .  

.The linear velocity of the center of mass of t,he 1-111 link is giver1 by: 

CI = [ ,;x d ; x  . . -  4 + l X  ]Hi 

- - [ -Hi(ljx -H;(2)x . ' .  -H:.(n + l ) x  I-.' 
= J:,,(H:,q')q'. 

115'1 

( 1 6 )  



\.I;. assume tha.t t,he manipulator operates in thc same environirient a': durs t.liv SYI. i .c. 

i r i  thc absence of gravity; co~iseq~~cnt ly .  t,he poteritial cnerg?. of the syh tPr i1  i ?  r i l l t i i l  i o  w m  
and the l .qran$an is equal t.o t,he kinct,ic energy: 

So far we havc obtained the exprcssions of t,hc Lagrangian of the S Y .  and l,liiit o f  t Iic 
fisrd-base manipulat.or with a passive: spherical joint. 111 t,hr ncst. srction wc i!ii(ly t licii. 

rrlat,iunsliip and the condit,ions under which t,hey are eqnivalenl. 

5 The DEM and its equivalence to the SM 

5.1 

Definition: The Dynamically E.quivalent Manipulator (DEM for slrort. j is a, l i x d l ~ w  niii- 

Definition of Dynamically Equivalent Manipulator 

nipulatar whose first joint is a passive spherical one, and whose kinemat,ic a.nd dynariiic 

modcls are idcntical to t,hose of a given space manipiilat.or syst,ern. Tlir pa.rariirkr.: of tliv 
DEM satisfy t,he following algebraic equations: 

The vect,ors W; represent the DKvl link lengths arid their inerlial orientat,ions with 

rcspect to thc SM's inertial haine; 777.1 is the ina,ss the DEM's i-th l i r i l i :  1: E PX.' I' tlw 
inert,ia t,ensor the DEM's i- th link; and 1,i is thc vect,or from thc DEM's I-t l i  joint, 1.0 t . l i c  

crntcr of mass of t.he i-th link. 

Remark 1: As it will be wen i n  the sequence. the dynamic equivalence Lrl~vec~ii i I I P  S M  
a.nd Llir DEM does not depend on thc value of mi. 

Remark 2: Not siirprisingl?;, the UE.I\'s links' Icngh and oricntat.jon were c l i o m ~  i i l w i ~ i -  

cal t,o those of t h e  SM's Ikt i ia l  Manipulator. This choice will he clear in thr  nrxt, s i i 1 ) w - i  ion 

when we address the kinematic equivalence het,rwen t,he S M  and t h c  IlEhI. 

S 



Note that.,. without loss of generality., wc assunic t,hat t.he ceIit,er of mass of 1 Iw Shl‘? i - 1 1 1  

li111; ( . i  = 2, , . . , T I )  lies oil t,he line connecting the Sh’I‘s i-lh a n d  ( i  + 1)-th ,joints. 

5.2 Kinematic equivalence between the SM and the DEM 

Thc DEM is shown in Figure 1. It,s coordinat,e frames are parallel t,o the corirspondiii:: ~ ~ ~ I I I C S  

of t,he S?iI: arid its hase coiiic,ides with the total center of mass of the Shl .  (I’oiisrcllli~i~tl!;. ilir 
DEM is gcometxically identical t,o the end-effector ViTt,ual l\lanipnla.tor of t,Iw Sl’l [!)I a n d  i 1 ,  

inherits all the nice propcrties of thc Virtual A~lanipulat.or. na.mely: 

1. The a,xis of the  1-th DEM ,joint, “1, is always parallel to  the  a.xis of the. i - t h  Shl  jiiinI. 
%I;. 

2. The displacenirnt of each of the DE.kl’s joints during motion is idrritica.! to  i tic rlis- 

placenicnt or t h e  corresponding SM joint,. 

;3. The DEM end point will always coincide with t,he S M ’ s  nianipula,tor rnd c?fL\<.inr. 

~,~a, theinat , ical ly~ wr can writc: 

5 .  Dynamic equivalence between the SR- and the DEM 

To establish the dynamic equivalence hetrvcen t.he DEY and the Ski3 we will wpa,rai.c.ly 

sliitly thc  contributions of the linear and a,ngiilar componrnts of the liiiirtic energy t o  ilir 

syst,rnis’ Lagrangian. From (19) and the fact that 1: = 1;) we ca,n immediately roiiclntlv i hat. 

!,lie angu1a.r coinponents are identical. I t  rests then to consider the h e a r  conipoiiPiit of t..hc- 
kiiiet,ic energies, T, and T;. 

We s h r t  by presenting the following lemma 

Lemma 1: 
n+ 1 

m i I I i ( j )  = 0. j = l :  . . .  ! y i . t I .  
* = I  

I’ruuf Recall tlia,t the center of inass of the SM’s i-t,li link lies on thc line sup l )o r l~ , t I  11.t. 

9 



the i-th a i d  ( i  + 1 1-th joints. Thercfore, the vcctors ri: 1;: R,. and L; ilrc. all colliii<wr. a,nd 

(lie norm ur Hi in ( 4 ) .  denoted Hi,  is equal to the sum of t.he rna,giiitiitlrs of' t l ic i i i ~ I i \ ~ id i i ~~ l  
corripun~nts i n  t.hr suinrriations. We can therefore write: 

i-I  

Suhstitutirig ( 5 )  and (6) in t,hc above equat,ion we get tlic desired resiilt,. 

T h e  linear i.docity of thc center of mass uT the SM's i-th link, 6,. cu i  hr wriitcvi ,IS: 

6; == [ w',x LJ*x . . .  U n t l  x ] H; 
= r 1 ( U l X )  0 VI ( U Z X )  U v2 ' ' _  (w',+lx)~v,+I ] H :  

= [ (LJlX!R?Vl ( i r ' 2 X ) R ; V z  ' . '  (un+lx:m:+lv,%+l If!, 
= .JhIIi. 

i=l 

10 



is a. symmetric mat,rix whose ( j :  k j  elcment is g i w n  by: 

Recall that ,  the kiIiernat,ic properties of t.he llEM are idcritical to those of I . l i c ,  SIT: ('011- 

seqiimt,ly. ,/; = J h  and: 

I 'T I 

vci = [J~H,!]"J, , ,Hl 

11 



7'hc DCM's t,ranslalional kinetic energy is cxprevsed as 

is a. symmelric matrix. 

From (4) and (15) we can write: 

Therefore. 



Now take  z > k ( k  2 2 ) ,  and assume that 

Fur k 2 2 wc can comparc the ( j . k )  elements of E! a id  E,‘ aild writ,c. 

i=l 

Because masses arc positi1.e qiiantitics we c a ~ i  divide (33’ )  by (44). which rtw111s i n  

13 



Substituting (46') hack into ( 4 1 )  we obtain: 

i 17; 

FimIly. for the sper.ia1 case k = 1: we ca,n write Ei(1: 1) = E,;(:I. 11. oI. eqiiiwIrwt~y. 

.ln.;l;I = 0 ( . IS)  

Hccause ,I,; # 0: it must. be 

the value of mi:  a.nd the mass of the DEWS first. l i d  can bp assigried arbitrarily. 
= 0. Tliereforc the dynamic qiiivalerice does not t lr~peiicl oil 

At first. sight it might be &king that we can assign t.he value nf mi arbitharily 'l'.li<> 
espla~iation is as follows. To obtain the Z ( n +  I )  values rn; and I,; wr coriipa,retl thr. iitlriili(-iilt  

mat,riccs & and E;. Because these matrices are symmetric, we only 1ia.w to c o i i i p n r c  i tic 

(n + l ) ( n  + 2)/2 eleincnts at and above t h e  main diagonal. But the elements a.t ally ( . o l i i i i i i i .  

escliiding the ones at the diagonal, are not independent,. In  fact, e \ w y  rlenieul, Ei(,j. L : ) .  
j # k :  is proportional to Li(1.k). Consequently, we only ha.ve to comparc t,lic r i  + 1 dia,gonal 

ele~iients and t,he n elements &(l, k). for a t.otal of 2 r ~  + 1 independent elememtc. 'Ihrrrfwe. 

whcn we ec1uat.e E)  t o  h'i we end up with o~ie  more unknown than equa.tions. and  W I \  c n n  sc i  

this unknown (which is in; ) arbitrarily. 

Surrirriarizing, we showed bhat both the linear and anguhr  componcnts of t h r  Iiinrtic 
energies of thr SYI and DEM arc identical. This is t,hc sameas showing t,ha.t i~lieir L,iigrangian;: 

a,re idmt,icall since both are rigid and operat,c in a xero-gra,\ity environirleut. 13era~rsc t 1 i ~  
gerieralized forces acting on both are assumed t,o he identical. ~ve c u i  conrliirle> i Iliii. ihc  

dynamics of the S M  and t,hat of the DEM are the same. 

5.4 Mapping a DEM to a SM 

Wc now present the inverse mapping problem, i.e.. the problem of computing t,lhr kiiicmiat,i(. 
arid dynamic paraIriet.ers of the S M  given those of the DEM. Solving cc~iiat~ioni i IS) WT 

obtain: 



Note that the  set. of  equalions (49) does not uniquely det,errrline t.he mass p v o p d i c h  0 1  1 I I V  
S M  The solution is uniqiie, howevcr, when eit,her the SM's total inass or thc ~iiilss o f  trach 

link is specified. 

6 Angular momentum 

Wr have so fu demonst,rated that the proposed DE.M is equivalent, to a. frec-floa.Ling S\.I ( i . t x . .  

a S M  whost a.tt,it,ude is not controlled). 111 this sect.ion we demonstrat? that, l,lic 1)I'N is 

also a, valid concept. when the SM is fre:c-flying, i.e., when the Ski base a,tt,itudc is cont.roll~~l 
via rcaction wheels. This amonnts to showing that the a,ngiilar nionieiitiiiii of t l ic l)K!vl i s  

idenlical to that of t,hc SPIT. 

Usiug t,he VM concept we can express the  position of t.hc crnt,er of mass uf 111c. Skl's i-th 
link a,s: 

Wc can thus express the velor,ity of the  center of rnass as: 

The itngitlar momcntiim of the S M  is equal lo: 

n+1 

H.,., = pt x m,p, +O I;dz 
i=l 
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[:sing (51). we can express t h e  SM's kinetic energy as: 

Let. ire a matrix formed by the first three rows of the inerbia inatrix M :  

n+ 1 +BT FfI i I?;  OT B,; T 

2=1 

At  t,liis point we invoke the following lemmal whose p r a d  is deferred to t.llr r l ~ d  of 1,113s 

section: 

Lemma 2: 

IJsjng L,einina 2 we can rewrite :Vu as: 

I;bllowirig the same stcps above, we can obtain the expressions for the L)LAl',s ar~g i l l a r  

inomenturn a~id kinetic energy: 



first compiitc: 

and 



and 

With the above qual i t ies  we can writ,e: 

..\nalogoiisly. ir. is st,raight,forward to obtain 



From (K!). (69): (70)- and (71) wr obtain (55) as t,he des i rd  rrsi~lt, .  :\nalogous s i r y  (‘an 

hr i iscd t.o esta.blish (56). 

The  readpr who is familiar with the cnrrcnt lit,crat,ure on uiidcrart.ua,tpcl ~iianipulatots [l]. 
[2]: [6] might he puzzled hy t,hc above result. After all: the  conscrvat,ion of angular iiioinwt.lllli 
of t,he SM is a. constraint involving only velocities. while mamipulatorr wi th  passivr. ,ioillt,s 

are systems whose mnstraints in\:ol\:e velocities and accrlrmtions [6]. The cspla,naI io11 i -  t.11~. 
following: t.he dynamic equations of a robot manipuhtor do not rlepeild on thc a n 4 r  01 t,lir 

first, joint. [SI; in ot,her words. the first joint is always cyclic. On thc ot.lirr ha.ntl. i n  I,Ii(’ i i l > w i i w  

of gravit.?;, thc acceleralion const,raint,s imposed on a fised-ha.sr ma.nipulat.or by a. cyclic joiiil 

are int,egra,hle l o  velocity constraints [6]. Conscqucntly! the acceleratiou corist,r;riiiis i i i i pos rd  

hy t,hc Fphcrical ,joint of the DELI can be integra.ted to vc1ocit.y constraints: rvhicli 1,urii o u t  

to be identical t,o the  S l l ’ s  conservation of angular rnonient.uni. With this w i n a r k  iv r  liopr to 
hridgc the  gap, up to IIUW unexplored: between thc rcscarch on undera.ctualed ~ r i ; l~ i i i~~~ i l a . t o~s  
arid space Inatlipitlator systems. Hopefully, control techniques developed for n ~ i r  carrgor? 

will br useful for the other and vice-versa,. 

7 Effect of model uncertainty 

Since thc DEM parameters are computed for a given S M  model, uncert,a.inties i i i  ! , I I v  I;i,trr 
will riaturally produce errors in the former. In  this section, we study ho\v the inorlc*lilrg 

crror affects t.he ma.pping between the two syst,ems.: and the degree t.o whirl1 pru i ic t ,c r  
~inccrtainty on each of the SM’s links reflect,s as errors on ea.rli of t,hr 1)F:M’s links. 

From the definit,ion of the DELI (18): we know what S M  parxneters affect rvhat, D I N  
pararriet.ers. and we can quantitatively comput,e the error mapping as either (,lie r d i o  1wiw.pen 

the ahsolute or relative errors of thc  S M  parameters and those of t,he D I X  Let. I/; wpr(wn1, 
any gcometric or dynamic parameter of the DEWS i-th l ink,  and <I!/, it,< rorrcspontliiig 

uncertaint.y. Such pa,rame:ter is a function of one more of the SM‘s parameters; hi. (~xunplc~ .  
mi is a function of all mi, or. of the vector m. We will rcprcscnt. thc rrror mapping I I ~  
relations of the form 

with the matrix F hasing appropriat,c subscripts to distinguish diffrrrnt c x r s .  \\:(~ will i i w  

f; t,o represent the Iriat,rix mapping the relative errors from the SM pai-ariirt,rrs I,(> I l i r  DFAI 
UIl?S 
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We start wi th  thc simplest of t he  mappings from the SM pa,rariietrrs to  th r  nI*;X.I onm. 

riaiiirly, tlip romput.a.tion of the DE.kI’s inerr.ia tensurs. From ( IS )  otir ran scr  t.lrnl 1,: < l i y ) ( w r l s  

only on the value of f,. and that,: 

i r l  A. X ‘ / L ,  I V I I P T P  F$l ( i :  j )  = e: f * d T ( i ? j )  = m: and T ( n + l ) x ( m + l )  rcprcsent,s t.he ill + I )  x 1 . 1 )  + I :I 
identity ma t,ri s. 

The error mapping for the DE.M’s links masses is more complrx, for iiircrrtaintii~s on i1Lv 

~ a l i i c  of mi a.re a cunsequence of uncertaint,ics on the  \dues of a,ll mi. i = 1. , . . , I I  + 1. L\%rti 

j > i. 

The ahove equalit,ics can be written in matrix form its: 

i h  
wlirrp F d m ( i , j )  = G. The matrix Fdm has following properties: 

Property 1: The diagonal arid upper tria,ngular elements are positive: t.hr lmvr r  i riaii- 

gu1a.r element,s are riegat.ive. and 

F & ( l > j )  = 0. j = 1 . 2  . . . . ,  1 1 t  I ,  
Fam(i, j) = b>,,:(i>i - 1) < 0, i < J *  
Fdm(i:j) = Fdm(i:i+ 1) > 0. i > j .  
F,jm(i.i) > F d m ( i : i + l )  > 0. i =  1 , 2 : .  .. , l I  + 1. 



(SO! 

7 d m ( i : i )  > 1. 

1:rlcertainties on the location of Lhe cenkr  o l  mass of the DEAl links a.s a fiinrtion of hic 

errors on the SM's I I I ~ S S ~ S  and link geurrlet,ry can he written as: 



Finally, uncertainties on the value of t.he ULM links' Icngth i s  d i i ~  to PI'I'OTS on Imth thr 

S M s  IIMSS a , ~ i d  its geometry: 
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j > 1. 

I)””, I,. , - , 

J < I .  

j > 7 .  

8 Case study 

Tu illuslrat,e [,he equivalence bet,wccn t,he SM and its corresponding D I X .  wr w i r c t r t l  H 

planar Skl equipped wi th  a ’-link rotary manipulator . The corresponding DEM is a h e &  

h n s r  ?-link planar rotary manipiilat,or whose first joint is passive. ‘ lhc rquivalrnrr I v t i v w i i  

the  S Y  ;tiid t,he DEM will be shown in two different ways. First. we will a.pply t h e  snnic~oprn- 

100p torque to  the SM’s manipulator and to,joints 2 and 3 of t.he DEM. Wit.li I,liis rxpf~riiiiriit~ 
we iritenrl t,o demonstrate that, t,hc kinematic behavior (e.g. the location of thr cni l-r lkrtor 

in  i r i e r h l  space) and t,hc dynamic behavior (e.p. the joint angles a.nd basr rotatioli! of Imill 

syst.enis are identical. Second, we will perform a closed-loop control erperiiiirnt. i i i  ,joint 
space. driving both SM:l ’s actuators and t.he DEM’s juiIils 2 and :1 to  a, sprcifirtl w - ~ ~ o i n t ~ .  

\Villi !his experiment we intend to  dcmonstrat.e t.hat. when under th r  act.inn o f  i .hr  5aint’ 

cont,rollcr cvit,h the same control gaius, the S M  and DEM behave i&rl!,ica.lly. 
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8.1 Dynamic modeling 

L I N K  
1 
2 
:I 

‘Iahle 1 presrrits the kinemat.ic and dynamic pa.ra~net.ers selected for t,he Shl. ‘1‘aI)lc 2 prcsi(-llt.s 

t.he cor rcs p on d i n g parameters of 1 he D EM . 

Table 1: Geometric and dynamic parameters of the 2-link SM 

L ; ( m )  R;(nr) m , ( l i g )  1 1,jk.y. ru’) 
- 0.5 4 ! 0.4 

0.5 0.5 1 0.1 
0.5 0.5 1 0.1 

Table 2: Geometric and dynamic parameters of the 3-link DEM. 

The S M  dynanic equations arc cxprcsse’d as: 

where J f  and I I  are detailed in Appendix .A. 

‘1 he UERI dynamic equations are givcn by. 

wlirre .If’ arid h‘ detailed in Appendix B 

8.2 Open-loop control experiment 

We applied sinusoidal torques with arriplilude 0.5 Nm and period I s to hot,li SRI’! a,rt.iiii,tnrs 

ilnd the DEM’s joi1it.s 2 and 3 (see Figure 5 ) ,  Figures G and 7 present, t,hc rrsiilts. slmwi i is  

t.hat ( i )  the joint, a.ngles t,rajectories of b0t.h syst,cins (incliiding t.he r o h t  ion 1 IK, I ) a s c ~ j  

iirr identical; (ii) the majectories of both end-effectors in inert,ial spa.ce arc idcntica.l. \.\:r 
measured the maximum error between bliese quantities? and verified that: ( i )  t lw  riiiixiiiiiiiii  

dcvia.tioii Ixtween q; and qt‘. i = 1.2.3 was equal l o  1.7 seconds of a r r  ( o r  4.75 x lo-‘ d ~ g r r ~ s ) ;  



( i i )  t11e rria.xirriu~ri dei4at.ion between the inertial loca,tion of the ShI and UEhl  rwtl-rff~rtors 

was 0.016 ni111. These errors are d u p  to  t,lie fact that tlir diincnsions of linlis I a n d  :1 of i l w  

DER1 a r c  rcciirring dcr.iinals. which are represented in t,ruiicat,ed Curill iiisidi, 1.1ie C O ~ I I ~ I I ~ ~ I Y  

prograrii. This experirnent confirms the kinematic a,nd dynamic equivalence lxtwrrn thr Shl 
a r ~ d  t,lie DEhl. 

8.3 Closed-loop control experiment 

In  this experiment, we coiit,rol the angles of both joint,s of the ShI's rrianipulator to a c.orisiiiiii, 

set-point. L,et 823 = [ 42 43 ] ; factoring out q l  in the first. line of (95) and s ~ ~ I ~ s t . i t . ~ i i i ~ i g  

the result in the second and t.hird lines: we o h i n  t.he open-loop rrlat.ionsliip l>rtwrrii i hr 

drivirig t,orques arid t,he coIitrolled jo i~ i t  angles: 

T 

!!);:I 

1 [::I = [ M ( . 3 , 2 )  - k 2 M ( 1 : 2 )  M ( 3 - 3 )  - k 2 M ( i : 3 j  I&,+ [ I t . ( : { )  ~ kJ f . i I )  
h [ 2 )  - k l / t ( l j  ~ ( 2 : 2 )  - k1~1;f(1:2) :19(21:3) - k i i u ( i ! s j  

= i l f ~ i 2 3  + hr.  

wlirre k l  = M ( 1 ,  l : ) / : l . f (2ql )>k2 = M(l> 1) /M(3-  1).  

W'e selected a variable structure cont,roller (VSC) to  cont,rol the SM's actuators. Tu t.liis 

end we define the 2-dirneIisioria1 sliding surface 

where r is a diagonal matrix with positive entries, and 5 rcprrsents the error on thr  wrialili> : 

l>rtween i1s current. value and its desired value z d .  The following is the refere~icc acrrlrra,tion 

of the actua.lors bhat guarant,ee t.hat t h r  st,ate space trajectories converge t,o 1 Iir sliding 

siirfa.ce s = 0 and then to the origin of the state spacc: 

= roZ3 + iii3 t PSg?l(.S), [!)!I) 

where P i s  a diagonal ma.trix with positive ent,ries. The cuIit,rol torrpr  is oI)tai iwd hy 
subst,it,uting (99) i n  (97). 'To eliminate the chat,tering introduced by thr  trrln , + g n ( . i !  i n  (!]!hi 

we add a bouridary layer around the sliding surfa.ce s = 0. i.e.: we subst,it,ute . s q T i i s )  I,y t lw 

sar.iirat,ion fiinction . sat( .s)  defined by: 

The control gains wrrc scl~rt.er1 as P = d iay ( l0 .10 ) .  I' = diug[S ,  5). t = di(!;,((\.;$, 0 ~ ) .  
I 'hc t,nrqurs computed for the control of the SM rvcrr applied to bot11 t.he S\!l a1111 ilir DE1.I 
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(sec Figure 8). The desiredjoint angles wcrc chosen as O!& = [ 30" -30' 1' I Figure 9 shuns  

t.he resulting joint. trajrctories? including the rotation of the base. As we ca,n ser. I:hc SZl and 
t.hc DE.M behave identically when under the action of the samc controller. The niaxirriuiii 
deviation hetween t,hc joint. angles is equal l o  0.29 seconds of arc (8.1 x lV5 degrees) and 
the masimuni dcviation between the end-elfector loc,ations is 0.0028 111111. This esperimrnt 
demonstrates that it is possible t,o simulate the beha.vior of a c.nmplex frcr-flmting spacc 

manipulator system through the control of a simple, easy-to-assemble fixed-base manipula,tor 

w i t h  a passive joint, at the base. 

8.4 Error mapping 

We close this case study analyzing the influence of modeling errors on t.he SM parainrlers oil 

the mass, length, and location of the center of mass of the Dl3 l ' s  second link (naturdly: bhr 
analysis can be repeated for t h e  ot,her 2 links). We adopt,ed ahsolut,e errors with IriagIiitude 

va.rying from 0 to 0.1 (Kg or m) ,  and relative errors wit.h magnitude rwying froin 0 to  I O  

Figure 10 shows the absolute error on m.; given absolute errors on mi.% = 1.2.3. As 

expect.ed, from the slopes of the error mapping surfaccs onc can scr that dn2.i is iniirli morr 
influcnced by errors in mz thari by errors in m3 (recall that Fd,(2,2) > Fd2>>(2, 3 )  according t.0 

Property 1). Additionally, one can see that, dn; is inversely proportional to d m l .  a property 
that agrees with t,he fact that. F d m ( 2 ,  1) < 0. Idcntical conclusions can bc drawn from Figurc 

11: where we show the relat,ive error dm2/m,  for given relative errors d r u ; / r r ~ ; ~  i = 1: 2.3.  
I ,  

Figure 12 shows the absolute error on the location of the center of mass of link 2. I , z :  for 

given ahsolule errors in the SM masses and L.2 (recall that F,jlc~,(i! j) = Ofori # : j ) .  That 
figure consists of 9 surfaces divided int.0 groups: the lowermost. corresponding to d L 2  = 0.1 
inl t,hr middle onc t,o dL.2 = 0 m,  and the uppermost to dL2 = -0.10 m. Within cach group 

d i n ,  varies (from top to bottom) from 0.1 Kg to  -0.1 Iig. One can see that the influence of the 
d m ; , i  = 1 , 2 , 3  on dlC2 is very small when compared to  the influence of d L z .  The same fact. 
can he seen on Figure 13, where we show the absolute error on dlV2 given ahsolutr crrors on 

t h r  SM masses and geometry. We can conclude that, for this particular spac,e nianipulat,or 

system, errors on the masses of each of the DEM links are mostly due to errors on t,hr masses 

of the corresponding Ski link; and t.hat errors on the D E N  kinematic paramet,ers ( l r i  and 
Wi) are ~rioslly due to errors on t,he Ski kinematic paramet.ers ( R ,  and L ; ) .  

The foregoing analysis will be of utmost importance when one designs a fixed-basc ma- 

nipulator to represent. a given SM. If thc dcsigncr knows t.he uncert,ainty bounds on the DEM 
parameters: (s)he can find out the corresponding errors on the SM paramrtcrs iisinq a sct. 
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of ciirvcs like the ones shown in Figures 10-13. With thcsc. (s)hc can dccide &ether or  no^. 

t,lic SYI modeling errors are acceptable and cit,hcr rcdesign the DEM or mahe IISC of robllst 

coritrollers to  cope wit.h the iinccrtainties. 

Findly. the error mapping analysis can also he used to guide Ihe d r s i q  of the L)E\I. 
For cxample, from Appendix B: one can see that lC1 appears only in A f ’ ( l >  I )  a.nd not, i n  the 

other elements of M ‘ ;  and it is multiplied by t.hc mass of the UEM’s first l ink.  If t,hc value 
lC1 has a substantial uncertainty, the equivalcnce hctwccn thc SM and t,hc l)k;M may still I ~ c  
kept. i f  onc designs the DEM’s first link as light as possible. (Sole  that. its inertia shuuld I I C  
equal to  that  of the SM’s first link, the base). 

9 Conclusion 

We propose in this papcr the novel concept, of t,he DEM, the Dynamically Equi\:alent. Ma- 

nipulator. The D I N  has several advantages: (1) i t  is real in nature and r a n  lie built from 
off-thc-shclf components for realistic experi~rients in the laboratory. The concept. is differriit 

from t,he VM: which is an idealized massless kinematic chain; (2) The Dl2M can Iw used 

as a tool for dynarriic modeling of space manipulators. based on Lagrangiaii dyrianiics or 

any other h rnu la t ion  used for fixed-base, conventional manipulators; ( 3 )  co~itirvl riieiliotls 

dcvclopcd for fixcd-base manipulators can be easily examined for fcasibilit,y of use in spacc 

nia.nipula.tor systems through the DEM; (4) the DEM concept, can be est,ended t,o represent 
attitude-controlled SM’s: in this case the corresponding DEM is a fixed-base ma,iiipulator 
whose first joint is an act,ively controlled spherical one; (5) The DEM conccpt. hridgcs thc 

gap bctwcen space manipulator systems and fixed-base underactuatcd manipulators; it a.1- 
lows control niet,hods developed for the former t,o be a,pplied to  the later a,~irl  vice-versa,. 
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Appendix A: Dynamic model of a 2-link space manip- 
ulator 

3 3  

h(2)  = I?.ij&& i = I: 2.3 .  
,>=I k=l 

whcrc 
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Tlie Iiori-inert,ial torques are given by: 
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L I N K n + l  

Figure 1: The space manipulator system (SM), composed of a robot manipulator mounted 
on a free-floating base. 
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Figure 2: Coordinate frames attached to the the SM’s links. 
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Figure 3: Fixed-base robot manipulator with a passive spherical joint at the bar;e. 
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Figure 4: The SM and its corresponding DEM. 
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Figure 5: Open-loop control experiment block diagram. 
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Figure 6: SM and DEM joint angles when a sinusoidal open-loop torque is applied to their 
actuators. 
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Figure 7: SM and DEM end-effector positions when a sinusoidal open-loop torque is applied 
to their actuators. 
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Figure 8: Closed-loop control experiment block diagram. 



Figure 9: SM and DEM closed-loop joint angles. 

Figure 10: Absolute ermr mapping (in Kg) from the masses of the SM links to the mass of 
the DEM second link. 



Figure 11: Relative error mapping (in %) from the masses of the SM links to the mass of the 
DEM second link. 
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Figure 12: Absolute error mapping (in m) from the masses and geometry of the SM links to 
the location of the center of mass of the DEM second link. 



Figure 13: Absolute error mapping (in m) from the masses and geometry of the SM links to 
the length of the DEM second link. 


