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ABSTRACT

We analyze walking people using a gait sequence representation that bypasses the need for

frame-to-frame tracking of body parts. The gait representation maps a video sequence of silhou-

ettes into a pair of two-dimensional spatio-temporal patterns that are periodic along the time axis.

Mathematically, such patterns are called “frieze” patterns and associated symmetry groups “frieze

groups”. With the help of a walking humanoid avatar, we explore variation in gait frieze patterns

with respect to viewing angle, and find that the frieze groups of the gait patterns and their canon-

ical tiles enable us to estimate viewing direction. In addition, analysis of periodic patterns allows

us to determine the dynamic time warping and affine scaling that aligns two gait sequences from

similar viewpoints. We show how gait alignment can be used to perform human identification and

model-based body part segmentation.
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1 Motivation

Automated visual measurement of human body size and pose is difficult due to non-rigid articu-

lation and occlusion of body parts from many viewpoints. The problem is simplified during gait

analysis, since we observe people performing the same activity. Although individual gaits vary

due to factors such as physical build, body weight, shoe heel height, clothing and the emotional

state of the walker, at a coarse level the basic pattern of bipedal motion is the same across healthy

adults, and each person’s body passes through the same sequence of canonical poses while walk-

ing. We have experimented with a simple, viewpoint-specific spatio-temporal representation of

gait. The representation collapses a temporal sequence of body silhouette images into a periodic

two-dimensional pattern. This paper explores the use of these frieze patterns for viewing angle

determination, human identification, and non-rigid gait sequence alignment.

2 Related Work

Many approaches to analyzing gait sequences are based on tracking the body as a kinematic link-

age. Model-based kinematic tracking of a walking person was pioneered by Hogg [7], and other

influential approaches in this area are [2, 3]. These approaches are often brittle, since the human

body has many degrees of freedom that cannot be observed well in a 2D image sequence. Our

work is more closely related to approaches based on pattern analysis of spatio-temporal represen-

tations. Niyogi and Adelson delineate a person’s limbs by fitting deformable contours to patterns

that emerge from taking spatio-temporal slices of the XYT volume formed from an image se-

quence [14]. Little and Boyd analyze temporal signals computed from optic flow to determine

human identity from gait [10]. The key point is that analyzing features over a whole temporal

sequence is a powerful method for overcoming noise in individual frames.

Liu and Picard [11] proposed to detect periodic motions by studying treating temporal changes

of individual pixels as 1D signals whose frequencies can be extracted. Seitz and Dyer [15] replace

the concept of period by the instantaneous period, the duration from the current time instant at

which the same pattern reappears. Their representation is effective in studying varying speed cyclic

motions and detecting irregularities. Cutler and Davis [4] also measure self-similarity over time

to form an evolving 2D pattern. Time-frequency analysis of this pattern summarizes interesting

properties of the motion, such as object class and number of objects.
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3 A Spatio-Temporal Gait Representation

Consider a sequence of binary silhouette imagesb(t) � b(x; y; t), indexed spatially by pixel loca-

tion (x; y) and temporally by timet. Form a new 2D imageFC(x; t) =
P

y b(x; y; t), where each

column (indexed by timet) is the vertical projection (column sum) of silhouette imageb(t), as

shown in Figure 1. Each valueFC(x; t) is then a count of the number of silhouette pixels that are

“on” in columnx of silhouette imageb(t). The result is a 2D pattern, formed by stacking column

projections together to form a spatio-temporal pattern. A second patternFR(y; t) =
P

x b(x; y; t)

can be constructed by stacking row projections. Since a human gait is periodic with respect to

time,FC andFR are also periodic along the time dimension. A two-dimensional pattern that re-

peats along one dimension is called afriezepattern in the mathematics and geometry literature, a

tile of a frieze pattern is the smallest rectangle region whose translated copies can cover the whole

pattern without overlapping or gaps. Group theory provides a powerful tool for analyzing such

patterns (Section 4.1).

Figure 1: Spatio-temporal gait representations are generated by projecting the body silhouette

along its columns and rows, then stacking these 1D projections over time to form 2D patterns that

are periodic along the time dimension. A 2D pattern that repeats along one dimension is called a

“frieze” pattern.

Figure 2 shows the column projection frieze patternFC extracted from a roughly 30 second

long sequence of a person walking along a test course. Note the changes in appearance of the

frieze pattern as the walking direction changes. In our experiments, body silhouette extraction
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is achieved by simple background subtraction and thresholding, followed by a 3x3 median filter

operator to suppress spurious pixel values. Silhouettes across a gait sequence are automatically

aligned by scaling and cropping based on bounding box measurements so that each silhouette is 80

pixels tall, centered within a template 80 pixels wide by 128 pixels high. Background subtraction

Figure 2: Frieze pattern extracted from a 30 second long walking sequence. Note the changes in

appearance of the frieze pattern as the walking direction changes.

in real environments typically yields noisy silhouettes with holes, fragmented boundaries, and extra

parts due to background clutter and shadows. It is difficult to automatically identify individual limb

positions from such data. By distilling a sequence of silhouettes into a periodic pattern that can

be smoothed and analyzed using robust signal analysis techniques, we no longer need to deal with

noisy silhouette data.
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4 Model-Based Gait Analysis

With the aid of a 3D walking humanoid model, we have studied how the spatio-temporal frieze

patterns described above vary with respect to camera viewpoint. Our model of human body shape

and walking motion is encapsulated in a VRML/H-Anim 1.1 compliant avatar called “Nancy”.1

Nancy’s 3D polyhedral body parts were generated by a graphics designer, and the gait motion,

specified by temporal sequences of interpolated rotations at each joint, is based on motion studies

from “The Human Figure in Motion” by Eadweard Muybridge. We have ported Nancy into an

open-GL program that generates 2D perspective views of the avatar given a camera position and

time step within the gait cycle. Gaits are sampled at a rate of 60 frames per stride (one stride is

two steps, i.e. one complete cycle). Figure 4 illustrates variation of the column projection frieze

(a) (b)

Figure 3: (a) A database of gait sequences is generated from 241 sample viewpoints. The subject is a

walking humanoid avatar. (b) Subsampled sequences from two viewpoints. Each body part of the avatar is

color-coded with a different shade of grey.

patterns defined in Section 3 when Nancy’s gait is seen from different viewing directions. The

diversity inspires us to seek an encoding for these different types of frieze patterns in order to

determine viewpoint from frieze group type. One natural candidate for categorizing frieze patterns

is by their symmetry groups.

4.1 Frieze Symmetry Groups Classification

Any frieze patternPi in Euclidean spaceR2 is associated with a unique symmetry groupFi, where

i = 1::7; 8g 2 Fi; g(Pi) = Pi. These seven symmetry groups are calledfrieze groups, and their

1 c
1997 Cindy Ballreich, 3Name3D / Yglesias, Wallock, Divekar, Inc. Available from

http://www.ballreich.net/vrml/h-anim/nancy h-anim.wrl
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Figure 4:Different gait patterns of a computer avatar “Nancy”, obtained from a real human being, viewed

in different directions.

properties are summarized in Figure 5 and Table 1. Five different types of symmetries can exist for

frieze patterns: (1) translation, (2) 2-fold rotation, (3) vertical reflection, (4) horizontal reflection

and (5) glide-reflection. A frieze pattern can be classified into one of the 7 frieze groups based on

what combination of these 5 primitive symmetries are present in the pattern. Computer algorithms

for automatic frieze and wallpaper pattern symmetry group classification are proposed in [12, 13].

We are interested in classifying imperfect and noise-contaminated frieze patterns generated

from avatar and human gaits. There are two important and intertwined computational issues for

frieze symmetry group classification: 1) given an imperfect frieze pattern, how to decide whether

or not it has certain types of symmetries; and 2) given the symmetry measures for a pattern, how

to give each of the seven frieze groups an equal chance to be chosen as the symmetry group of

the pattern, since these groups are not disjoint. The first issue is addressed by defining a distance

measure between a pattern and a family of patterns have the same frieze group. The second issue

is addressed by using geometric AIC for symmetry group model selection.
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(A) (B)

Figure 5: (A) The seven frieze patterns (P1:::P7) in Euclidean spaceR2. (B) The subgroup relationship

among the seven frieze symmetry groups (F1:::F7 in Table 1).Fi ! Fj meansFi is a subgroup ofFj .

4.1.1 Distance to the Nearest Frieze Patterns

We define the symmetry distance (SD) of an approximately periodic patternP to frieze patterns

fPng with frieze groupFn as

SDn(P ) = min
Q2fPng

f

tNX
i=1

�
pi � qi

si

�2
g (1)

whereN is the number of pixels in a tile (smallest 2D repeating region),t is the number of tiles

being studied,pi andqi are intensity values of corresponding pixels of patternP andQ 2 fPng

respectively, andsi is the standard deviation of the frieze pattern at pixeli. For independent

Gaussian noise, the distanceSDn has a�2 distribution withtN degrees of freedom.

The symmetry distance measure is defined with respect to a frieze patternQ 2 fPng that has

the minimal distance toP . We can show that this pattern Q can be constructed as follows: (1)

For t > 1 andn = 1, Q is the pixel-wise average of all the tiles inP . (2) Fort = 1 andn > 1,

Q =
(On(P)+P)

2
, whereOn(P) is the pattern obtained by applying the set of symmetry operations

in Fn to P . (3) For t > 1 andn > 1, Q is the pixel-wise average of eachQ obtained above.

Our definition of frieze pattern symmetry distance in pixel intensity space is analogous to that of

Zabrodsky et.al. [16, 9] for polygon distance in vertex location space.
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Table 1: Symmetries of Frieze Patterns (N is number of pixels in one tile)

Symmetry translation 1800 Horizontal Vertical Nontrivial Degrees of

Group rotation reflection reflection glide-reflection Freedom

F1 yes no no no no N

F2 yes no no no yes N/2

F3 yes no no yes no N/2

F4 yes yes no no no N/2

F5 yes yes no yes yes N/4

F6 yes no yes no no N/2

F7 yes yes yes yes no N/4

4.1.2 Geometric AIC for Frieze Group classification

The frieze symmetry groups form a hierarchical structure (Figure 5)(B) where frieze groupF1 is

a subgroup of all the other groups and so on. For example, a frieze patternP3 (with vertical

reflection symmetry) is a more general pattern type thanP5 or P7, since anyP5 or P7 frieze with

more complicated symmetries also has vertical reflection symmetry. But this implies that the

distance of a patternP toP3 is always no greater than the distance toP5, since the set ofP5 patterns

is a subset of theP3 patterns. If no care is taken, a symmetry group classification algorithm based

on raw symmetry distance scores will always favorP3 overP5. To address this problem, we

adopt the concept of Geometric-AIC (G-AIC) proposed by Kanatani [8, 9]. Given two possible

frieze patterns whose symmetry groups have a subgroup relationship, G-AIC states that we should

preferFm overFn if
SDm

SDn

< 1 +
2(dn � dm)

r(tN)� dn
(2)

wheredm anddn are the degrees of freedom for frieze patterns ofFm andFn respectively, andr

is the co-dimension. Since the data space (the intensity space) is dimension one, and our model

space (point in multidimensional intensity space) dimension is 0, the co-dimensionr = 1� 0 = 1.

The degrees of freedom (DOF) of a frieze pattern depends on how the intensity of each pixel on

the pattern is constrained. For frieze patterns with translation symmetry only, the only constraint

for each of thetN pixels is to have the same intensity value as the pixelt units to the left. Thus its

DOF isN . On the other hand, pixels on aP3 pattern have to satisfy a vertical reflection symmetry

constraint, and thus half of the pixel intensities need to be the same as the other half. So the DOF

of a P3 pattern isN=2. The last column of Table 1 and Figure 6 explain the DOFs of the seven
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frieze groups. In summary, we would prefer classify a patternP as frieze groupFm rather than

(f) (g)

(a) (b)

(e)

(c) (d)

Figure 6: Determining the degrees of freedom of frieze patterns by how many constraints a pixel

intensity has to satisfy. The figure shows the corresponding pixels that must have the same intensity

values in (a) two tiles of aP1 pattern; (b)-(g) a tile from frieze patternP2:::P7 respectively.

Fn if

SDm(P )

SDn(P )
<

t

t� 1
; for m = 2; 3; 4; 6 andn = 1 (3)

SDm(P )

SDn(P )
<

2t

2t� 1
; for m = 5; 7 andn = 2; 3; 4; 6 (4)

SDm(P )

SDn(P )
<

2t+ 1

2t� 2
; for m = 5; 7andn = 1 (5)

4.2 View Direction Estimation

We have generated a database of 241 walk sequences, indexed by viewing direction azimuth and

elevation, by sampling the view sphere at roughly every 10 degrees. Figure 7 shows the associated

frieze groups with the 241 frieze patters from Nancy’s gaits viewed from the 241 directions.

The underlying assumption in current approach is that the distribution of symmetry groups of

the gait patterns from different views of the computer model can provide guidance for determining

the viewing angle of an observed human subject’s gait. Table 2 lists the data of two human subjects

observed from six cameras and the frieze symmetry group associated with each frieze pattern.

Figure 8 shows a comparison among corresponding avatar and subject frieze patterns, viewed

from six different viewing angles. One can observe that frieze patterns from the same view point

share the same frieze symmetry group, and the tiles have a similar appearance.
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Figure 7: Symmetry group labelings of the frieze patterns of “Nancy” when viewed from all dif-

ferent orientations. Each sample point on the hemisphere is projected to the plane of elevation

0 degrees. From this pattern, one can see slight bilateral left-right asymmetry of the symmetry

groups distribution. This reflects the possible gait asymmetry of the person this computer model is

coming from. In general, the distribution of the gait frieze patterns symmetry groups is bilaterally

symmetrical viewed from side to side.0o is the frontal view. This figure is best viewed in color.
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Table 2: Frieze Groups of Human Subjects Gaits Viewed from Six Different Cameras

Camera Sym. View elevation azimuth Vertical Horizontal subj # subj #2

ID Group Dir. angle angle FOV FOV estimated estimated

3 F7 L. side 15.4 83.2 42.5 33.1 e:50 a:75 e:10 a:80

5 F3 L. front 12.0 37.4 37.6 29.0 e:30 a:160 e:80 a:45

7 F5 Frontal 25.0 359.8 43.7 33.9 e:20 a:0 e:20 a:0

13 F3 R. back 11.4 234.9 39.0 30.1 e:20: a:200 e:20 a:240

16 F3 R. front 11.9 314.5 32.1 24.7 e:40 a:334 e:10 a:20

17 F5 Back 26.5 181.4 42.3 32.8 e:20 a:180 e:20 a:180

Given an observed human subject gait patternP = FC (Section 3), we use a moment-based

method (Section 5.1) to align the model friezesPi from each of the 241 viewing directions to the

subject frieze. Applying PCA to a typical tile fromP and taking the non-dominant PCA com-

ponents that are most sensitive to discriminate pattern variations, the closest K nearest neighbors

are found in this subspace. We used a dual elimination method to decide which angle values from

these K neighbors we can count on. The first condition is thatP andPi have the same symmetry

group. The second condition is that corresponding pixels of tiles fromP andPi must have similar

intensities. Results for classifying viewing direction for two human subjects is listed in Table 2.

In this framework we have assumed affine camera models, thus only one viewing direction

(specified by azimuth and elevation) is estimated for a ray directed towards the center of the per-

son. However, the data used in the experiment comes from a perspective camera, and due to the

proximity of the subject, the difference in viewing ray elevation between their head and feet is

roughly 28 degrees. Much more accurate estimations of viewing angles are achieved for frieze

patterns with non-F3 groups (Table 2). This can be explained by the multiple possible angle ranges

for P3 patterns (Figure 7). We have dealt with this using majority votes and robust median estima-

tors.

5 Spatio-Temporal Gait Alignment

Consider two gait sequences, represented by two pairs of frieze patternsFC(x; t), FR(y; t) and

F 0
C
(x0; t0) , F 0

R
(y0; t0). We seek to align the patterns temporally and spatially, as a precursor for

further correspondence-based analysis. Temporal alignment of gait sequences amounts to align-
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Figure 8: The view of the frieze patterns from six different angels. Left: Avatar Nancy. Middle:

subject # 1. Right: subject # 2.

ing frieze patterns horizontally, thereby determining a mapping between time variablest and t0.

Temporal alignment of frieze patterns is greatly simplified by the periodic nature of the patterns,

allowing us to use simple periodic signal analysis in place of expensive dynamic time warping pro-

cedures. Spatial alignment means finding a mapping between pixel locations(x; y) in sequence 1

and(x0; y0) in sequence 2. We restrict this to a four parameter affine mapping, and show that it can

be found by aligning the corresponding row and column friezes along their vertical dimensions.

5.1 Moment-Based Gait Alignment

It is well known that the first and second moments of two binary silhouettes can be used to de-

termine an affine transformation that coarsely aligns them, and that some of the moments of a

silhouette image can be computed from its row and column projections [1]. This forms the basis

of our gait alignment method.

First, we generalize the concept of moments of a binary image to cover a time series of moments

computed from a sequence of binary images. Define amoment sequenceas

mij(t) =
X
x

X
y

xiyjb(x; y; t)

which is a sequence of single-frame binary silhouette moments, indexed by time. Note thatm00(t)
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is just the area of the binary silhouette over time, while�x(t) � m10(t)=m00(t) and �y(t) �

m01(t)=m00(t) are the coordinates of the silhouette centroid over time. Similarly, define acen-

tral moment sequenceas

�ij(t) =
X
x

X
y

(x� �x(t))i(y � �y(t))jb(x; y; t)

which is a sequence of moments measured after translating each silhouette so that its centroid is at

the origin. The second central moments measure the spread of silhouette pixels about the centroid,

and can be used to derive the principal axis of the silhouette shape.

Since we have summarized each sequence of silhouettes as frieze patterns, we are concerned

only with moments that can be computed from row and column projections. For example, consider

silhouette area

m00(t) =
X
x

X
y

b(x; y; t) =
X
x

 X
y

b(x; y; t)

!
=
X
x

fC(x; t)

which can thus be computed from the frieze pattern as well as the original silhouette sequence.

Any moment sequencemij(t) or central moment sequence�ij(t) with eitheri or j (or both) equal

to zero can be computed from frieze patternsfC(t) andfR(t). In the present case, we will use

m00(t), m10(t), m10(t), �20(t), and�02(t). Note that the second central moment�11(t) can not be

determined from the two frieze patterns, and we will therefore not be able to adjust skew or prin-

ciple axis rotation when aligning silhouette shapes using friezes alone. Difference in skew angle

is not an issue when matching silhouettes seen from nearby viewpoints. Requiring the principle

axes to be the same means that we are assuming the roll angles of the camera are also similar.

Should an application require these extra degrees of freedom, they could be computed by included

a third frieze formed by silhouette projection along a 45 degree diagonal axis, from which the

cross-momentsm11(t) and�11(t) can be measured [1].

We now present an algorithm for moment-based gait alignment. To a first approximation, the

temporal alignment between the two periodic gait sequences can be represented ast0 = � t + �,

where� corrects for the relative stride frequency and� corrects for the relative phase difference

(position within a stride). The average stride frequency of each gait sequence is found by taking

signalm00(t), “whitening” it by subtracting its mean and dividing by its standard deviation, then

autocorrelating to find peaks occurring at a fundamental frequency. From some viewpoints this is

the stride frequency, and from others it is half the stride frequency (e.g. a bipedal gait viewed from

the side looks self-similar halfway through a full stride). Whether the autocorrelation ofm00(t)

yields peaks at half the stride frequency is viewpoint dependent, and can be calibrated using the

walking avatar model. Letf andf 0 denote the average frequencies of the two gait sequences,
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computed fromm00 of sequence 1 andm0
00 of sequence 2. Then� = f 0=f . To determine the

relative phase, we crop a subsequence of temporal lengthf from m00(t), expand or contract it by

�, then correlate withm0
00. The average lag of prominent peaks of the correlation result determines

the relative phase. There may be a two-fold ambiguity in the phase from those viewpoints for

which the autocorrelation ofm00 yields peaks at half the stride frequency. For people close to the

camera, the perspective effects are usually enough to uniquely determine the phase. For people far

away, however, it can be difficult to distinguish between left foot forward or right foot forward on

the basis of silhouette moment information alone.

After determining the temporal mapping betweent and t0, we now align the frieze patterns

spatially. Given the moments that we can compute from frieze patterns, we determine the two

translations and two scale factors that relate(x; y) and(x0; y0) for corresponding time steps in the

two sequences. Dropping the time variables from the notation, this affine transformation is found

to be 2
4 x0

y0

3
5 =

2
664
r

�
0
20
m00

�20m
0
00

0

0
r

�
0
02
m00

�02m
0
00

3
775
2
4 x � m10=m00

y � m01=m00

3
5 +

2
4 m0

10=m
0
00

m0
01=m

0
00

3
5

Whether to allow both scale factors to vary independently for each time step, to enforce their

ratio to be constant, to compute a temporal average for each, or other variations depends on the

application and on the amount of noise one can expect in the underlying silhouette data.

5.2 Applications of Gait Alignment

We illustrate the utility of moment-based frieze alignment with two applications. The first involves

comparing frieze tiles to classify a walking person’s identity given a prior training set of gait data.

The second application concerns matching a walking humanoid model to gait silhouette data from

a real person, in order to locate specific body parts in each frame.

5.2.1 Human Identification

Given a dataset of gait sequences collected from one camera viewpoint, we want to analyze a new

sequence to determine which person it is. Our approach is to create row and column silhouette

projection friezes for each sequence, warp them all temporally to a canonical frequency and phase

using the first half of the above alignment procedure, then cut out several tiles corresponding to

individual strides from each sequence. These aligned frieze tiles are compared using normalized

correlation, and subject classification is performed by nearest neighbor matching on correlation

scores. This approach implicitly captures biometric shape cues such as body height/width ratio,
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body-part proportions, stride length and amount of arm swing.

(a) (b) (c)

Figure 9:Confusion matrices for nearest neighbor classification of human identities (25 subjects) using gait

frieze pattern tiles. (a) Result from training and testing on non-overlapping slow walking gait sequences.

Classification rate is 100%. (b) Training on slow walk, testing on fast walk. Classification rate is 100%. (c)

Training on slow walk, testing on walking carrying a ball (to inhibit arm swing). Classification rate is 81%.

To test this approach, we use the CMU MoBo database [5], which contains motion sequences

of 25 subjects walking on a treadmill. Each subject is recorded performing four different types of

walking: slow walk, fast walk, inclined walk, and slow walk holding a ball (to inhibit arm swing).

Figure 9 shows results achieved for side views, for gait combinations slow-slow, slow-fast and

slow-ball. For the slow-slow experiment, the gallery consisted of tiles from the first five seconds of

each subject’s slow walk gait sequence, and the probe set consists of tiles from the last five seconds

of the same sequences. For both slow-fast and slow-ball, the classification algorithm is trained on

all tiles from the slow walk sequences, and tested on all tiles from the other two gait sequences. We

see that the results are quite good, even across different gait types. Although the match similarity

metric is simple normalized correlation, each tile succinctly represents both spatial and temporal

information from an entire stride subsequence.

5.2.2 Model-Based Body Part Analysis

Assume that we know the camera viewpoint, and have rendered a walking humanoid model from

that viewpoint. We now have a sequence of model body silhouettes that can be matched against

a real gait sequence. After spatio-temporal gait alignment, the temporal pairing of each frame of

the data sequence with a corresponding model frame is known, along with a four parameter affine

transformation that aligns those two binary silhouettes. Thus, for each frame, we can project the

model silhouette contour onto the data silhouette image. A sample frame showing an overlayed
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model contour found through automatic gait sequence alignment is shown in Figure 10A. The

aligned model contour does not exactly coincide with the person’s body outline due to a variety

of factors, including differences in body shape and joint angle kinematics between the avatar and

the human being (e.g. body proportions and amount of arm swing), as well as small differences

in camera perspective between the model and data viewpoints. However, note that the overall

temporal and spatial alignment is quite good, in the sense that the aligned model tells us what body

parts should be visible, and roughly where they should appear in the image. More importantly,

we know which body parts are occluded and should not be considered for further analysis in this

frame.

(a) (b) (c) (d)

Figure 10: (a) Moment-based alignment of model and data silhouettes. (b) Sampled points from model

and data silhouette contours. (c) Results of non-rigid thin-plate spline alignment of the two sets of sample

points. (d) Model silhouette warped by thin-plate spline transform, overlayed on data silhouette.

To illustrate what can potentially be done given this initial alignment between model and data

silhouettes, we uniformly sample points from along each silhouette contour and use a program

for non-rigid point matching to compute a thin-plate spline transformation between them [6]2.

Figure 10 shows, from left to right, the initial model contour alignment, the two sampled point

sets, the resulting point sets after warping non-rigidly by a thin-plate spline, and the new warped

model contour overlayed over the data silhouette. The agreement between contours is now much

improved. The success of the non-rigid point matcher in this case is due in large part to the accuracy

of the model silhouette topology, as determined by moment-based alignment of gait frieze patterns.

2The demo code for this technique

was downloaded fromhttp://noodle.med.yale.edu/ �chui/tps-rpm.html and was found to work on

our sampled point data “as is”, with no reseting of parameters away from their default values.
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More examples are shown in Figure 11. Model-based gait analysis using frieze patterns offers an

efficient alternative to kinematic body part tracking for determining the location of individual body

parts in each frame of a gait sequence.

6 Summary

We have presented a periodic pattern representation for analyzing gait sequences. Silhouette row

and column projections are stacked over time to form frieze patterns that can be analyzed using the

mathematical theory of symmetry groups. With the help of a walking humanoid avatar, we have

studied the correlation between the seven frieze symmetry groups and gait viewing direction, and

have had to develop practical techniques for classifying imperfect frieze patterns. Our future work

will explore methods for more efficient and accurate viewpoint estimation from frieze patterns, and

extend our mathematical methods for imperfect pattern analysis to patterns that are periodic along

two dimensions. We have also presented a moment-based method for aligning frieze gait patterns

both temporally and spatially. The method has applications in determining human identity from

gait biometrics, and it provides an efficient alternative to frame-by-frame tracking approaches for

locating and delineating body parts. We plan to apply this technique within a multi-camera motion

capture system to perform 3D body reconstruction and motion analysis for human identification

and sports entertainment.
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(a) (b) (c)

Figure 11:Three views (one per row) taken simultaneously by synchronized cameras. From left to right

in each row, (a) Moment-based alignment of model and data silhouettes. (b) Model silhouette warped by

computed thin-plate spline transform. (c) Warped model silhouette overlayed on original image. We plan

to use results like these for further model-based body part analysis, ultimately leading to a sequence of 3D

body reconstructions.
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