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Abstract 
Sensing three-dimensional shape is a central problem in the 

development of robot systems for autonomous navigation and ma- 
nipulation. Stereo vision is an attractive approach to this problem 
in several applications; however, stereo algorithms still lack relia- 
bility and generality. We address these problems by modelling the 
stereo depth map as a discrete random field, by formulating the 
matching problem in terms of Bayesian estimation, and by using 
this framework to develop a “bootstrap” procedure that employs 
fine camera motion to initialize stereo fusion. First, one camera 
is translatd parallel to the stereo baseline to acquire a narrow- 
baseline image pair; then. the depth map obtained from the narrow- 
baseline image pair is used to constrain matching in a “wide- 
bseline” image pair consisting of one image from each camera. 
T L result of our procedure is an estimate of dcpth and depth 
u,,certainty at each pixel in the image. This approach produces 
accurate depth maps reliably and efficiently, applies to indoor and 
outdoor domains, and extends naturally to multi-sensor systems. 
We demonstrate the potential of this approach by showing results 
obtained with scale models of difEcult, outdoor scenes.123 

1 Introduction 
The ability to sense 3-D shape is essential in many appli- 
cations of autonomous robots. Stereo vision is an attrac- 
tive approach to 3-D sensing, particularly in applications 
involving highly textured environments (e.g. outdoor nav- 
igtion) or requiring a non-emitting, non-scanning, or non- 
mechanical sensor. Although there has been considerable 
success in using stereo for components of the 3-D sens- 
ing problem 14. 9, 10, 18, 25, 28, 301. there is not yet an 
adequate paradigm for estimating shape (Le. depth) from 
stereo image sequences in contexts where simple, feature- 
I .;ed primitives do not apply. To obtain such a paradigm, 
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one must consider both the mathematical formulation of the 
depth estimation problem and the system issues involved in 
obtaining an efficient, reliable solution. 

The principal distinction to be made in formulating the 
problem is between featwe-based and pixel-based models 
of depth. Feature-based models employ simple, geometric 
primitives such as line segments and planar patches. Statis- 
tical formulations of feature-based depth and/or motion esti- 
mation are discussed in [2,9, 11. 18, 313. Such models are 
appropriate for simple, well-structured environments con- 
sisting of man-made objects, but lack representative power 
in complex domains. Pixel-based models represent depth at 
each pixel in the image. Statistical formulations of pixel- 
based depth estimation, using random field models of the 
depth map, have been presented in [14, 19, 261. Pixel- 
based depth models promise more generality than feature- 
based models; however, much remains to be done on both 
mathematical and system aspects of this approach. 

The central “system” issue is how to find stereo cor- 
respondences efficiently and reliably. There are two types 
of approach: those that constrain depth estimation through 
heuristic assumptions about surface shape, in particular as- 
sumptions about local smoothness [4, 13, 23, 25, 27, 301, 
and those that obtain constraint by augmenting the scnsor, 
in particular by using redundant images. Redundant im- 
ages can come from trinocular camera systems [21. 251, 
fine-motion image sequences [3, 191, or the use of fine mo- 
tion to initialize stereo fusion [81. Redundant sensing is 
the more effective of the two types of approach; however, 
questions remain about which sensing strategy is the most 
effective, about how to formulate the matching problem 
for a given sensing strategy, and about how to perform the 
search for optimal depth estimates. 

This paper combines a promising approach to formu- 
lating pixel-based depth estimation with an effective, redun- 
dant sensing strategy to obtain efficient, reliable algorithms 
for estimating depth for complex scenes. The approach 
models the depth map as a random field, employs area- 
based image similarity measurements, and formulates the 
matching problem in Bayesian terms. The sensing strat- 
egy uses line camera motion to initialize stereo fusion by 
obtaining a narrow-baseline image pair through motion of 
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Figure 1: Acquiring and matching images in the bootstrap 
operation 

one camera, then by using depth estimates from this image 
pair to constrain matching of a wide-baseline image pair 
ollained with both cameras (figure 1). This "bootstrap" 
operation realizes one of the goals of "active vision" [l] 
by controlling the sensor to assist the scene interpretation 
process. 

The following section outlines the overall approach 
at greater length. Sections 3 and 4 present the details of 
the formulation and the matching algorithm. Section 5 
shows results obtained with scale models of difficult, out- 
door scenes; these results demonstrate the potential of the 
approach. 

2 Approach 
At an intuitive level, the core of our approach is the use of 
small-area correlation to estimate depth at each pixel. Dis- 
parities computed to sub-pixel resolution with the narrow- 
baseline image pair are used to predict disparities for the 
wide-baseline image pair. Search windows for the wide- 
baseline image pair are obtained from error margins applied 
1, the narrow-baseline disparity estimates. 

At a more formal level, we formulate the bootstrap 
operation as a statistical estimation problem, following the 
standard methodology outlined in [201. The variables to be 
estimated are the depth at each pixel in the image, which 
we denote by the vector d. Uncertainty enters the problem 
through noise in the images and through probabilistic prior 
information that may be available about d. We model the 
prior information as a prior probability density for d (i.e. 
we model the depth map as a discrete random field), use 
Bayes' theorem to derive a posterior density for d, and use 

the MAP criterion to define optimal disparity estimates. The 
error variance of the disparity estimate at each pixel models 
the uncertainty of the estimate at that pixel. 

The estimation problem can be formulated indepen- 
dently for each pixel, jointly for all pixels in each scanline 
(i.e. jointly in 1-D), or jointly for all pixels in the image 
(jointly in 2-D). In this paper, we examine only the indepen- 
dent case at a single scale of resolution. Joint cases are ex- 
amined in [15,16]. Section 3 reviews maximum-likelihood 
(ML) disparity estimation, based on intensity comparisons 
within a window, and derives the variance of the estimation 
error. Section 4 extends the ML formulation to Bayesian 
matching for the bootstrap operation. 

3 Basic ML Image Matching 
In this section, we review a basic formulation of ML dispar- 
ity estimation based on intensity comparisons within small 
windows. This allows us to derive a model of uncertainty in 
the disparity estimate at each pixel and to show that corre- 
lations can exist between disparity estimates at neighboring 
pixels. It also sets the stage for extension to the Bayesian 
formulation of the following section. The derivation in this 
section is similar to derivations in P, 24, 291. For simplic- 
ity, we formulate the problem for 1-D images; the extension 

We model the left (Il)  and right ( I t )  images of a stereo 
pair as displaced versions of the same deterministic signal, 
with noise added to each image. Thus, 

to 2-D is Straightforward. 

If(X) = w + n f ( x )  
I&) = I ( x  + d(x)) + n&) 

where I is the underlying deterministic signal, d is the dis- 
placement or dkparify between images 11 and Ir, and nr and 
n, model the noise. In this paper, we assume that nr and nr 

are stationary, Gaussian white sequences with variance uf 
and ~7,". respectively. 

To find the disparity at pixel I~(x i ) ,  we compare a suit- 
able representation of the intensity variation in a region 
around Ir(xi) to regions of I T .  In this paper, the represen- 
tation is the image itself and the comparison is just the 
intensity difference in a window around Assuming 
that disparity is constant over the window, this gives a set 
of intensity errors 

where dxj indexes pixels in the window. We express the 
observations e(xi + kj; d) together as the vector 

where n is the sue of the window. Under the noise model 
above, the joint p.d.f. of e is 

e(xi + &j; d) = [,(xi + &j - 6) - I&i + &j) 

e(xi; S) = [e(xi + 4,. . . , e ( ~ i  + AX,,; 

1 exp (--e..) 1 (1) 
202 f(e16) = (2+Z0 

4 0 ~ e r  represenlaUons, such as outputs of a set of band-pass fillers 
(121, may offer advantages in dealing with the issue of scale. 
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where uz = u:+u$ is the sum of the noise variances in both 
images. An ML disparity estimate maximizes (l), which 
is equivalent to, minimizing the quadratic form eTe in the 
exponent. This is the familiar “squared intensity difference” 
matching criterion. This can be generalized by defining the 
image comparison in terms of multiple, filtered versions of 
the image. For one such approach, see [12]. 

For digital images, we estimate disparity in two steps. 
First, we evaluate eTe for every discrete d in a predefined 
search range to find the minimum to pixel resolution. This 
yields an initial estimate do of d at pixel resolution. Then, 
we obtain an estimate of d to sub-pixel resolution by taking 
a first-order expansion of e about d = do. This yields 

af(xi + A x j  + d - do) 
bd + A x j )  + (d - do) 

- f(Xi + &j) + nr(xi + k j  - do) - nl(xi + Axj)  
= P ( x ~  + &j)(d - &) + nr(xi + A x j  - do) - nr(xi + h j )  

Since the noise terms are modelled as white, n,(xi + A x j  - 
do) - nr(xi + Axj) can be abbreviated to n(xj + Ax,), where 
UG variance o f n ( x i + h j )  is 9. Collecting all e(xi+&j; 4, 
I‘(xi + Axj). and n(xi + Axj )  into the vectors e. J, and n. we 
obtain 

e x J(d - do) + n 
For implementation, the derivatives I’ are estimated from 
I / .  Since I1 is noisy, the derivative estimates will also be 
noisy; this can be moderated by smoothing the image before 
differentiation. 

With the linearized model of e. the conditional density 
of e is 

Taking the log of this and setting the dcrivative with respect 
to d to zero, we obtain the disparity estimate 

-. JTe d = d o + -  
JTJ 

This can be iterated to refine the estimate. In practice, iterat- 
ing will require estimating the intensity errors e at positions 
between pixels. This can be done by fitting curves to the 
discrete intensity image. 

The uncertainty in the disparity estimate is expressed 
by the variance of the estimation error, E [ a 2 ]  = E[(d - 
a21. Assuming ^d is unbiased ( E [ a  = d), standard error 
propagation techniques 1201 lead to the following estimate 
of the error variance: 

h 

As discussed in [291, this expression is actually a lower 
bound on the error variance. 

relates the precision of the 
disparity estimate to the noise level u2 and the “edginess” 
of the images, as expressed by the squared intensity deriva- 
tives J*J [7]. This model of disparity uncertainty at each 
pixel in the image is valuable in the context of the bootstrap 
operation, as well as in larger system contexts where the un- 
certainty model may be important in constructing scene de- 
scriptions or in motion planning. Furthermore, the deriva- 
tives can be computed from fI before attempting to match, 
so the variance estimate can be used as an interest opera- 
tor to decide where matching should be attempted 16, 221. 
Finally, the overlap of matching windows for nearby pix- 
els will cause disparity estimates to be correlated for pixels 
separated by distances T 5 w. where w is the width of the 
matching windod. The existence of this correlation is one 
motivation for joint formulations of the matching problem. 

The variance estimate 

4 Bayesian Image Matching 
The ML formulation is appropriate when the only prior in- 
formation about disparity is given by a fixed search interval. 
If prior information is available in the form of a Gaussian 
prior density at each pixel, a Bayesian approach can be 
formulated that leads to weighting the search interval with 
a quadratic penalty function obtained from the prior den- 
sity. This situation occurs when initial depth estimates are 
available either from previous images, as in the bootstrap 
operation, or from another sensor. In this section, we for- 
mulate a single-scale, Bayesian approach to the bootstrap 
operation, treating the depth at each pixel as independent 
from other pixels in the depth map. 

The images and matching steps of the bootstrap oper- 
ation were illustrated in figure 1. We assume that the left 
camera acquires image fb ,  moves to acquire image fll, and 
that the right camera acquires image I,. We model these 
images as follows: 

Ib(x)  = I ( x  - d(x)) + nb(x) 

Itl ( 4  = 4x1 + nl, (4 
I&) = f(x + kd(x)) + n,(x) 

Here d is the disparity function and the constant k is the 
ratio of the disparity between f b  and f j ,  to the disparity 
between 11, and I,. 

To estimate disparity at pixel xi in image Ill. we ob- 
serve intensity differences between the images as in section 
3. Denoting observed intensity errors between I ,  and I,, as 
et1 and between fll and I, as el, and assuming that dcx) is 
constant in a small region around xi, we obtain 

err(xi + h j ;  4 
+ d x j ;  d) 

= 
= 

I,,,(xi + A x j  + 6) - fI,(xi + aXj> 
Ir(Xi + a X j  - kd) - Ill (xi + &j) 

’The presence of correlated noise in the images would also induce 
Correlation in the disparity estimates. 
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Figure 2 Bayesian matching for a single pixel. Curve Cp 
represents the quadratic cost term from the prior density; 
CL illustrates the intensity error term. Local minima of CL 
define candidate disparities. 

We denote the intensity errors in a region around xi by the 
vectors ell and el,, respectively. To derive the estimator, we 
will extend the ML formulation of section 3 to a Bayesian 
formulation for the narrow-baseline image pair, then extend 
this result to the wide-baseline image pair. 

4.1 Statistical Formulation for IIo and Ill 
To estimate the disparity d at a single pixel, we use Bayes' 
Ucorem 

to obtain the conditional (posterior) density of d,  given 
err, in terms of the joint densityf(e11,d) and the marginal 
densityf(eu). Optimal estimates of d will be defined by 
the maximum posterior probability (MAP) criterion. For a 
given set of observations ell, the marginal density in the de- 
nominator is a constant normalizing term that is not needed 
to obtain our results. We assume that any prior informa- 
tion about d comes from external sources, such as a laser 
scanner or a map database, and is independent of the image 
noise. 

We assume the prior information can be modelled by 
a Gaussian density with mean 2- and variance s-; that is, 

\ 'hen prior information about d is independent of the im- 
ages, the conditional density is the same as in section 3: 

1 
f(err(d) 0~ exp{- - eTerr} 

With the MAP criterion, the optimal estimate of d maxi- 
mizesf(dlelJ, which is equivalent to maximizing the log- 
likelihood 

2a2 I1 

where K is a constant. We obtain disparity estimates to pixel 
resolution by maximizing this expression over d; equiva- 
lently, by minimizing the expression in braces: 

1 (d - ̂d-)2 - eT ell + 
6 2  S- 

(3) 

This is just a combination of the intensity error term of the 
previous section, weighted by the inverse noise variance, 
with a quadratic penalty for deviation from the prior esti- 
mate, weighted by the variance of the prior estimate. Figure 
2 illustrates this by plouing the quadratic term (curve Cp) 
and the intensity error term (CL) as a function of dispar- 
ity. The latter may have several local minima, as shown 
in the figure. Intuitively, we can view the local minima 
of CL as defining candidate disparities and the prior term 
as influencing which candidate is considered optimal. Our 
implementation does exactly that by evaluating (3) only at 
local minima of CL. The best local minimum according this 
criterion defines the disparity estimate to pixel resolution, 
denoted by do. 

Sub-pixel disparity estimates are obtained by lineariz- 
ing the observed intensity errors as in section 3. Expanding 
e11 about & yields 

The negative sign on 1' reflects the fact that the disparity 
between f1, and fb has the opposite sign from the disparity 
between II,  and f,. Letting J be the vector of derivatives 
over a window around X i  and letting no and n1 be the corre- 
sponding noise vectors, the linearized measurement vector 
is 

Subs ti tuting 
a l / a d  = 0, 
timate 

A 

d i  = 

- - 

this approximation for e11 into (2). setting 
and solving for d produces the disparity es- 

Note that (do + JTerr/JTJ) is the linearized ML estimate and 
that JTJ/u2 is the corresponding error variance. Denoting 
these terms by &L and uhL gives 

Thus, 2; is a weighted combination of the prior estimate 
2- and the ML estimate &L. where &L is computed by 
linearizing about the best pixel-resolution disparity. As in 
section 3, this process may be iterated to further refine the 
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disparity esimate;The form of (5) suggests the simplifica- 
tion %f iterating dMLAto convergence, then combining this 
with d- to compute d;. 

By completing squares in the exponent of f(e&i)f(d),  
it can be shown [SI that ;ilf as above is the mean of the 
posterior density f(dleu) and that the posterior variance is 

1 1-1 

(7) 

Therefore, si is the variance of the estimation error in 2;. 
To summarize, we modelled the prior density of d at 

each pixel as Gaussian, with mean 2- and variance s-. 
Using the conditional densityf(e1l)d) from section 3, we 
derived the log-likelihood 4(d). Local minima of the inten- 
sity error term of t(d) define a set of disparity candidates at 
pixel resolution; the candidate for which (3) is minimal be- 
comes the initial disparity estimate do. Linearizin~ en about 
do then leads to estimates of the posterior mean d; (5) and 
variance s;I (7) of d,  which define the “best” estimate of d 
and the variance of the estimation error. If there is no prior 
information, s- is infinite and the equations reduce to the 
ML estimator. 

Applying this procedure to each pixel in Zt, provides 
an estimate of the entire disparity field. This will not be 
meaningful in regions of the image with negligible inten- 
sity variation. Since C& can be computed before match- 
ing, such regions can be detected by thresholding uiL and 
matching only those pixels within threshold. 

4.2 Statistical Formulation for Ifl and I, 
The disparity field estimated from the narrow-baseline im- 
age pair determines the prior density for matching the wide 
baseline image pair. Therefore, what were the posterior 
mean and variance, & and st;. now become the prior mean 
and variance, 2; and s; . The observed intensity errors for 
th is  image pair are 

The appropriate form of Bayes’ theorem is 
e&i + &j; d) = Zr(Xi + d x j  - k d) - Zl1 (Xi + h j )  

The conditional density f(eblell, d) is somewhat more com- 
plex than the density f(euld) for the narrow-baseline case. 
In this paper, we avoid the extra complexity by treating 
Llic narrow-baseline depth estimate as if it were also from 
an external source; that is, we ignore correlations between 
it and the noise in image fll. With this simplification, the 
derivation of the estimator is very similar to the previous 
case. Collecting the observations over the area of the match 
window into the vector elr, the MAP estimate to pixel res- 
olution minimizes 

This expression is used to determine the best disparity es- 
timate to pixel resolution in the same manner as before. If 
there is no prior information for the narrow-baseline case 
(i.e. s- = 00). then s; = d / J T J  and the above expression 
becomes 

(9) 

This version is useful if the variance of the image noise is 
not well known, because then a2 factors out of both terms 
and does not affect the match decision. Minimizing (8) or 
(9) produces the initial disparity estimate 4. 

Sub-pixel precision again is obtained by linearizing 
about 41. Expanding e&. we obtain 

Following through the MAP derivation of equations (2) 
through (7) leads to the following disparity estimate and 
error variance: 

-1  

In (lo), the term (&+JTeb/JTJ) is the ML disparity estimate 
for this image pair; the factor of (Ilk) scales the correction 
term so that the disparity estimate is in units of the nartow 
baseline. Likewise, the term (k2 JTJ/u2) is the inverse of 
ML error variance, scaled into units of the narrow baseline. 
Therefore, we can rewrite (10) as 

which shows that the disparity estimate is again a weighted 
combination the prior estimate and a new measurement ob- 
tained from images It, and I,. The weight of k 2  attached to 
the new measurement reflects the longer baseline used to 
obtain it. 

If no prior information is available for matching the 
narrow-baseline image pair (s- = 00). (10) and (1 1) reduce 
to 

1 
k 2 + l  

That is, the new disparity estimate is a weighted cohbi- 
nation of two measurements obtained with baselines in the 
ratio of k : 1, which results in a weight ratio of k 2  : 1. Note 
that if k = 1 (equal distances between both pairs of images), 
then the posterior disparity estimate is just the average of 
the two measurements and the posterior variance is half that 
of the measurements, as we would expect. 
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To summarize, we took the somewhat sub-optimal ap- 
proach of applying the same estimator to the wide-baseline 
image pair as we did to the.narrow-baseline image pair. An 
initial disparity estimate at pixel resolution is obtained 
by minimizing (8). From this. the disparity sub-pixel es- 
timate and the error variance are obtained from (10) and 
(11). The disparity estimate can be iterated as described in 
section 3. We also showed simpler forms of the equations 
tl at result when s- = 00. Finally, it can be shown that the 
obtimal estimator leads to different weights for the terms 
comprising & and to a smaller final variance. We will not 
discuss the details here. 

4.3 Overall Algorithm for the Bootstrap Op- 
eration 

The entire algorithm for estimating depth from the narrow 
and 

0 

e 

e 

wide-baseline images consists-of the following steps: 
Compute from image II, and threshold it  to deter- 
mine which pixels to match. 
Match the narrow-baseline image pair for pixels within 
threshold. If prior information consists of dispar- 
ity limits, use the ML operator, otherwise, use the 
Bayesian operator. Compute sub-pixel disparity esti- 
mates by linearization and iteration. 
Match the wide-baseline image pair. In principal, 
search windows for this step could be established by 
deriving confidence limits from the prior estimate and 
centering the resulting range around the prior mean. 
In practice, we take a more conservative approach by 
searching fixed disparity intervals. These either span 
the entire range of disparities known to be present in 
the image, or they are derived fmm fixed error margins 
applied to the narrow-baseline disparity estimates (gen- 
erally f 0.5 to 0.7 pixels). Within the search interval, 
we use the Bayesian operator and compute sub-pixel 
disparity estimates. 

The results of this procedure are estimates of disparity. com- 
puted to sub-pixel resolution, and e m r  variance for each 
pixel within threshold of the interest operator. 

4.4 Discussion 
This algorithm is simple and efficicnt, becausc it estimates 
dcpth independently for each pixel. To be reliable, it re- 
quires appropriate choices of the narrow and wide base- 
lines. This makes the choice of baseline, especially au- 
tomating choice, an important problem. To date, we have 
made this choice manually. The noise model used here is 
probably too simple for real images; however, it provides 
a useful starting point for algorithm development and does 
lead to reasonable performance. The independent approach 
to matching can be generalizcd to joint formulations that 
couple the disparity estimates at neighboring pixels. These 

formulations require a more global optimization algorithm. 
This issue is discussed at greater length in section 6. 

5 Results 
Two issues to evaluate concerning the statistical formulation 
and the resulting matching algorithm are whether or not 
the algorithm finds correct matches and whether or not the 
model of disparity uncertainty accurately reflects the true 
error distribution. In this paper, we examine only the former 
issue. Images for the experiments described below were 
obtained in the Calibrated Imaging Lab (CIL) at CMU by 
translating a single camera (Sony XC-37 with 16mm lens) 
to simulate a stem system. The baselines were quite small 
due to the scale-model nature of the scenes employed. 

First, we show results obtained with images of the flat 
calibration grid shown in figure 3a The repeated pattern 
of the grid tests how effectively the algorithm distinguishes 
between correct and incorrect matches. Figure 3b shows the 
cost curves Cp (dashed line), CL (dotted line), and their sum 
(solid line). as a function of disparity, for a particular pixel 
in the image. The cocrect disparity is about 24 pixels. The 
prior estimate (minimum of the Cp curve) is very close to 
correct and was obtained with a narrow baseline one-tenth 
the size of the wide baseline. The solid curve (Cp + Ct) 
illustrates the effect of the prior term on the overall cost 
Clearly, some disambiguation of the multiple local minima 
occurs. though it is difficult to judge from one example how 
significant the effect is. 

Figure 3c shows histograms of the inverse depth (1/Z) 
for all matched pixels, computed with the ML matcher. 
The dotted and solid curves are histograms of estimates 
obtained from the namow and wide-baseline image pairs, 
respectively. The histogram for the narrow-baseline pair 
has a single peak, reflecting very few matching errors, but 
is much broader than the main peak for the wide-baseline 
pair. This reflects the relatively lower precision of the depth 
estimates due to the smaller baseline. For the wide base- 
line image pair, s m h  windows spanned four lines of the 
calibration grid, so four disparity candidates were found 
for most pixels in the image. Thus, the multiple peaks 
of the histogram reflect matching errors. Figure 3d shows 
the inverse depth histogram computed for the wide-baseline 
image pair using the Bayesian matching algorithm. Almost 
all matches are now c o m t ,  so the extra peaks have disap- 
peared. Empirically, we conclude that the MAP cost func- 
tion successfully discriminates between multiple disparity 
candidates. The discriminatory power will depend on the 
precision of the prior (narrow-baseline) estimate, whidh in 
turn depends on the magnitude of the intensity derivatives 
r' and the narrow-to-wide baseline ratio. Analyzing these 
effects is beyond the scope of this paper. 

Next, we show results from complex scenes to give 
a qualitative demonstration of the effectiveness of the al- 
gOnIhm. Figures 4a and 4b show the left ( I J , )  and right 
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Figure 3: Grid image and matching results 

(a) Grid image: I l , .  (b) Cost curves for matching a typical pixel: CP (dashed), CL (dotted), C p  + CL (solid). ContraSting i 

the dotted and solid curves illustrates the disambiguating effect of Cp. (c) Inverse depth histograms for narrow (dotted) 
and wide (solid) baseline pairs, with ML matcher only. The three small peaks in the solid curve are matching errors. (d) 
Histogram for wide-baseline pair with Bayesian matcher. No erroneous peaks remain. 
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Figure 4: Views of CIL 1 data set 

(a) Left image: 11,. (b) Right image: Ir.  (c) Oblique view. (d) Floorplan sketch showing layout of the main buildings vi$ible 
in the left image. 
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Figure 5: Results with CIL 1 data set 
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(a) Effect of interest operator: unmatchable pixels are black. (b) Wide-baseline depth map for ML only. (c) Wide- 
baseline depthmap for bootstrap algorithm (Bayesian matcher). (d) Projection of the bootstrap depthmap onto the ground 
plane. Groups of points correspond to the front faces of buildings, the trees on the hillside, and the calibration grid d the 
background. 
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Figure 6: Views of CIL 2 data set 

(a) Left image: 11,. (b) Right image: I,. (c) Oblique view. (d) Floorplan sketch showing layout of the main buildings vi$ble 
i.. the left image. 
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Figure 7: Results with CIL 2 data set 

(a) Wide-baseline depth map for ML only. (b) Wide-baseline depthmap for bootstrap algorithm (Bayesian matcher). (c) 
Interpolated and segmented dcplhmap. (d) Left image (11,) with segmentation boundaries overlaid. The major units of the 
scene are distinguished quite well. 
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(Ir) images of the wide-baseline image pair for scene “CIL 
1“. The baselines were 0.135 and 1.35 inches, which gave 
disparities between 5% and 10% of the image width for 
the wide-baseline image pair. Figures 4c and 4d give an 
oblique view and a floorplan sketch to show how the main 
buildings are situated. The scene contains strong highlights, 
fine structural detail, and many repeated patterns. 

Figure Sa shows the result of the “interest operator”, 
with unmatchable pixels shown in black. Figure 5b shows 
the depth map computed via ML, with 5 x 5 windows, from 
the wide-baseline image pair. Search windows in this case 
spanned the full range of disparity in the image (5%-10% 
of the image width). Mismatches occur in many places, 
pluticularly on the railroad tracks, the repeated patterns on 
building faces, the calibration grid in the background, and 
on some occluding boundaries. Figure 5c shows the wide- 
baseline depth map from the bootstrap operation. Very few 
errors remain, with many of those occurring at occluding 
boundaries. Figure 5d projects the pixels from this depth 
map onto the ground plane. Each group of points corre- 
sponds to the surface of a building, to the trees on the hill- 
side, or the calibration grid behind the scale model. This 
can be compared with the floorplan to see that, quantita- 
tively, the depth estimates are quite accurate. 

Figures 6 and 7 show another data set (“CIL 2”) and 
corresponding results. Again, there is a marked difference 
between the wide-baseline depth maps estimated with and 
without the constraint afforded by the narrow-baseline es- 
timates. To beuer visualize the results. we interpolated the 
wide-baseline depth map of figure 7b, then thresholded the 
surface slant to roughly segment the scene at occluding 
boundaries. Figure 7c shows the segmented depth map, 
with boundaries shown in black, and figure 7d overlays 
the boundaries on the original intensity image. All major 
components of the scene are separated well, including the 
buildings, the trees above and behind the buildings, and the 
background calibration grid. 

6 Conclusions and Extensions 
In this paper, we argued that pixel-based representations 
of depth (i.e. depth maps) promise more generality than 
feature-based representations. We also argued that redun- 
dant sensing strategies will lead to more robust depth esti- 
mation than the use of heuristic assumptions about surface 
shape. We put these arguments into practice by develop- 
ing an approach to “bootstrapping” depth map estimation 
with nmow and wide-baseline images. We formulated the 
bootstrap operation statistically by modelling uncertainty 
in the depth map estimated from the narrow-baseline im- 
agz pair, then by using this uncertainty model to determine 
the prior density in a Bayesian approach to matching the 
wide-baseline image pair. The Bayesian formulation led to 
quadratic penalty functions that help to disambiguate multi- 
ple match candidates in the wide-baseline images. The end 

result is a single-scale, area-based matching algorithm that 
estimates depth independently for each pixel in the image. 
The algorithm is simple, efficient, and produces very good 
depth maps for scale models of difficult, outdoor scenes. 

The model of uncertainty in the disparity estimate at 
each pixel is valuable both in formulating the bootstrap al- 
gorithm and as a basis for “sensor fusion” in the context 
of multi-sensor systems and inmmental construction of 3- 
D scene descriptions. The formulation used here, which 
implicitly models the depth estimate at each pixel as statis- 
tically independent from other pixels, is a special case of 
more general random field models of the depth map [15, 
261 and joint Bayesian formulations of the stereo matching 
problem [15, 163. Whereas previous Bayesian approaches 
to stereo have obtained the prior density from heuristic, 
surface-smoothness considerations [IS], the bootstrap op 
eration has the conceptual and practical advantage that the 
prior density for the wide-baseline image pair is derived 
from measurements of the current scene. 

We conclude that the area-based approach, the boot- 
strap operation, and the statistical formulation employed 
here are successful and promising techniques for depth es- 
timation in structured or unstructured environments. Much 
work remains to be done, including automating the choice 
of baselines in the bootstrap operation, examining the valid- 
ity of the uncertainty model quantatively (see [17]). exam- 
ining joint estimators, and considering multi-scale matching 
algorithms. Finally, we believe that the approach here will 
provide a usehl starting point for estimating depth contin- 
uously from stem image sequences. 

Acknowledgements 
This work has benefited from discussions with Alberto 
Elfes, Radu Jasinschi, Takeo Kanade. Richard Stem, Rick 
Szeliski, and Carlo Tomasi. 

References 
[l] J. Aloimonos, I. Weiss. and A. Bandyopadhyay. Active vi- 

sion. In Proc. First International Co@erence on Computer 
Vuion. pages 35-54. IEEE Computer Society Press, 1987. 

[2] N. Ayache and 0. D. Faugeras. Building, registrating, and 
fusing noisy visual maps. International Journal of Robotics 
Research, 7(6):45-65. December 1988. 

[3] H. H. Baker and R. C. Bolles. Generalizing epipolar-plane 
image analysis on the spatiotemporal surface. In Proceedings 
of the DARPA Imge Understding Workrhop. pages 1022- 
1030, Morgan Kaufmann Publishers, April 1988. 

[4] S. T. Barnard. Stochastic stereo matching over scale. Infer- 
national Journal of Compufer Vision, 3(1):17-32, May 1989. 

[5] M. H. DeGroot Optimal Statistical Decirionr. McCraw-Hill 
Book Co.. New York, NY. 1970. 

[6] W. Forstner. Personal communication. 1988. 
[7] W. Forstner and A. Pertl. Photogrammetric standard meth- 

ods and digital image matching techniques for high precision 



To appear in SPIE Con$ 1198, "Sensor Fusion II: Human 

surface measurements. In E. S. Gelsema and L. N. Kanal. 
editors. Pattern Recognition in Practice II, pages 57-72. El- 
sevier Science Publishers, 1986. 

[8] D. Geiger and A. Yuille. Stereopsis and eye-movements. In 
Proc. Ist I d 1  Cot$ on Computer Vision, pages 306-314. 
IEEE, June 1987. 

[9] D. B. Gennery. Stereo vision for the acquisition and tracking 
of moving threedimensional objects. In A. Rosenfeld, ed- 
itor, Techniques for 3-0  Machine Perception. pages 53-74. 
Elsevier Science Publishers, 1986. 

[lo] C. Hansen. N. Ayache, and F. Lustman. Efficient depth esti- 
mation using trinocular stereo. In Proceedings of SPIE Con- 
ference 1003, Sensor Fusion: Spatial Reasoning and Scene 
Inferpietation. pages 124-131. SPIE. November 1988. 

[ll] Y. Hung, D. B. Cooper, and B. Cemushci-Frias. Bayesian es- 
timation of 3 4  surfaces from a sequence of images. In Proc. 
IEEE CorJerence on Robotics and Automation, pages 906- 
911, IEEE. April 1988. 

[12] M. Kass. Computing visual correspondence. In A. P. Pent- 
land, editor, From Pixels to Predcates: Recent Advances in 
Computaiional and Robotic Vision. chapter 4, pages 78-92, 
Ablex Publishing Corp.. Norwood, N. J., 1986. 

[13] D. Marr and T. Poggio. Cooperative computation of stereo 
disparity. Science. 194:283-287. 1976. 

[14] J. Marroquin, S. Miner, and T. Poggio. Probabilistic solution 
of ill-posed problems in computational vision. Journal of 
the American Statistical Associaiwn, 82(397):76-89, March 
1987. 

1151 J. L. Marroquin. Probabilistic Solution of Inverse Problems. 
PhD thesis, Ml". September 1985. 

[16] L. H. Matthies. Dynamic Stereo Vision. PhD thesis, Carnegie 
Mellon University, 1989. 

[17] L. H. Matthies and A. Elfes. Probabilistic estimation mech- 
anisms and tesselated representations for sensor fusion. In 
SPIE Conference 1003, Sensor Fusion: Spatial Reasoning 
and Scene Interpretation. SPIE. November 1988. 

[18] L. H. Matthies and S. A. Shafer. Error modeling in stereo 
navigation. IEEE Journal of Robotics and A u l o ~ i o n ,  239- 
248, June 1987. 

[19] L. H. Matthies, R. Szeliski, and T. Kanade. Kalman filter- 
based algorithms for estimating depth from image sequences. 
Iniernationl Journal of Computer Vision, 3:209-236, 1989. 

[201 P. S. Maybeck. Stochastic Models. Estimation, and Coturol. 
Volume 1, Academic Press, New York, NY, 1979. 

1211 V. I. Milenkovic and T. Kanade. Trinocularvision using pho- 
tometric and edge orientation constraints. In Proc. DARPA 
Image Understding Workrhop. December 1985. 

1221 H. P. Moravec. Obsiacle avoidance and navigation in the 
real world by a seeing robot rover. PhD thesis, Stanford 
University, September 1980. 
T. Poggio, V. Torre, and C. Koch. Computational vision and 
regularization theory. Nafure, 317(n):314-319, September 
1985. 
T. W. Ryan, R. T. Gray, and B. R. Hunt. Prediction of 
correlation errors in stereo-pair images. Optical Engineering, 
19(3):312-322. May/June 1980. 

and Machine Strategies". Nov. 1989, Philadelphia. PA 13 

1251 C. V. Stewart and C. R. Dyer. The trinocular general support 
algorithm: a threecamera stereo algorithm for overcoming 
binocular matching errors. In Proc. Second Int'l Cot$ on 
Compufer Vision. pages 134-138. IEEE December 1988. 

[26] R. Szeliski. Bayesian Modeling of hccrtahty in L6y Lewl 
Vision. PhD thesis, Carnegie Mellon University, August 
1988. 

[27] R. Szeliski and G. Hinton. Solving randomdot stereograms 
using the heat equation. In IEEE Cog .  on Computer Vision 
and Pattern Recognitwn, pages 284-288. IEEE. 1985. 

[28] D. Tenopoulos. A. Witkin. and M. Kass. Energy constraints 
on deformable models: recovering shape and non-rigid mo- 
tion. In Proceedings of AAAI-87, pages 755-760, AAAI, 
1987. 

[29] H. L Van Trees. Detection. E s h a i w n ,  and Modulatwn 
Theory. Volume L John Wiley and Sons, New York, 1968. 

[30] A. Witkin, D. Terzopoulos, and M. Kass. Signal matching 
through scale space. Intermwml J o u r d  of Computer vi- 
swn, 1(2):133-144. 1987. 

1311 H.-J. Wunsche. Detection and control of mobile robot mo- 
tion by real-time computer vision. In Proc. COP$ on Mobile 
Robots, SPIE, October 1986. 


