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Abstract 

We previously presented a framework for segmentation of complex scenes using multiple physical hypotheses for 
simple image regions. A consequence of that framework was a proposal for a new approach to the segmentation of 
complex scenes into regions corresponding to coherent surfaces rather than merely regions of similar color. Herein 
we present an implementation of this new approach and show example segmentations for scenes containing multi- 
colored piece-wise uniform objects. By using this new approach we are able to intelligently senwent scenes with 
objects of greater complexity than previous physics-based segmentation algorithms. The results show that by using 
general physical models we can obtain segmentations that correspond more closely to objects in the scene than seg- 
mentations found using only color. 



Figure 1 Complex scene containing multi- 
ple materials and multi-colored objects 

Figu 

Figure 4 Image of an object, a reflected image 
of the object, and a photograph of the object. 

Section 1. Introduction 
Images containing multi-colored objects and multiple materials such as Figure 1 are difficult to understand and seg- 
ment intelligently. Simpler scenes like Figure 2 with only uniformly colored objects of known material t y p  can be 
segmented into regions that correspond to objects using color and one or two known physical models to account for 
color variations due to geometiy and phenomena such as highlights [I1 [71 [SI. Using these methods, a discontinuity 
in color between two image regions is assumed to imply discontinuities in other physical characteristics such as the 
shape and reflectance. 

Multi-colored objects. like the mug in Figure 3, violate this assumption. The change in color between two image 
regions does not necessarily imply a discontinuity in shape, illumination. or other characteristics. To correctly inter- 
pret more complex scenes such as this, multiple physical characteristics must be examined to determine whether two 
image regions of differing color belong to the same object. The most successful physics-based Segmentation methods 
to date do not attempt to solve this problem. Instead, they place strong restrictions on the imaging scenario they can 
address-<specially material type and illumination-to permit the effective use of one or two easily distinguished 
models [ I ]  141 [71[8]. 

The difficulty inherent in segmenting images with multiple materials and multi-colored objects is that by expanding 
the space of physical models considered for the shape. illumination, and material optics, a given image region can be 
described by a subspace of the general models: each point within this subspace is a valid explanation for the image 
region. In Figure 1, for example, the reflection of the bucket in the copper kettle may be pati of the kettle (copper 
reflecting colored illumination) or it could be a separate object (painted metal reflecting white illumination). Like- 
wise, the shadow on the large ceramic vase could be due to differing illumination or could be painted on the vase 
itself. Either is a valid explanation for the image region in isolation. 

Figure 4 is an even more graphic example of this. The boxes show three roughly identical image regions. The region 
on the right that is part of a photograph and the variation is due to changes in  the material properties (color and inten- 



sity). The variation in the middle region is due to the geometry of the object surface and the illumination. Finally, the 
variation in the left-most box is due to variation in the illumination over the surface of the mirror. 

Therefore, to segment an image with numerous possible materials, shapes, and types of illumination. we must select 
not only the model parameters, but also the models themselves. Furthermore. we have to realize that the image may 
be ambiguous; we cannot simply select a single hypothesis, hut must entertain several possibilities. In  other words. 
we can never expect to get the single correct interpretation of Figure 4 ,  only a possible correct interpretation. 

Model selection, OT instantiation has only recently been introduced to physics-based vision. Breton et al. have pre- 
sented a method for instantiating models for both the illumination and shape, however, they still consider only a sin- 
gle model for material type (Lambertian) (31. In [ I l l  we presented a framework for segmentation using multiple 
physical hypotheses for shape, illumination, and material properties, This framework was based upon the division of 
a model space comprised of general parameterizations of the transfer function. illumination, and shape into broad 
classes. or subspaces. By reasoning about these subspaces, we proposed a method for accepting or rejecting mergers 
between the hypotheses of adjacent regions. 

This paper describes an initial implementation of that framework using a limited set of those hypotheses. With this 
limited set, images containing multi-colored piece-wise uniform dielectric objects can be segmented so that the final 
segmentation more closely corresponds to objects in the scene than segmentations found using only color. 

In section 2 we summarize the fundamental hypotheses and show how the limited hypothesis set used in this imple- 
mentation fils into the general framework. In section 3 we then discuss direct instantiation of the hypotheses using 
analysis of individual image regions. We show that this is a very hard problem given existing vision tools. In section 
4 we present apartial solution to this problem by exploring physical invariants that measure the similarity of the ele- 
ments of adjacent hypotheses without requiring direct instantiation. Using these tools of analysis, in section 5 we 
show how a multi-level region graph can be created and used to find a set of segmentations for the image. Finally, in 
sections 6 and I we discuss the results of OUT segmentation method on two test images, discuss these results, and 
present some directions for future work. 

Section 2. Modeling Scenes 
Our model for a scene consists of three elements: surfaces. illumination, and the light transfer function or reflectance 
of a point or surface in 3-D space. These elements constitute the intrinsic churacteristics of a scene, as opposed to 
i m g e  features such as pixel values, edges, or flow fields [171. The combination of models for these three elements is 
a hypothesis of image formation. By attaching a hypothesis to an image region we get a hypothesis region: a set of 
pixels and the physical process which gave rise to them. When an image region has multiple hypotheses, we call the 
combination of the image region and the set of hypotheses a hypothesis list. 

Without prior knowledge of image content. no matter how an image is divided there are numerous possible and plau- 
sible hypotheses for each region. Variation in the color of an image region can be caused by changes in the illumina- 
tion, the transfer function, or both. Likewise, variation in intensity can be caused by changes in the shape, 
illumination, transfer function, or any combination of the three. Many algorithms (in particular shape-hm-shading) 
work because they assume the image variation is due to changes in only one element of the hypothesis (shape) [51. 

Section 2.1. Taxonomy of the Scene Mdel  
In 1111 we proposed a general parametric representation for each element of a hypothesis based upon the known 
physical parameters. Because of their generality, however, the raw paramemc models do not provide any guide to 
segmentation. Unlike the method of Breton et. al.,  there are too many parameters in our models to undertake a brute- 
force discretization of the space of possible models. Instead, we divide the parameter space into a set of broad classes, 
or subspaces. These subspaces are broad enough to allow coverage of a large portion of the general element models, 
and yet they provide enough specificity to allow reasoning about the relationships of adjacent hypothesis regions. We 
quickly review the broad classes for each hypothesis element. 

For this implementation, we limit the tansfer function’s parametric model to being piece-wise uniform over a sur- 
face. Our taxonomy then divides the transfer function into two classes: metals and dielectrics. Metals display only 
surface reflection, while dielectrics possess body reflection and possibly surface reflection as illustrated by Shafer 
1161. 
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Figure 5 36 feasible combinations of the 
broad classes for colored regions. The 14 
“common” hypotheses are bold-faced. 

Figure 6 12 Fundamental hypotheses for 
a whitelgrey region. The 6 “common” 
hypotheses are bold-faced. 

For illumination we identify three subspaces--in order of increasing complexity-which we term diffuse, uniform, and 
general illumination. The class diffuse illumination contains all illumination environments that have the same inten- 
sity and color from all directions. Diffuse illumination is a good approximation to objects in shadow or not directly lit 
[6]. The uniform illumination class contains all illumination environments whose representations are separable into a 
geometric component and a radiometric component, and whose geometric component takes on one of two values 
( l , ~ ] ,  where a could be 0. An example of uniform illumination is a point light source with ambient illumination of 
intensity a. Uniform illumination is a reasonable approximation of many man-made and natural light sources. All 
remaining possible illumination environments fall into the complex illumination class. We must include complex illu- 
mination because in some situations it is necessary to model illumination environments with both varying intensity 
and color (e.g.. when interreflection is present). 

We divide the shape into two subclasses--curved, and planar-because it separates the shape of the hypothesis into a 
highly constrained class (planar) and a more general class (curved). The planar class is highly constrained because it 
limits the number of free parameters for the surface patch to five: a unit vector and a point in 3-D space. It also 
strongly constrains the interaction of that hypothesis region with adjacent ones. 

Finally, we divide both the illumination and transfer function classes into colored and whitelgrey subclasses. By then 
considering all possible combinations of the broad classes we get 2 x 6 x 4 = 48 possible hypotheses. Note that 12 of 
these hypotheses can only explain a white or grey region as they contain no colored elements. Therefore, we must 
consider at most 36 possible hypotheses for a colored image region. 

Section 2.2. Fundamental Hypotheses 
This set of 36 possible combinations of the broad classes we define to be the set offundamental hypotheses for a col- 
ored region. The set of fundamental hypotheses are shown in Figure 5.  For a given region, each of these hypotheses is 
a valid explanation for its appearance in the image. 

The remaining set of 12 fundamental hypotheses, shown in Figure 6, explain white or  grey regions of an image. 
(Note: it is possible for a white region to be the result of colored hypothesis elements if the illuminant and the transfer 
function have inverse spectral curves, but we assume this is rare and does not occur in our image set). 

To denote a specific hypothesis we use the notation (<transfer function>, allurnination>. <shape>). The three ele- 
ments of a hypotheses are defined as: 
ctransfer function> E {Colored dielectric, White dielectric, Col. metal, Grey metal], 
<illumination> E (Col. diffuse, White diffuse, Col. uniform, White uniform, Col. complex. White complex], and 
ahape>  E (Curved, Planar). 

Of the set of 36 fundamental hypotheses for a colored region, we select a smaller, but representative subset of 14 
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hypotheses, highlighted in Figure 5 ,  to be considered as an initial set for each image region. The rules used to select 
these 14 hypotheses are: 

1 ,  If a subspace is both wmmon and a good approximation of a larger encompassing space, include the subspace 
and exclude the larger space. 

If a subspace is both uncommon and not a good approximation of a common larger space, exclude the subspace 
and include the larger space. 

Figure 8 Desired mergers of imple- 
mented hypotheses 

2. 

We can likewise select 6 of the 12 fundamental hypotheses for a white/grey region as highlighted in Figure 6. 

Section 2.3. Merging the Fundamental Hypotheses 
Using physical constraints and several rules, identified below, we can now create a table of all possible mergers of the 
subset of 14 colored hypotheses as shown in Figure 7. The key finding of this table is that it is sparse, strongly con- 
straining which hypotheses can be merged and considered to be part of the same object. 

The rules for merging are as follows. 

1. For adjacent hypothesis regions to belong to the same object the discontinuity between them must be a simple 
one and musl involve only om of the hypo#hesis elements. 

Hypotheses of different materials should not be merged (including differently colored metals). 

Hypotheses with incoherent shape boundaries should not be merged. 

Hypotheses of differing color that propose the physical explanation to be colored metal under white illumination 
should not be merged. 

5. Hypotheses proposing different color diffuse illumination should not be merged. 

For more discussion on the models, taxonomy, and fundamental hypotheses, see  [ I  I]. 

2. 

3. 

4. 

Section 2.4. Implementation details 
For our initial implementation of the segmentation method we consider the hypothesis set 

Hc = {(Colored dielechic, White Uniform, Curved), (Colored dielectric, White uniform, Planar)) 

for colored regions and the hypothesis set 

H, = {(white dielectric, White uniform, Curved), (White dielectric, White uniform, Planar) J 

for whitelgrey regions. We are in the process of expanding the size of these initial hypothesis sets to include more of 
the fundamental hypotheses. Currently a region is labeled as whitelgrey if 

(cnr ~ 0.333)’ + (cnE - 0.333)’ + (cab - 0 ~ 3 3 3 ) ~  < 0.0016. 

where (cnr cng. cub) is the average normalized color of the region defined by equation (1). 



The threshold was set based upon the images in the test set. As the set of hypotheses considered in our current imple- 
mentation all require white illumination. the exposure times for the different color bands were set so that a white 
board appeared white under the illumination used for the test images. This removed the need for color constancy and 
was found to be sufficient for white regions of the test objects to be classified as white using the above test. 

Finally, forthis implementation we only consider objects with piecewise uniform transfer functions, such as the mug 
in Figure 3 and the objects in Figure 9 and Figure 11. Figure 8 shows all of the potential mergers of the hypotheses we 
implement. 

Section 3. Initial segmentation 
To test the segmentation method, we use simple pictures of multi-colored objects on a black background. Figure 9 
and Figure 11 are two example test images. Figure 9 is a synthetic image created using Rayshade (a public domain 
ray tracer). Figure 11 was taken in the Calibrated Imaging Laboratory at Carnegie Mellon University. While obtaining 
the real image, an attempt was made to include examples of only the broad hypothesis classes used in this implemen- 
tation. 

The initial segmentation of images is accomplished using a simple region growing method with normalized color, 
defined by equation ( I ) ,  as the descriptive characteristic. Because the segmentation method emphasizes discontinui- 
ties between hypothesis regions, the initial segmentation method uses local information to grow the regions and stops 
growing when it reaches discontinuities in the normalized color. 

The algorithm traverses the image in scanline order looking for seed regions where the current pixel and all of its 8- 
connected neighbors have similar normalized color and none of these pixels already belong to another region or are 
too dark. When it finds such a seed  region, it puts the current pixel on a stack and begins the region growing process. 
The growing algorithm is as follows. 

I .  Pull the top pixel off of the stack, make it the current pixel, and mark it in the region map as belonging to the cur- 
rent region (all pixels in the region map are initialized to the null region). 

For each of the current pixel‘s 4-connected neighbors, if the neighbor‘s normalized color is close to the current 
pixel as specified by a threshold, and the neighbor is not part of another region nor is it too dark. then put it on the 
stack. 

Repeat from 1 until the stack is empty. 

2. 

3. 

When a region has finished a w i n g ,  the search for another seed region continues until all pixels in the image have 
been checked. In the end, all pixels that are part of region are marked with their region id in the region map. All other 
pixels are either too dark, or are part of a discontinuity or rapidly changing region of the image. For now we simply 
ignore these pixels and concentrate on the found regions. 

The dark threshold used on the test images was a pixel value of 35 (out of 255), and two pixels were found to have 
similar normalized colors if the Euclidean distance between the normalized colors was less than 0.3. 

The overall goal of the initial segmentation algorithm is to find regions that can be considered part of the same object. 
By locally growing the image regions, some variation in the region color is allowed, but the regions do not grow 
through most discontinuities caused by variation in the transfer function or illumination. One problem with using nor- 
malized color as the growth parameter is that discontinuities in shape can be overlooked if the transfer function on 
both sides of an edge is the same. An example of this would be the edges of a uniformly colored cube. It is possible to 
compensate for this problem by using an edge detector or other filter which can identify intensity discontinuities prior 
to region growing. By not allowing regions to grow through intensity discontinuities, some shape discontinuities can 
also be identified in the initial segmentations. 

Given the. existence of more complex physics-based segmentation methods, a valid question is why not use a segmen- 
tation algorithm such as Healey’s normalized color method 171, Klinker’s linear and planar cluster algorithm IS], or 
Bajcsy et. al.‘s normalized color method I l l ?  There are legitimate problems with using any of these methods. Hea- 



Figure 9 Synthetic test 
image of two spheres 

All regions: 
(Cd, Wu, C )  

Figure 10 Initial segmenta- 
tion of test image A 

Figure 11 Real image of 
stop-sign and cup 

Figure 12 Initial segmenta- 
tion of test image B 

ley’s normalized color method, while it does attempt to identify metals in an image, has two conflicts with our overall 
framework. First. it requires the entire scene to be illuminated by a single spectral power distribution. Intemflection, 
especially with respect to metal?., confuses the algorithm. Second, white or grey dielectric objects can be confused for 
metal objects or highlights, again causing problems. We actually implemented Klinker’s linear cluster algorithm and 
ran it on numerous test images. Two problems were found. First, without implementing all of Klinker’s algorithm- 
which requires the assumption that all objects in a scene are dielectrics--variations in the normalized color due to 
highlights or noise are not well captured. Second, because of the need to find linear clusters, Klinker’s algorithm 
breaks down on planar surfaces or regions of almost uniform color. Finally, although Bajcsy et. al.’s algorithm does 
allow identification of interreflections and shadows, it requires a white reference in the image with which to obtain 
the color of the. illumination. We want to be able to segment images without the white reference patch or a white 
object. 

Finally, we found that for this implementation and this set of test images the local normalized color segmentation 
alone was found to be fast and adequate. Figure I O  and Figure 12 show examples of the initial segmentations and are 
hand-labeled with the actual physical explanations. 

Once the initial segmentation is completed, the four initial hypotheses are assigned to each region and the hypothesis 
merger process begins. 

Section 4. Hypothesis Analysis 
Overall, our segmentation algorithm proceeds as follows. First, we segment the image using the local normalized 
color algorithm described above. Then the set of initial (uninstantiated) hypotheses are assigned to each region. The 
next step analyzes all possible pairs of adjacent hypotheses to test if they are compatible. Finally. using the results of 



this step we create a region graph with which we obtain the most likely final segmentations of the image. 

Herein we identify two methods for proceeding with the analysis portion of the algorithm. The more obvious and 
direct method we call direct instanriadon. This involves finding estimates of and representations for the specific 
shape, illumination environment, and transfer function for each region. By directly comparing the representations for 
two adjacent hypotheses, we  obtain an estimate of how similar they are. An alternative method of analysis, impficit 
instantiation, does not attempt to directly model the hypotheses elements. Instead, as explained in section 4.2, we 
examine certain physical characteristics of adjacent regions that indirectly reflect the similarity of the hypothesis ele- 
ments. We explore both of these alternatives and show that implicit instantiation, while less theoretically satisfying, is 
the more practical alternative. 

Section 4.1. Direct Instantiation 
If we can estimate and represent each hypothesis element, merging adjacent regions involves looking at the table in 
Figure 8 to find the possible mergers and then directly comparing the values of each hypothesis element. If the ele- 
ments fur two adjacent hypotheses h, and h, match according to a specified criteria, then the regions corresponding to 
these hypotheses should be considered part of the same object in any segmentation using h l  and h,. It is important to 
realize that other hypothesis pairs for the same two regions may not match. 

While this approach is theoretically attractive, direct instantiation of hypotheses is difficult. We attempted to imple- 
ment the direct instantiation approach for the hypotheses (Colored plastic, White Uniform illumination, Curved) and 
(White plastic, White Uniform illumination, Curved) for which some tools of analysis do exist for finding both the 
shape and illumination of a scene. 

To directly instantiate the shape and illumination of the hypotheses, we implemented Bischel & Pentland‘s shape- 
from-shading [SFS] algorithm and Zheng and Chellappa’s illuminant and albedo estimation algorithm 121 [19]. Bis- 
chel & Pentland’s SFS algorithm was chosen because it is a local method, and, according to the survey by Zhang et. 
a!., it is the best local method when the illumination comes from the side [18]. A local SFS method is useful when 
analyzing small regions of an image because they need only the information contained in a small neighborhood 
around a given pixel to calculate depth. Zhang & Chellappa’s illuminant estimator was selected because it is also a 
locally calculated method, and they showed their method produced better results than Pentland’s or Lee & Rosen- 
feld’s methods [I41 [SI [19]. 

For this test, we represent the shape as a depth map, the illuminant as two angles (tilt and slant), and the transfer func- 
tion as a normalized color vector. ??le tilt is defined as the angle the illuminant direction L makes with the x-z plane. 
and the slant is the angle between L and the z-axis. 

The first step after the initial segmentation is to analyze each region independently. Figure 13 shows the results of 
SFS for the regions in the synthetic test image. For this imaEe the illuminant and viewing directions are the same. The 
illuminant direction estimator was able to find the actual direction of the illumination independently for each region. 

The second step is to compare the hypothesis elements of adjacent pairs. To compare the hypothesis shape of the 
regions, a two-step algorithm is employed. First, the optimal offset, in a least-squares sense, of the two regions is 
found by comparing the depth values of the two regions along the border and minimizing the square of the error 
between them. Second, using the optimal offset we find the sum-squared error of neighboring pixels along the border 
and use it to obtain the sample variance of neighboring pixels along the border. 

To quantify the variance in the border pixels for a given region pair we first select a threshold variance for the surface 
depths by estimating the noise in the image. We then compare the variance due to noise with the sample variance 
using a chi-square test [91. The chi-square test returns a probability that the error is due to noise in the depth map. 
This probability is an estimate of how well the region borders match. For example, if there is a 99% probability that 
the error is due to noise, then there is only a 1% probability that the error is due to a discontinuity in the shape of the 
regions. Figure 14 shows the sum squared error for each region pair in the synthetic test image. (We felt the sum- 
squared error was more informative in this case because the results of the chi-square test were probabilities of 1 for 
the small errors and 0 for the large errors for a wide range of standard variances.) For this image direct instantiation 
gives a clear indication of which regions’ shapes match. 

Comparing the illumination and transfer functions for this test case is trivial. The transfer functions are necessarily 
discontinuous at the borders because of the hypotheses being considered and the initial segmentation method. To 



Figure 14 Border shape comparison. 
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compare the illuminant direction estimates of adjacent regions we convert the tilt and slant angles for each region to a 
3-D vector and find the angle between the two vectors. For the synthetic test image the illuminant direction was cor- 
rectly estimated for each region and the illumination was found to k the same for all region pairs. Thus, the resuks 
shown in Figure 14 are unchanged when the transfer function and illurnination are considered. 

As nicely as the direct instantiation method worked on the synthetic test image, the analysis tools were found to have 
serious problems with slightly more complicated images. First. Bischel & Pentland's SFS algorithm requires an accu- 
rate indication of the illurninant direction and albedo and alsorequires good initial point selection [18]. We found that 
small regions of an image (especially those corresponding to parts of an object) do not necessarily have good initial 
points. and depth maps generated for them do not correspond well with the actual shape except under certain condi- 
tions, namely, that the illuminant direction is such that there are maxima, or points close to a maxima, within the 
regions. Thus, despite Zhang et. aL's claim as to the ability of Bischel & Pentland's SFS algorithm to handle illumi- 
nation from the side, because of the maxima point problem the SFS algorithm was not able to deal with illumination 
that was not close (within 10') to the viewing direction. For more general images, or real images such as the test 
image of the cup and stop-sign, the SFS algoritbm breaks down because of the single point light source assumption 
and sensitivity to noise (a limitation also mentioned in [18]). 

The second serious problem is with the illuminant direction estimator. Besides the assumption that the illumination is 



a point source, Zhang & Chellappa’s algorithm requires a good distribution of surface normals to correctly estimate 
the tilt and slant [19]. While this is a reasonable assumption for an entire image, it is not a valid assumption when 
analyzing small image regions, some of which are only part of a single object. What we found is that when the illumi- 
nation is very close to the viewing direction, the illuminant estimator is better able to divine the correct direction 
because B a n g  & Chellappa’s slant estimator is dependent upon intensity variation rather than the distribution of gra- 
dients. However, for the test image in Figure 15 showing the two spheres illuminated from above and to the right. the 
illurninant estimator does not work as well. 

Our conclusion from these experiments is that the basic problem with the direct instantiation method is that it requires 
region-based analysis. Existing tools for analyzing the intrinsic characteristics of a scene cannot, in general. be used 
on small regions of an image because it violates basic assumptions necessary for the tools to function properly. Fur- 
thermore. if we attempt to generalize direct instantiation to other hypotheses, we are currently limited by the lack of 
image analysis tools. While approaches to SFS like that of Breton et. al. (31, may overcome some of these difficulties 
in the future, for now we take a different approach. 

Section 4.2. Implicit Instantiation 
An alternative to d i m t  instantiation of hypotheses is to use the knowledge constraints provided by the hypotheses to 
find physical characteristics that can differentiate between pairs of regions that are part of the same object and pairs of 
regions that are not. As these physical characteristics are generally local, they are more appropriate for region-based 
analysis than the previously mentioned direct-instantiation techniques. We call this method implicit instantiation, 

Section 4.2.1. Reflectance Ratio 
One physical characteristic we use is the reflectance ratio for nearby pixels as defined by Nayar and Bolle [ 121. 

Consider two adjacent hypotheses hl and h2 that both specify (Colored dielectric, White uniform, Curved). If hl and 
h, are part of the same piece-wise uniform object and have a different color, then the discontinuity at the border must 
be due to a change in the transfer function, and this change must be constant along the border between the two 
regions. Furthermore. along the border the two regions must share similar shape and illumination. If h, and h, belong 
to different objects, than the shape and illumination do not have to be the same. 

The reflectance ratio is ameasure of the difference in transfer function between two pixels that is invariant to illumi- 
nation and shape so long as the latter two elements are similar. If the shape and illumination of two pixels p1 and p2 
are similar, then the reflectance ratio, defined in equation (Z), where 11 and I2 are the intensity values of pixels pI and 
p2. reflects the change in albedo between the two pixels [12]. 

f I .  - 1- 1 
r = (-J 

For each border pixel pli in h, that borders on h2 we find the nearest pixel p2i in h p  If the regions belong to the same 
object, the reflectance d o  should be the same for all pixel pairs (pli,p2i) along the hl.h2 border. A simple measure of 
constancy is the variance of the reflectance ratio defined by 

where ravg is the average reflectance ratio along the border and N is the number of border pixels. If h, and h2 are part 
of the same object, this variance should be small, due mostly to the quantization of pixels and noise in the image and 
scene. 

If, however, h,  and h, are not part of the same object, then the illumination and shape are not guaranteed to be similar 
for each pixel pair. violating the specified conditions for the characteristic. This should result in a larger variance in 
the reflectance ratio. Ideally. we should be able to find a standard variance based upon the noise and quantization 
effects and use this standard variance to differentiate between these two cases. Table 2 shows the variances in the bor- 
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der reflectance ratios of the region pairs for the test image of the stop-sign and cup. This example shows an order of 
magnitude difference in the reflectance ratio variances for region pairs that belong to the same object versus region 
pairs that do not. 

As described previously, we can use a chi-squared test to compare the variance for a particular region pair to a stan- 
dard variance based upon the noise and quantization error. ?he result of the chi-squared test is a probability that the 
variance in the reflectance ratio along the border is caused by noise and not by a change in the illumination or shape. 
While this test does not directly compare the shape and illumination of the two regions, the variance of the reflectance 
ratio along the border does implicitly measure their similarity. 

The reflectance ratio can be used to compare several different hypothesis pairs as shown in Table 5 

Section 4.2.2. Gradient Direction 
The direction of the gradient of image intensity can also be used in a similar manner to the reflectance ratio. The 
direction of the gradient is invariant to the transfer function for piece-wise uniform dielectric objects (except due to 
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border effects at region boundaries). Therefore, by comparing the gradient direction of border pixel pairs for two 
adjacent regions we obtain an estimate of the similarity of the shape and illumination. 

To uy and reduce noise in the gradient direction estimate caused by the discontinuity in the transfer function, the gra- 
dient direction for all pixels in the region except the border pixels is first calculated. We then grow the region by 
assigning to each border pixel the average gradient direction of its previously calculated neighbors. 

As with the reflectance ratio, we sum the squared difference in the gradient directions of adjacent border pixels from 
two hypotheses to find the sample variance for each hypothesis pair and then use the chi-squared test to compare the 
sample variance to a threshold vsriance. Because of the conditions required for the gradient directions of adjacent 
borders to be similar, we interpret the result as a probability that the illumination and shape are similar along the bor- 
der of the tworegions. 

Not surprisingly, the effectiveness of this characteristic is limited to regions with well-defined gradient directions. For 
planar or almost uniform surfaces with small gradients the angle of the gradient is very sensitive to noise and quanti- 
zation errors. 

An advantage the gradient direction has over the reflectance ratio is that it is not particularly sensitive to absolute 
magnitude. So long as the gradient is not small and the gradient direction can be accurately estimated, the absolute 
magnitude of a given pixel is irrelevant. 

Figure 16 shows the results of applying the gradient direction characteristic to the synthetic test image. 

Section 4.2.3. Intensity Profile Analysis 
So far, we have examined only examined calculated characteristics of the image, not the actual image intensities. The 
intensity profiles contain a significant amount of information, however, which we attempt to exploit with the follow- 
ing assertion: if two hypotheses are part of the same object and the illumination and shape match at the boundary of 
the hypotheses, then. if the scale change due to the albedo difference is taken into account, the intensity profile along 
a scanline crossing both hypotheses should be continuous. Furthermore, we should be able to effectively represent the 
intensity profile across both regions with a single model. If two hypotheses are not part of the same object, however, 
then the intensity profile along a scanline containing b t h  hypotheses should he discontinuous and two models should 
he  necessary to effectively represent it. 

To demonstrate this property, consider Figure 17, which shows the intensity profile for the scanline from A to A'. We 
can calculate the average reflectance ratio along the border to obtain the change in albedo between the two image 
regions. By multiplying the intensities from A" to A' by the average reflectance ratio we adjust for the difference in 
albedo. As a result, for this particular case the intensity profile becomes C' wntinuous. On the other hand, for the 
scanline B to B', the curves are not C' continuous even when the reflectance ratio is used to adjust the intensities. 

Rather than use the first or second derivatives of the image intensities to find discontinuities in the intensity profiles, 
we take a more general approach which maximizes the amount of information used and is not as sensitive to noise in 
the image. Our method is based upon the following idea: if two hypotheses are part of the same object then it should 
require less information to describe the intensity profile for both regions with a single model than to describe the 
regions individually using two. We use the Minimum Description Length [MDL], as defined by Rissanen [15], to 
measure complexity. and we use polynomials of up to order 5 to approximate the intensity profiles. The formula we 
use to calculate the description length of a polynomial model is given in equation (4). where x" is the data, 0 is the set 
of model parameters, k is the number of model parameters, and n is the number of data points 1151. 

Our method is as follows. 

I .  Model the intensity profile on scanline s,, for hypothesis hl as a polynomial. Use the MDL principle to find the 
best order polynomial (we stop looking after order 5) .  Assign to M, the minimum description length for of the 
best polynomial found for h,. 

Model the intensity profile on scanline s, for hypothesis h2 as a polynomial. Again, use the MDL principle to find 2. 
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RegionA 

Redregion 

A A“ A ’ B  B ” B’ 

RegionB MDLA MDL B MDL C A+B-C 

S region 6.8 I 12.3 35.2 -16.1 

(a) 
Figure 17 Test image shown in (a). Graphs (h) and (E) are the intensity profiles and least- 
squares polynomial for the image segments A-A’ and B-B’, respectively. 

Red region 

Red region 

Red region 

Red region 

0 hole 

Table 4 Results of intensity profile analysis for stopsign & cup image. 
If the far right column is close to or greater than 0, then the regions are 
better modeled by a single polynomial. 

Tregion 6.1 10.2 23.8 -7.8 

0 region 6.9 18.6 31.8 -6.2 

P region 8,7 94.5 82.2 21.06 

Cup region 9.7 6.8 56.9 -40.4 

Oregion 5.2 6.4 9.1 2.4 

I Phole I Pregion I 3.0 I 7.0 1 5.6 I 4.3 I 
I Whilepole I Red region 1 10.4 1 32.7 I 409.3 I -366.2 I 

the best order, and assign Mb be the minimum description length, 

Model the scaled intensity profile of scanline so for both h l  and h2 as a polynomial, and find the best order using 
MDL. Assign the smallest description length to M,. 

4. If Ma + Mb 5 M,. according to an “quality” threshold AM, then we consider the two hypotheses to be part of the 
same object. 

The result of this test is a mergddon‘t merge finding. For the purpose of integrating this result with the rest of the 
tests--each of which return a probability based upon a chi-square test--we represent a no-merge finding as a 5% p r o b  
ability, and a merge finding as a 95% probability that the two hypotheses are part of the same object. 

Table 4 shows the results of this analysis applied to the stopsign and cup test image. Note that a AM of 8 would rep- 
resent an adequate threshold for correctly merging all but one region pair. For the synthetic image, a AM of 1 .O is suf- 
ficient for all region pairs. By using a more robust method for estimating the polynomials (such as least-median of 
squares), we believe a smaller AM could be used for all region pain. 

3. 
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Hypothesis 1 Hypothesis 2 

(C. dielectric, W. Uniform, Curved) (C. dielectric, W. Uniform, Curved) 

(C. dielectric, W. Uniform, Curved) (W. dielectric, W. Uniform, Curved) 

(C. dielectric, W. Uniform, Planar) (C. dielectric, W. Uniform, Planar) 

Tools of Analysis 

Reflectance Ratio, Gradient Direc- 
tion, intensity analysis 

Reflectance Ratio, Gradient Direc- 
tion, intensity analysis 

Reflectance Ratio, intensity analy- 
sis, border shape 

I (C. dielectric, W. Uniform, Planar) (W, dielectric. W. Uniform, Planar) Reflectance Ratio, intensity analy- 
sis, border shape 

Section 5. Creating the Hypothesis Graph 
We have seen that for the hypotheses used in our initial implementation we can use one or more tests to obtain an esti- 
mate of whether region pairs x e  part of the same object. Table 5 shows which tests can k used for which hypothesis 
pairs. Note, some of these tests (in particular, border shape) have not yet been implemented and are pan of ongoing 
research. 

How best to combine the results of different m t s  is still an open question. As shown previously, by estimating the 
population variances for the different analysis tests we obtain likelihoods that hypotheses should be merged. For our 
current implementation, if two or more tests are used to compare a hypothesis pair we use the average of the likeli- 
hoods of the results. How best to combine test results is still an issue of active research. 

Once all possible hypothesis pairs are analyzed we generate a hypothesis graph in which each node is a hypothesis 
and edges connect all hypotheses that are adjacent in the image. We then assign to each edge the likelihood that the 
two hypotheses it connects are part of the same object. We use the results of the analysis tests to assign weights to 
edges that represent compatible hypotheses as specified by Figure 8. All other edges have a weight of 0.0, indicating 
that they should not be merged in any segmentation. 

Note, however. that each edge actually has two weights associated with it. The weight assigned to the edge is a likeli- 
hood that the two hypotheses are part of the same object and should be merged in a segmentation. However. there 
always exists the alternative that the two hypotheses are not part of the same object and should not be merged in a 
segmentation. In order to find “good” segmentations, we must somehow assign a weight to the not-merge alternative. 

We could define the likelihood that two connected hypotheses should not be merged as one minus the likelihood of a 
merger. This would present a quandary, however. as then the most likely segmentation of the image would be to select 
incompatible hypotheses for each region, resulting in a global likelihood of 1 (remember, incompatible hypotheses 
have a merge likelihood of 0). Therefore. that definition of the likelihood of not merging needs to be altered to allow 
merging at all! 

For this implementation we turn once again to the principle of Minimum Description Length for guidance. Incompat- 
ible hypothesis pain are different in at least two of the three elements, whereas compatible pairs differ by at most one 
element. When we merge two compatible hypotheses, we are in essence saying that we could represent the each of 
the two unchanging elements as a single model for both hypotheses. This is not unlike the intensity analysis described 
previously. Therefore, the cost of representing a segmentation where incompatible hypotheses are selected is greater 
than the cost of representing a segmentation where compatible hypotheses are used (so long as the tools of analysis 
return high likelihoods of a merger for the compatible hypotheses). 

Because we use the indirect instantiation method. however. we do not have an accurate estimate of the representation 
costs or description length of any models we might use to represent the hypothesis elements. Instead, we select a 
valueof 0.5 as the cost of not merging two hypotheses. 

This value is selected for the following reason. Consider the situation shown in Figure 20. Hypothesis Afor region 1 
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Figure 18 TWO layer hypothesis graph for the synthetic test image. Dashed edges indicate 
incompatible hypotheses with a merge likelihood of 0, and a not-merge likelihood of 0.5. 
Note, as more hypotheses are included, the region graph simply gets more levels. 

Figure 19 Two layer hypothesis graph for the stop-sign and cup image. Zero edges not 
shown. No edges exist between hypotheses for the same region. 
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a<- # A 

0 

Figure 20 Potential hypothesis graphs. In (a) the best choice is to merge A and C. In (b) the 
best choice is to select incompatible hypotheses. 

has to select the best hypothesis for region 2 with which to form a “best” segmentation of the image. Hypotheses A 
and C are compatible and have an edge weight of 0.85. This means it is better for hypotheses A and C to merge than 
not. Hypotheses Aand B are incompatible. If the not merge probability is 0.5. then in Figure 20 (a) the segmentation 
A-C is the best. In the case shown in Figure 20 (b), because the merge likelihood of A and C is only.45, then hypoth- 
eses A and C are more likely to correspond to separate objects in the scene. This means that the segmentations A B  
and A-C where neither pair are merged are better than the segmentation A-C where A and C are merged, and they 
have equal likelihoods of being hue. 

This is actually an interesting result because it reflects the actual situation. If we have a choice of two or more hypoth- 
eses for a single region in isolation, then, as discussed in the introduction, we cannot pick one hypotheses over 
another except by intuition and reasoning about the likelihood of certain conditions in the real world. However, when 
we can use the information contained in two hypotheses, as in the situation shown in Figure 20 (a) we can preferen- 
tially pick a segmentation because we are reducing the complexity of the scene. This is a powerful statement and is 
the essence of our approach to segmentation 

The hypothesis graphs for Figure 9 and Figure 11 are shown in Figure 18 and Figure 19, respectively. The creation of 
hypothesis graphs is currently the extent of our implementation. The set of possible segmentations of the image given 
the complete hypothesis graph is the set of subgraphs such that each subgraph includes exactly one hypothesis from 
each region. We are currently researching methods for automatically obtaining a rank-ordered list of segmentations. 
As an example, we could use the hypotheses of a given region as the seed hypotheses for different segmentations of 
the image. We are guaranteed to get different segmentations because hypotheses for the same region cannot be part of 
the same segmentation. 

Note that algorithms do exist for finding step-wise optimal segmentations of images given likelihoods that regions 
should be merged. LeValle and Hutchinson, and Panjwani and Healey have both used this algorithm to segment tex- 
tured scenes [lo] 1131. These algorithms would work unmodified on a single slice of a hypothesis graph (i.e. one 
hypothesis per region). A modification of this algorithm may be applicable to the hypothesis graphs we generate. The 
difference with previous applications is that the hypothesis graph created by our segmentation algorithm includes 
multiple hypotheses per region. 

Section 6. Discussion 
We conclude this paper with a brief discussion of the hypothesis graphs for our example images. For the synthetic 
image the compatible hypotheses for the four regions on the left sphere all have very high merge values. Conversely, 
the hypotheses for the right sphere have low merge values with those of the two adjacent regions of the left sphere. 
Therefore, the best segmentations will not merge the right sphere with the left sphere, but will merge the four regions 
of the left sphere. Because the values found for the planar-planar and curved-curved merges are very similar, there are 
four approximately equally likely segmentations for the image. The left sphere can be seen as a disk or a sphere. and 
the right sphere can be seen as a disk or a sphere, and the two possibilities combine with equal probability. Segmenta- 
tions that divide the left sphere into planar and curved hypotheses are less l i e l y  than segmentations that do not divide 
it. 

The hypothesis graph for the real image, however, gives a slightly more complex result. Because the gradient direc- 
tion test is included in the tools for curved regions and not for planar regions, and this image includes planar regions, 
we get different results for the curved-curved and planar-planar hypothesis pairs for each pair of regions. The weights 
for the hypotheses show that the planar hypotheses for the stop-sign and letter regions are all more likely to be 
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merged than not. The weights also show that the cup and stopsign regions, and the pole and the stop-sign regions are 
not likely to be merged for any hypothesis pairs. The interesting feature of this graph is that the weights for the 
curved-curved hypothesis pairs for the stop-sign and letter regions are lower than the planar-planar pairs for the same 
regions. Therefore, the best segmentations merge all of the stop-sign and letter planar hypotheses. and then select 
either planar or C U N ~  hypotheses for the cup and pole. This results in four equally likely “best” segmentations that 
d l  have the stop-sign as a single planar object. 

Section 7. Conclusions and Future Work 
Clearly, this is work in progress. However. even with only two hypotheses implemented we are able to segment 
images containing more complex objects than previous physics-based algorithms. Furthermore, the segmentation we 
generate more closely corresponds to the objects in the scene, something no other physics-based segmentation algo- 
rithm has attempted to date. Finally, the framework and algorithm are easily expandable and allow for greater com- 
plexity in images through the use of more hypotheses per region. 

In order to expand the number of hypotheses per region, we are currently focusing on developing more tools for the 
analysis of hypothesis pairs. We are also working on automatic methods for obtaining segmentations from the 
hypothesis graph. As noted previously. the major challenge is dealing with multiple hypotheses per region. The other 
challenge is to find the n-best segmentations, not just the best. While “eyeballing” works for simple scenes and lim- 
ited numbers of hypotheses. in the future, with more hypotheses per region and more complex images, having an 
automatic segmentation extractor will be critical. 
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color Plate for Figure 18: Two layer hypothesis graph for the synthetic test image. Dashed edges indicate 
incompatible hypothem with a merge likelihood of 0, and a not-msge l i h d  of 0.5. 

Note, as more hypotheses are included, the redon graph simply gets more Ievek 


