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Abstract 

Sincc 13s 1. (lic Mobilc I<obot IAoratory of thc Kohotics Institute 01' Crrrncfiic-Mcllon I Inivcnity has 

conduclcd hsic rcscarcli in aTCiiS crucial fur ;iiitonomoiis robots. We havc h i l t  Lhrcc niohilc robots its 

tcstbcds for ncw conccpts in  control, vision. planning, locoinotion and iii;inipul:ition. 'i'iiis rcport rccgiints 

our  work in 1985. Includcd arc two papcrs dcscribing two-cliniension;il sonar ni:ippin~ ;~iicl  navigation, and a 

proposal for ;I thrcc-dirncnsional sonar. 'tbrcc papcrs covcr rcccnt rCSUltS in stcrco visual navigation: We 

have achicvcd a tcnfold sl~ccdup and a tcnf'old incrcasc in navigational xcuracy ovcr our  first gcncration 

systcm, and hnvc a much dccpcr undcrstanding of some of thc 1ti:1lh~1n;iti~iil foundations. 'I'hrcc p'ipcrs 

dcscribc rcsuits in a road navigation task: We arc now ablc to navigate a simple road nctwork at  walking 

spccds with a single color canicra on a roving robot, using a variety of image processing and navigation 

methods. 'l'lircc papcrs dcscribc aspccts of motion control, motors, wheclcd kincrnatics and vchiclc dynamics. 

'I'wo papcrs prcscnt our ncwcst robots, Ncptunc and Uranus. A final article givcs sonic long tcini motivations 

and cxpcctations for mobilc robot rcscarch, and the report cnds with a bibliography of our publications. 
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Towards Autonomous Vehicles 
The Mobile Robot Laboratory Staff 

Introduction 
The CMU Mobile Robot Lab was started in 1981 to pursue 
research in perception, planning and control for autonomously 
roving robots. The short and long range practical applications 
of robot mobility aside, we think our work directly addresses the 
problem of building a generally intelligent machine. Among 
living things, only mobile organisms exhibit the sensory and 
behavioral characteristics that are the basis of our own intelli- 
gence. A roving entity encounters a wide variety of circum- 
stances, and must perceive and respond with great generality to 
function effectively. We feel our research makes discoveries that 
parallel the evolution of intelligence in mobile animals. The 
selection function in both cases is the same-the effective func- 
tioning of a physical mobile entity in a varied and uncertain 
world. We think this experimentally guided bottom up approach 
can find some solutions, such as the secret of effective common 
sense reasoning, more effectively than the seemingly direct 
traditional top down approach to artificial intelligence. 

Our first funding came from an Office of Naval Research con- 
tract to develop land-based technology for eventual application 
to autonomous underwater robots. The subprojects were design 
and construction of highly maneuverable vehicles, develop- 
ment of stereo and sonar vision algorithms, and algorithms 
for path planning and higher level control. New developments 
were to be demonstrated in working systems that performed 
various tasks. 

We chose two tasks, one simple and one complex. In the first, 
the vehicle was to travel to a goal location specified relative to its 
starting point, avoiding obstacles en route. This would encour- 
age efforts in stereo, sonar, path planning, and vision-based 
vehicle motion estimation. The second task-finding, opening, 
and passing through doorways-was to serve as a longer term 
focus for work on maneuverable vehicles, object recognition, 
and distributed control. 

Our first generation of obstacle avoidance systems now work, 
and we have taken first steps toward door-opening. We’ve built a 
simple vehicle to support obstacle avoidance work and a more 
complex vehicle to serve our longer term plans. Two obstacle 
avoidance systems have been tested, one relying solely on stereo 
and the other on sonar. An initial design for a distributed 
control system has been tested in simulation. We are preparing 
to start a second phase of our work which will extend the stereo 
capability towards shape extraction and merge stereo and sonar 
into a single system. 

Overview 
Our main subprojects pertain to vehicles, manipulators, servo 
control, stereo, sonar, and distributed processing. We will dis- 
cuss each of these briefly before launching into the details. 
Our long term plans call for an accurate, very maneuverable, 
self-powered vehicle carrying a small manipulator. Pluto 
(generically the CMU Rover)  was designed to meet these 
requirements. Among its several innovations was an omnidirec- 
tional drive system for accurate control of robot motion in three 
independent degrees of freedom (forwardhackward, lefvright, 
and rotation). Our design used three complex wheel assemblies, 
each with two motors to independently drive and steer its own 
wheel. Coordinated control of the six motors was a more diffi- 
cult problem than we had anticipated, and is now being attacked 
as a research problem in its own right. 
For the sake of the vision and navigation research we constructed 
a much simpler second vehicle, Neptune. Power and control 
information come via a tether. Two synchronous AC motors 
steer and drive the robot, switched by a single onboard processor. 
Equipped with two vidicon cameras and a ring of sonar range 
finders, Neptune is robust and has been used in visual and 
sonar mapping, navigation and obstacle avoidance experiments. 
There are several other hardware efforts in progress. We are 
building a third vehicle, Uranus, with a new, more easily con- 
trolled omnidirectional drive system to carry on the longer 
range work stalled in Pluto. We are working on a special-purpose 
manipulator for grasping doorknobs and have nearly com- 
pleted a video digitizer/display that shares memory with a VAX. 
In addition, we are exploring processor and digitizer configura- 
tions for use on board the vehicles. 
Pluto has been the center of our work on servo control. To 
control the motion of Pluto, we successfully designed and 
implemented an independent motor controller for each of its 
six motors. However, when we attempted to run the controllers 
simultaneously to obtain coordinated motion, the robot experi- 
enced severe oscillations because of dynamic coupling torques 
in the overconstrained wheelbase. These coupling effects could 
not be practically compensated using independent controllers 
executing on independent processors. The undesirable per- 
formance inspired us to work on the more general problem of 
the modeling and control of wheeled mobile robots. We are 
beginning the investigation by developing precise kinematic 
and dynamic models to be used as a basis for an integrated 
control strategy for Pluto’s entire wheelbase. We plan to apply 
our modeling methodology to simulate wheeled mobile robots 
on a computer. This will enable us to test control strategies on 
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the computer simulated robot without the need for time- 
consuming hardware construction. 
On the software side, we have concentrated on obstacle avoid- 
ance and distributed processing. We have two obstacle avoid- 
ance systems, one using stereo and the other using sonar. Both 
use a new path planner first developed for the stereo system. We 
have also designed and simulated the operation of a communica- 
tion mechanism for distributed processors. 

The stereo work improves on the system built for the Stanford 
Cart [7], which digitized nine images at each robot location and 
used correlation to track isolated feature points as the robot 
moved. We have reduced the number of images digitized per 
location, added constraints that improve the feature tracking 
ability, and are now modifying the motion estimation algorithm. 
In the process. we have reduced the runtime of the system by an 
order of magnitude. The robot can now visually navigate across 
a large room in under an hour on a VAX-I 1/780. 
The sonar system uses data from a ring of twenty-four wide 
angle Polaroid range finders to map the surroundings of an 
autonomous mobile robot. A sonar range reading provides 
information concerning space occupancy in a cone subtending 
30 degrees in front of the sensor. The reading is modelled as 
probability profiles projected onto a rasterized map of occupied 
and empty areas. Range measurements from multiple points of 
view (taken from multiple sensors on the robot, and from the 
same sensors after it moves) are systematically integrated in the 
map. Overlapping empty volumes reinforce each other, and 
empty volumes serve to condense the profiles of occupied 
volumes. The map resolution improves as more readings are 
added. The final map shows regions probably occupied, proba- 
bly unoccupied, and unknown areas, with weights in each raster 
cell showing the confidence of these inferences. The method 
deals effectively with clutter, and can be used for motion plan- 
ning and for extended landmark recognition. 

The sonar and stereo systems both plan robot paths with a new 
algorithm called path relaxation. It was first developed for the 
stereo vision navigator, but coincidentally has a structure per- 
fectly suited to our sonar mapper. Space is represented as a 
raster of weights as in the sonar maps. Costs are assigned to 
paths as a function of their length and the weights through 
which they pass. A combinatorial search on the raster grid 
coarsely finds a least cost path, then a relaxation procedure 
perturbs the coordinates of the vertices of this path to smooth it 
and reduce its cost. 
Our work on distributed processing began with a design for a 
distributed planning and control system for the several proces- 
sors of Pluto. A system has been designed around a network of 
message-passing kernels, a central blackboard module to repre- 
sent state, and a notion of masterlslave processes wherein mas- 
ters monitor the blackboard while slaves handle external events. 
A small version of this system has been tested in simulation. We 
plan to give the design a more rigorous test soon with a distri- 
buted version of the sonar navigation system. 
We have begun a new effort under the DARPA Autonomous 
Land Vehicles project in cooperation with other groups in the 
Robotics Institute led by William Whittaker and Take0 Kanade. 

The short term goal of this project is to build a system to follow 
roads; the long term goals include obstacle avoidance, off-road 
travel, object recognition, and long range navigation. The vehi- 
cle for this project is the Terregator, a large mobile robot built by 
Whittaker’s group. 

Vehicles 
Our research plans called for a flexible vehicle to support work 
on vision, vision-guided manipulation, and the planning issues 
that come with mobility. Part of the design philosophy was the 
perception that a mobile wheelbase could be considered part of 
an attached arm. The weight and power of the arm can be 
reduced by using the mobility of the vehicle as an enormous 
reach substitute for the arm’s shoulder joint. Such a strategy 
works best if the vehicle is given a full three degrees of freedom 
(forwardhackward, lefthight and compass heading) in the plane 
of the floor. Conventional steering arrangements as in cars give 
only two degrees at any instant. This approach to manipulation 
is most effective when the wheels can be servoed very accurately 
and rapidly. 
Other properties we desired in a robot were that it run 
untethered, that it use multiple sensory systems, and that it 
carry some onboard processing power to reduce the communica- 
tions bandwidth and perform some local decision-making. 
Pluto, our first vehicle, was built to the above specifications. A 
second, simpler vehicle called Neptune was subsequently built to 
support obstacle avoidance work. A third vehicle, Uranus, is cur- 
rently being designed to test a new concept in omnidirectionality. 

Pluto 
Physically, Pluto iscylindrical, about 1 meter tall, 55 centimeters 
in diameter, and weighs about 200 pounds (Figure la). Its three 
individually steerable wheel assemblies give it a full three degrees 
of mobility in the plane (Figure lb). The control algorithm for 
this arrangement steers the wheels so that lines through their 
axles always meet at a common point. Properly orchestrated, 
this design permits unconstrained motion in any (2D) direction 
and simultaneous independent control of the robot’s rotation 
about its own vertical axis. 
To permit low-friction steering while the robot is stationary, 
each assembly has two parallel wheels connected by a differen- 
tial gear (Figure IC). The drive shaft of the differential goes 
straight up into the body of the robot, and a concentric hollow 
shaft surrounding the drive shaft connects to the housing of the 
differential. Turning the inner shaft causes the wheels to roll 
forward or backward; turning the outer one steers the assembly, 
causing the two wheels to roll in a circle. 
Each shaft is driven by a brushless DC motor with samarium- 
cobalt permanent-magnet rotors and three-phase windings. The 
motor sequencing signals come directly from onboard micro- 
processors, one for each motor, which read shaft encoders to 
servo the motors to the desired motion. A seventh processor, the 
conductor, coordinates the action of the six motor sequencing 
processors. Another processor reads the shaft encoder outputs 
and monitors the motor torques to provide an onboard dead- 
reckoning estimate of the vehicle’s position. Power for this ensem- 
ble is provided by a set of sealed lead-acid batteries. 
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- 
Figure la. Pluto 

Pluto was to be equipped with a collection of sensors including 
cameras, sonar, and bump detectors and w a s  to be used in a 
series of advanced experiments in vision, navigation and 
planning. The bulk of the computation would be performed on 
a remote VAX-I 1/780, with communication taking place over a 
microwave link for video and a radio link for other data. Extra 
processors were included in the design to service the sensors 
and manage the communication link. 
This plan has been waylaid by a difficult and unexpected prob- 
lem in controlling the six motors of the omnidirectional 
wheelbase. We are able to drive the robot successfully when one 
wheel at a time is energized, but large oscillations occur when all 
are running simultaneously. The problem is caused by interac- 
tions between the servo loops of the individual actuators through 
the redundant degrees of freedom in the wheels. A similar 
situation arises in a milder form in other locomotion systems 
with redundant degrees of freedom, especialIy legged vehicles. 
We are now investigating control algorithms and processor archi- 
tectures for this problem, but in the meantime Pluto is unavailable 
for experimental work with our vision systems. Neptune w a s  
built to fill the gap. 

I \  I I  I 
1 -  I A c t r o n i c s  

Motor Stacks 

Wheel 
Asaem blies 

Figure Ib. Pluto subassembly: card cage, wheel assemblies, etc. 

Neptune 
We decided to build quickly, but carefully, a simple and robust 
platform for obstacle avoidance experiments. Neptune (Figure 
2) was designed to eliminate many potential problems. It is a 
tethered, remotely powered tricycle with a lone onboard 
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Figure IC. Diagram of a wheel assembly illustrating differential 

gear, concentric drive shafts 

processor. To simplify servoing and remove the need for shaft 
encoders, synchronous AC motors drive and steer the front 
wheel while the rear wheels trail. The vehicle is about 2 feet tall, 
4 feet long, and 2 feet wide. It weighs about 250 pounds. It is 
currently configured with two black and white vidicon cameras 
on fmed mounts and a ring of twenty-four Polaroid sonar range- 

F ibre  2. Neptune with sonar and stereo 

finders. The range-finders have a useable range of about 35 feet 
and a 30 degree beam width, so that the beams of adjacent 
sensors overlap by about 50 percent. The vehicle moves at a 
constant velocity, with angles and distances controlled by timing 
the motors with an onboard MC68000. 
Neptune is an unqualified success. It has been our workhorse 
for obstacle avoidance and indoor road following experiments 
and will be used in the future to test extended vision algorithms 
and to merge stereo and sonar into one system. 

Uranus 
Omnidirectionality appears to be an idea whose time has come. 
While Pluto was in gestation, several new methods for achieving 
omnidimtionality were published and patented. One, developed 
at Stanford, is based on novel wheels that have passive rollers 
instead of tires, oriented at right angles to the wheel (Figure 3a). 
The rollers permit the wheel to be pushed passively in the 
broadside d imion .  Three such wheels, each with its own motor, 
mounted around a round wheelbase allow smooth motion in 
three degrees of freedom. Regardless of the direction of travel, 
one wheel or another is always travelling nearly broadside, and 
this is a weakness of the system. It requires an expensive and 
potentially troublesome bearing system for the rollers, and suf- 
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I 
Figure 3a. Sketch of Stanford wheel 

fers from a low ground clearance limited by the roller diameter, 
and inability to travel on soft ground. Despite these limitations, 
it would have been a far more fortunate design choice than the 
individually steerable wheels of Pluto. 
Another new design for omnidirectionality was invented recently 
in Sweden. It too uses wheels surrounded by passive rollers, but 
the rollers are angled at 45 degrees to the wheel plane (Figure 
3b). One of these wheels can travel broadside on its rollers, but 
the whole wheel must simultaneously turn, resulting in a screw- 
like motion. Like screws, these wheels are not mirror symmetric 
and come in right handed and left handed varieties. An omnidi- 
rectional vehicle is built with four of these wheels, mounted like 
wagon wheels, but with careful attention to handedness. The 
right front wheel is right handed and the left front is left 
handed, but the right rear is left handed and the left rear is right 
handed (Figure 3c). Each wheel is turned by its own motor. To 
move the vehicle forward, all four wheels turn in the same 
direction, as in a conventional wagon. However, if the wheels on 
opposite sides of the vehicle are driven in opposite directions, 
the vehicle moves sideways, like a crab. By running the front and 
back wheels sideways in opposite directions, the vehicle can be 
made to turn in place. Because the rollers are not required to 
turn when the vehicle moves in the fonvard direction, the Swedish 
design has good bump and soft ground handling ability in that 
direction. In our experience-scarred judgement, the Swedish 
design is the most practical omnidirectional system. It is being 
used outside of an experimental context, in commercially availa- 
ble wheelchairs and factory transport vehicles. 
Uranus, the Mobile Robot Lab’s third construction, is being 
designed around this proven drive system to carry on the long 
range work stalled in Pluto. We obtained the wheels from 
Mecanum, Inc. of Sweden, which holds the license. Pluto’s many 
lessons guide us in this project. In just about every way Uranus is 
simpler than Pluto. There are four motors, not six, no concen- 
tric shafts and only a single, benign, redundant interaction 
mode among the wheels. 

Figure 3b. Swedish designed wheels 

Figure 3c. Sketch illustrating handedness of wheels 

A Manipulator for Door-opening 
We have decided that visually locating, opening and passing 
through a door is an excellent task to guide development of 
advanced vision, planning and control work. To this end, we’ve 
designed and are building a special arm to be mounted on 
Uranus (Figure 4a). 
The arm design is simultaneously strong, light and low-power 
because it exploits the mobility of the robot. The arm has four 
joints: a vertical translational joint, rotational shoulder and 
elbow joints with vertical axes, and a rotating wrist. The redun- 
dancies between the shoulder and elbow joints and the rotation 
of the vehicle permit the robot to hold the door in a stable, open 
position while the body of the robot passes through the doorway. 
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Figure 4a. Arm to be mounted on Uranus 

Figure 4b. Gripper and collar 

The arm design uses the robot’s strength to handle doors. The 
manipulator’s joints are only lightly actuated, since the motors 
in the joints are used only for positioning the arm under no 
load. Once the gripper secures a doorknob, the elbow joint 
becomes a totally passive pivot and the base joint is alternately 
locked into position and released. Neitherjoint’s motor is actu- 
ated again until the arm releases the door. 
The gripper itself is constructed from a janitorial lightbulb 
extractor (Figure 4b). This is a spring-loaded, cylindrical device 
with a sliding collar. With the collar retracted, the gripper is 
pushed over the lightbulb (or doorknob); when the collar is 
tightened the gripper holds fast. Our manipulator uses this 
gripper with a motorized collar. 

Mobility Control for Wheeled Mobile Robots 
It has become clear to us that the complex mechanical designs of 
highly maneuverable wheeled mobile robots, such as Pluto and 

Uranus, require sophisticated coordinated controllers for effec- 
tive motion control. Over-constrained multiple-wheeled robots, 
in particular, are a major challenge. We initially approached the 
problem by neglecting the motor interactions and designing 
independent control algorithms for each of the motors on Pluto. 
We found that only minimal mobility control was possible in this 
framework [9]. The severe motor interactions we observed pro- 
vided a motivation to develop better control algorithms. 

Pulse-Width Modulation 
Control of Brushless DC Motors 
We implemented pulse-width modulation for controlling the 
brushless DC motors which actuate the wheels of Pluto [ 101. 
The brushless DC motors utilize strong samarium-cobalt perma- 
nent magnets and are desirable for use on a mobile robot because 
of their high torque-to-weight ratio, ease of computer control, 
efficiency, and simple drive circuitry. We control each motor 
directly from a microprocessor using semiconductor power 
transistors. These devices operate very efficiently in the switching 
mode needed for pulse-width modulation. 
Our theoretical and experimental results show that the motors 
can be modeled by linear discrete-time transfer functions, with 
the pulse-width playing the role of the control signal, if the 
pulse period is chosen much smaller than the time-constants of 
the motors. These models allow us to apply classical control 
engineering to the design of the motor control system. We have 
successfully designed controller structures and calculated feed- 
back gains which provide each wheel with the ability to servo to a 
desired position and velocity within a specified time interval. 

Wheeled Mobile Robot 
Simulations for Controller Design Studies 
Our experience with Pluto prompted a systematic study of the 
problem of controlling wheeled mobile robots, both for Pluto’s 
sake and for future designs. Our present approach to the prob- 
lem is to develop precise kinematic and dynamic models of the 
robots. These models will form the basis of computer simula- 
tions of the robots on which proposed control strategies can be 
tested. Using computer simulations, we will have the ability to 
evaluate the performance of a robodcontroller combination 
before spending much effort and expense in hardware 
construction. Adaptive control algorithms show promise for 
providing better robot control because they are able to adapt to 
coupling torques from other motors and to a changing floor 
surface or robot load. The controllers which demonstrate the 
best performance in simulations will be implemented on actual 
robots to verify both the accuracy of the simulations and the 
performance of the controllers. 

Stereo Vision 
The obstacle avoidance task prompted our first major work on 
robot perception. At the broadest level, the perception problem 
has two main components: understanding how to use individual 
sensors and understanding how to combine multiple sensors in 
a single system. We have addressed the first problem by develop- 
ing rudimentary navigation systems that use vision and sonar 
separately. These systems are described in this and the following 
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section. Our work on integrating these two systems is only just 
beginning and will not be described in this paper. 
Our stereo system continues the work done by Moravec with the 
Stanford Cart [7]. The basic task requires the robot to navigate 
from its initial position to a specified goal location, avoiding any 
obstacles in between. Stereo is used to detect obstacles and 
estimate the motion of the vehicle (actually avoiding the obsta- 
cles is discussed later under path planning). The Cart approach 
is to detect local, high variancefeatures in one image, to use 
stereo correspondence to determine the three-dimensional posi- 
tions of the features, and to track the features over time to 
determine the motion of the vehicle. Our work with these algo- 
rithms has focussed on the following issues: 

the number of stereo images used at each point in time 
the inkrest operator used to pick features 
the algorithm used for tracking 

After reviewing the algorithms used by the Stanford Cart, we 
will discuss each of these issues in turn. 

Vision in the Stanford Cart 
The Stanford Cart used nine-way stereo at each robot position 
to detect and track obstacles. These images were obtained by 
stopping the robot and translating a single camera in two inch 
steps along a slider mechanism. An interest o p t ~ ~ t ~ r  was applied 
to the center image to pick features, then a coarse to fine 
correlation process was applied to locate the features in the 
other eight images. Histogram-based triangulation from the set 
of match locations provided the initial three-dimensional obsta- 
cle positions. Obstacles were tracked as the robot moved by 
applying the correlator to the new center image to reacquire the 
old features. Then the features were matched in the other eight 
new images to obtain distances to the obstacles from the new 
robot location. Finally, least squares was used to find a best fit 
transformation mapping the old feature locations into the new, 
thereby obtaining the vehicle motion. Figure 5a illustrates the 
process of picking, matching, and tracking features through two 
steps of vehicle motion. The whole system moved the Cart in 

--. 
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Fe8torer 

one-meter steps, taking about 15 minutes per step on a DEC 

Number of Images 
The great expense of using nine images prompted the use of 
only two-camera stereo in our current system. Since the redun- 
dancy provided by the nine images w a s  a major strength of the 
original system, this decision initially lowered the reliability of 
the matching algorithm; to compensate, the stereo matcher now 
makes fuller use of constraints which reduce the search area in 
the second image. The constraints are as follows (Figure 5b). 
Between a stereo pair, the known camera geometry restricts 
possible matches to lie on a single line in the second image (the 
“epipolar line”). This line is the intersection of the image plane 
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of the second camera with the plane containing the obstacle and 
the two centers of projection. Near and far limits on the distance 
to an obstacle of 1.5 meters to infinity impose “disparity limits” 
that further restrict the search to a segment of the epipolar line. 
None of these constraints per se are available when features are 
reacquired in a new set of images. However, the known position 
of the obstacles together with an estimate of the vehicle motion 
still permit searches to be restricted to subwindows of the new 
images. 
We have found that when all of the constraints are used, the 
qualitative system performance, measured in terms of the per- 
centage of features matched correctly and the accuracy of motion 
estimates, is as good with the two-camera system as it was with 
the old system of nine images. The new system runs in about 35 
CPU seconds per step (three to four minutes of elapsed time) on 
a VAX-I 11780. 
Although this experience demonstrates the effectiveness of two- 
camera stereo, the use of redundant images remains an interest- 
ing question. Two particular areas to be explored are the use of 
three cameras, which offers the ability to detect mismatches, 
and the use of the redundancy provided by motion. We expect 
to examine these areas in the future, both theoretically and 
empirically. 

Interest Operators 
The interest operator is designed to pick small patches or fea- 
tures in one image that can be reliably matched in another. In 
general, this requires that the patch exhibit high intensity varia- 
tions in more than one direction to improve its localizability in 
another image. For example, edges show high variation in the 
direction of their gradient, but little variation in the direction of 
their length, making them poor to localize in that direction. 
Ostensibly, a better interest operator will lead to a higher likeli- 
hood of correct matches. Many operators have been reported in 
the literature [ 1 1,4], but no convincing evidence shows that any 
one operator is superior. Therefore, we evaluated the relative 
performance of a number of operators in the context of our 
system [16]. The operators used were those of Moravec [7], 
Kitchen and Rosenfeld [4], and several new operators we 
developed within our lab. As a control, a set of features were also 
picked by hand. The criterion used in assessing the perform- 
ance of an operator was the number of features, from an initial 
set of forty picked by the operator, that could be correctly 
matched in another image. Here correct means that the match 
location was within a pixel or two of the best match subjectively 
as judged by the experimenter. Results were averaged over a 
number of trials with different images. Experiments were also 
run with and without the constraint offered by epipolar lines 
and disparity limits. 
We found that rates of matching success showed very little 
variation between the better operators, which included the 
Moravec and Kitchen and Rosenfeld operators, and two of our 
new ones. The rates varied from about 60% correct in difficult 
images with no matching constraint, to over 90% when all con- 
straints were used in less difficult images. On the whole, the 
Moravec operator performed slightly better than other opera- 
tors and only a little worse than manual feature selection. More 

importantly, we found that the improvement bought by the use 
of search constraint was much more pronounced than that 
obtained by using different operators. We conclude that our 
research emphasis should no longer be placed on operators 
(since the Moravec operator is cheaper than, and at least as 
effective as other candidates), but should be placed on getting 
the most out of the available constraints and image redundancy. 

’Ikclsing and Motion Estimation 
The Stanford Cart tracked features and estimated the motion of 
the vehicle as separate operations. Tracking was performed by 
searching for features one at a time in new images. Bad matches 
were then pruned with a heuristic that required the three- 
dimensional distances between pairs of features to remain the 
same over time. That is, objects that appeared to drift relative to 
other objects were deemed incorrect and were ignored. Motion 
estimation w a s  then done by finding the transformation that 
minimized the least squared error between new and old feature 
positions. 
This approach is unsatisfactory for two reasons. First, it makes 
poor use of the assumption that objects in the environment do 
not move. This is a valuable assumption and it underlies a large 
part of the Cart software; for example, it shows up in the 
pruning heuristic just mentioned and in the fitting of a single 
transformation to all feature points. The problem is that the 
constraint this assumption offers is employed only after feature 
match positions have been decided, which is too late. The 
correlator matches one feature at a time, without considering 
the locations of features matched previously; however, each new 
match decision implies constraint on possible locations for subse- 
quent matches. Thus, the Cart algorithms allowed inconsistent 
matches to be made initially, then tried to catch them later. It 
would be preferable toensure from the outset that matches were 
mutually consistent. 
The second objection to the Cart approach is that it throws away 
image intensity information too early. Despite the best efforts of 
the interest operator, correlation peaks for individual features 
may be fairly broad, so that it makes little difference locally 
which pixel in a small region is chosen as the match. The actual 
location of the peak may be strongly influenced by noise in such 
cases. However, the correlator will pick the best peak and pass it 
on; a poor choice at this stage has the potential to skew both the 
depth estimate for the feature and the vehicle motion solution. 
It would be better to somehow capture the uncertainty in the 
match location and reflect that in other calculations. 
We have addressed the first objection by using dead-reckoned 
estimates of vehicle motion to constrain the searches made by 
the matcher. This requires some tolerance to allow for errors in 
the dead-reckoned estimate, however, and in Neptune the toler- 
ance must be fairly large. A better approach that addresses both 
objections has been developed by Lucas [ 5 ] .  This is an iterative 
registration method that directly incorporates the assumption 
of stationary objects. An error measure for a trial transforma- 
tion is defined to be the squared difference of image intensity 
between a feature in the previous image and its projected loca- 
tion in the new image, summed over all features. Starting from a 
dead-reckoned motion estimate, the known three-dimensional 
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feature positions are projected into the new image, the e m r  
measure is computed, and Newton iteration is employed to 
modify the transformation to minimize the error measure. 
Greater tolerance for errors in the initial estimate is obtained by 
applying the algorithm first to blurred versions of the image, 
then to successively sharper images. Lucas has shown that the 
algorithm works well, with synthetic and real images, for a single 
step of motion when the feature distances are given aprim'. We 
are currently adapting the algorithm for use in our system. 
We should note that another answer to our second objection is 
given by the work of Gennery [3], who used a correlator that 
estimated a two by two covariance matrix for the match location 
of a feature; that is, the matrix captured that broadness of the 
correlation peak. These matrices were propagated into covari- 
ance estimates for three-dimensional feature positions and for 
camera motion. We have not determined what role this idea will 
play in our future systems. 

Sonar Mapping 
Primarily because of computational expense, practical real-world 
stereo vision navigation systems 17, 141 build very sparse depth 
maps of their surroundings. Even with this economy, our fastest 
system [6] takes 30 to 60 seconds per one meter step on a 1 mips 
(millions of instructions per second) machine. Direct sonar range 
measurements promised to provide basic navigation and denser 
maps with considerably less computation. The readily available 
Polaroid ultrasonic range transducer [ 131 was selected, and a 
ring of 24 of these sensors was mounted on Neptune. We find 
sonar sensors interesting also because we would like to investi- 
gate how qualitatively different sensors, such as a sonar array 
and a pair of cameras, could cooperate in building up a more 
complex and rich description of the robot's environment. 

Approach 
Multiple wide-angle sonar range measurements are combined 
to map the surroundings of an autonomous mobile robot. A 
sonar range reading provides information concerning empty 
and occupied volumes in a cone subtending 30 degrees in front 
of the sensor. The reading is modelled as probability profiles 
(Figure 6a) projected onto a rasterized map, where occupied 
and empty areas are represented. Range measurements from 
multiple points of view (taken from multiple sensors on the 
robot, and from the same sensors after robot moves) are system- 
atically integrated in the map. As more readings are added, the 
area deduced to be empty expands, and the expanding empty 
area encroaches on and sharpens the possibly occupied region. 
The map becomes gradually more detailed. The final map 
shows regions probably occupied, probably unoccupied, and 
unknown areas. The method deals effectively with clutter and 
can be used for motion planning and for extended landmark 
recognition. It was tested in cluttered environments using 
Neptune. 
For navigation and recognition we developed a way of convolving 
two sonar maps, giving the displacement and rotation that best 
brings one map into registration with the other, along with a 
measure of the goodness of the match. The sonar maps are very 
useful for motion planning. They are denser than those made 

by our stereo vision programs and computationally about an 
order of magnitude faster to produce. We are using them with 
the path relaxation method [I51 to plan local paths for our 
robot. 

The Sensor 
The sonar devices being used are Polaroid laboratory grade 
ultrasonic transducers [ 131. These sonar elements have a useful 
measuring range of one to thirty-five feet. The main lobe of the 
sensitivity function corresponds to a beam angle of 30" at -38 
dB. Experiemental results showed that the range accuracy of 
the sensors is on the order of 1%. We are using the control 
circuitry provided with the unit, which is optimized for giving 
the range of the nearest sound reflector in its field of view and 
works for our purpose. 

The Array 
The sonar array, built at Denning Mobile Robotics and mounted 
on the Neptune, is composed of 

a ring of 24 Polaroid sonar elements spaced 15" apart and 
mounted at a height of 31 inches above the ground (see 
Figure 2); 
a Z80 controlling microprocessor which selects and fires the 
sensors, times the returns, and provides a range value; 
a serial line over which range information is sent to a VAX 
mainframe that interprets the sonar data and performs the 
higher level mapping and navigation functions. 

Representing the Sonar Beam 
Because of the wide beam angle, individual rangings provide 
only indirect information about the location of the detected 
objects. We combine the constraints from individual readings to 
reduce the uncertainty. Our inferences are represented as 
probabilities in a discrete grid. 
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A range reading is interpreted as providing information about 
spacevolumes that are probably EM~~~andsomavheremcu~IED. 
We model the sonar beam by probability distribution functions 
(Figure 6a). Informally, these functions model our confidence 
that the various points inside the cone of the beam are empty 
(PJr)), and our uncertainty about the location of the point, 
somewhere on the range surface of the cone, that caused the 
echo (Po@)). The functions are based on the range reading and 
on the spatial sensitivity pattern of the sonar and are a maxi- 
mum near the center axis of the beam and taper to zero near the 
edges. These probability density functions are projected on a 
horizontal plane to generate map information. We use the pro- 
files that correspond to a horizontal section of the sonar beam. 

Building Maps 
Sonar Maps are two-dimensional arrays of cells corresponding 
to a horizontal grid imposed on the area to be mapped. The 
final map has cell values in the range ( - l , l ) ,  where values less 
than 0 represent probably empty regions, exactly zero repre- 
sents unknown occupancy, and greater than 0 implies a proba- 
bly occupied space (Figure 6b). This map is computed in a final 
step from two separate arrays analogous to the empty and 
occupied probability distributions introduced above. The posi- 
tion and the orientation of the sonar sensor at the time of the 
reading are used to register the profiles of each beam with the 
map. In Figure 6b, each symbol represents a square area six 
inches on a side. Empty areas with a high certainty factor are 
represented by white space; lower certainty factors by ‘‘+” sym- 
bols of increasing, thickness. Occupied areas are represented by 
“x” symbols, and unknown areas by “.”. The robot positions 
where scans were taken are shown by circles, and the outline of 
the room and of major objects by solid lines. 
Different readings asserting that a cell is EMPTY will enhance 
each other, as will readings implying that the cell may be 
OCCUPIED, while evidence that the cell is EMPTY will weaken the 
certainty of it being OCCUPlED and vice-versa. The operations 
performed on the empty and occupied probabilities are not 
symmetrical. The probability distribution for empty areas repre- 
sents a solid volume whose totality is probably empty, but the 
occupied probability distribution for a single reading represents a 
lack of knowledge about the location of a single reflecting point 
somewhere in the range of the distribution. Empty regions are 
simply added using a probabilistic addition formula. The occupied 
probabilities for a single reading, on the other hand, are reduced 
in the areas that the other data suggests is empty, then normal- 
ized to make their sum unity. Only after this narrowing process 
are the occupied probabilities from each reading combined using 
the addition formula. 
One range measurement contains only a small amount of 
information. By combining the evidence from many readings as 
the robot moves in its environment, the area known to be empty 
is expanded. The number of regions somewhere containing an 
occupied cell increases, while the range of uncertainty in each 
such region decreases. The overall effect, as more readings are 
added, is a gradually increasing coverage along with an increas- 
ing precision in object locations. Typically after a few hundred 
readings (and less than a second of computer time), our process 
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Figure 6b. A two-dimensional sonar map 

is able to “condense out” a comprehensive map covering a 
thousand square feet with better than one foot position accuracy 
of the objects detected. Note that such a result does not violate 
information theoretic or degree of freedom constraints, since 
the detected boundaries of objects tend to be linear, not quad- 
ratic in the dimensions of the map. A thousand square foot map 
typically contains as little as a hundred linear feet of boundary. 

Map Matching 
We have also developed a procedure that can match two maps 
and report the displacement and rotation that best takes one 
into the other. We begin with the maps described above, with cell 
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values that are negative if the cell is empty, positive if occupied, 
and zero if unknown. 

A measure of the goodness of the match between two maps at a 
trial displacement and rotation is found by computing the sum 
of products of corresponding cells in the two maps. An occupied 
cell falling on an occupied cell contributes a positive increment 
to the sum, as does an empty cell falling on an empty cell (the 
product of two negatives). An empty cell falling on an occupied 
one reduces the sum, and any comparison involving an unknown 
value causes neither an increase nor a decrease. This naive 
approach is very slow. Applied to maps with a linear dimension 
of n, each trail position requires O(n2) multiplications. Each 
search dimension (two axes of displacement and one of rotation) 
requires O(n) trial positions. The total cost of the approach thus 
grows as O(n5). With a typical n of 50, this approach can use up a 
good fraction of an hour of VAX time. 

Considerable savings come from the observation that most of 
the information in the maps is in the occupied cells alone. 
Typically only O(n) cells in the map, corresponding to wall and 
object boundaries, are labelled occupied. A revised matching 
procedure compares maps A and B through trial transforma- 
tion T (represented by a 2 x 2 rotation matrix and a 2 element 
displacement vector) by enumerating the occupied cells of A, 
transforming the coordinates of each such cell through Tto find 
a corresponding cell in B. The [A, B] pairs obtained this way are 
multiplied and summed, as in the original procedure. The 
occupied cells in B are enumerated and multiplied with 
corresponding cells in A, found by transforming the B coordi- 
nates through T‘ (the inverse function of T), and these products 
are also added to the sum. The result is normalized by dividing 
by the total number of terms. This procedure is implemented 
efficiently by preprocessing each sonar map to give both a raster 
representation and a linear list of the coordinates of occupied 
cells. The cost grows as O(n4), and the typical VAX running 
time is down to a few minutes. 

A further speedup is achieved by generating a hierarchy of 
reduced resolution versions of each map. A coarser map is 
produced from a finer one by converting two by two subarrays of 
cells in the original into single cells of the reduction. Our existing 
programs assign the maximum value found in the subarray as 
the value of the result cell, thus preserving occupied cells. If the 
original array has dimension n, the first reduction is of size d2, 
the second of d4, and so on. A list of occupied cell locations is 
produced for each reduction level so that the matching method 
of the previous paragraph can be applied. The maximum num- 
ber of reduction levels is lognn. A match found at one level can 
be refined at the next finer level by trying only about three 
values of each of the two translational and one rotational 
parameters, in the vicinity of the values found at the coarser 
level, for a total of 27 trials. With a moderate a priori constraint 
on the transformation this amount of search is adequate even at 
the first (coarsest) level. Since the cost of a trial evaluation is 
proportional to the dimension of the map, the coarse matches 
are inexpensive in any case. Applied to its fullest, this method 
brings the matching cost down to slightly larger than O(n), and 
typical VAX times to under a second. 

We found one further preprocessing step is required to make 
the matching process work in practice. Raw maps at standard 
resolutions (6 inch cells) produced from moderate numbers 
(about 100) of sonar measurements have narrow bands of cells 
labelled occupied. In separately generated maps of the same 
area, the relative positions of these narrow bands shift by as 
much as several pixels, making good registration of the occu- 
pied areas of the two maps impossible. This can be explained by 
saying that the high spatial frequency component of the posi- 
tion of the bands is noise; only the lower frequencies carry 
information. The problem is fixed by filtering (blurring) the 
occupied cells to remove the high frequency noise. 
Experiments suggest that a map from 100 readings should be 
blurred with a spread of about two feet, while for maps made 
from 200 readings a one foot smear is adequate. Blurring 
increases the number of cells labelled occupied. So as not to 
increase the computational cost from this effect, only the final 
raster version of the map is blurred. The occupied cell list used 
in the matching process is still made from the unfiltered raster. 
With the process outlined here, maps with about 3000 six inch 
cells made from 200 well spaced readings can be matched with 
an accuracy of about six inches displacement and three degrees 
rotation in one second of VAX time. 

Results 
We incorporated the sonar map builder into a system that 
successfully navigates the Neptune robot through cluttered obsta- 
cle courses. The existing program incrementally builds a single 
sonar map by combining the readings from successive vehicle 
stops made about one meter apart. Navigation is by dead 
reckoning-we do not yet use the sonar map matching code. 
The next move is planned in the most recent version of the map 
by a path planning method based on path relaxation [ 151. Since 
this method can cope with a probabilistic representation of 
occupied and empty areas and does path planning in a grid, it 
fits natually into our present framework. The system has success- 
fully driven Neptune the length of our cluttered 30 by 15 foot 
laboratory using less than one minute of computer time. 

Local Path Planning 
Path relaxation is a two-step path planning process for mobile 
robots. It finds a safe path for a robot to traverse a field of 
obstacles and arrive at its destination. The first step of path 
relaxation finds a preliminary path on an 8-connected grid of 
points (Figure 7). The second step adjusts, or “relaxes,” the 
position of each preliminary path point to improve the path. 
One advantage of path relaxation is that it allows many different 
factors to be considered in choosing a path. Typical path plan- 
ning algorithms evaluate the cost of alternative paths solely on 
the basis of path length. The cost function used by Path 
Relaxation, in contrast, also includes how close the path comes 
to objects (the further away, the lower the cost) and penalties for 
traveling through areas out of the field of view. The effect is to 
produce paths that neither clip the corners of obstacles nor 
make wide deviations around isolated objects, and that prefer to 
stay in mapped terrain unless a path through unmapped regions 
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Figure 7. Path relaxation and 8-connectedness 

is substantially shorter. Other factors, such as sharpness of 
corners or visibility of landmarks, could also be added for a 
particular robot or mission. 
A cost function describes how desirable it is to have a path go 
through each point. This function can be thought of as a terrain 
map, with the vehicle as a marble rolling towards the goal. The 
terrain (cost function) consists of a gradual slope towards the 
goal, hills with sloping sides for obstacles, and plateaus for 
unexplored regions. The height of the hills has to do with the 
confidence that there really is an object there. Hill diameter 
depends on robot precision: A more precise robot can drive 
closer to an object, so the hills will be tall and narrow, while a less 
accurate vehicle will need more clearance, requiring wide, 
gradually tapering hillsides. Using this analogy, the first step of 
path relaxation is a global grid search that finds a good valley for 
the path to follow. The second step is a local relaxation step that 
moves the nodes in the path to the bottom of the valley in which 
they lie. 

Grid Search 
Once the grid size has been fixed, the next step is to assign costs 
to points on the grid and then to search for the best path along 
the grid from the start to the goal. “Best,” in this case, has three 
conflicting requirements: shorter path length, greater margin 
away from obstacles, and less distance in uncharted areas. These 
three are explicitly balanced by the way path costs are calculated. 
A path’s cost is the sum of the costs of the nodes through which 
it passes, each multiplied by the distance to the adjacent nodes. 
In a 4-connected graph all lengths are the same, but in an 
8-connected graph we have to distinguish between orthogonal 
and diagonal links. The node costs consist of three parts to 
explicitly represent the three conflicting criteria. 

Cost for  distance. Each node starts out with a cost of one unit, for 
length traveled. 

9 Cost for  near objects. Each object near a node adds to that node’s 
cost. The nearer the obstacle, the more cost it adds. The exact 
slope of the cost function will depend on the accuracy of the 
vehicle (a more accurate vehicle can afford to come closer to 
objects), and the vehicle’s speed (a faster vehicle can afford to 
go farther out of its way), among other factors. 

9 Cost f m  zuifhin or near an unmapped region. The cost for traveling 
in an unmapped region will depend on the vehicle’s mission. 
If this is primarily an exploration trip, for example, the cost 
might be relatively low. There is also a cost added for being 
near an unmapped region, using the same sort of function of 
distance as is used for obstacles. This provides a buffer to keep 
paths from coming too close to potentially unmapped hazards. 

The first step of Path Relaxation is to set up the grid, construct 
the list of obstacles, and determine the vehicle’s current position 
and field of view.’ The system calculates the cost at each node, 
based on the distances to nearby obstacles and whether that 
node is within the field of view or not. The next step is to create a 
graph with links from each node to its 8 neighbors. The start 
and goal locations do not necessarily lie on grid points, so special 
nodes need to be created for them and linked into the graph. 
The system then searches this graph for the minimum-cost path 
from the start to the goal. The search itself is a standard A* [ 121 
search. The estimated total cost of a path, used by A* to pick 
which node to expand next, is the sum of the cost so far plus the 
straight-line distance from the current location to the goal. This 
has the effect, in regions of equal cost, of finding the path that 
most closely approximates the straight-line path to the goal. 

Relaxation 
Grid search finds an approximate path; the next step is an 
optimization step that fine-tunes the location of each node on 
the path to minimize the total cost. One way to do this would be 
to precisely define the cost of the path by a set of non-linear 

‘In this implementation. there are two types of obscacles: pohgonal and circular. 
Currently, the circular obstacles are used for points found b\ stereo vision system. 
each bounded by a circular error limit, and the polygons are used for the field of 
view. The vision system will eventually give polygonal obstacles, at which point 
both the obstacles and the field of view will be wpresented as polygons and the 
circular obstacles will no longer be needed. 
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equations and solve them simultaneously to analytically deter- 
mine the optimal position of each node. This approach is not, in 
general, computationally feasible. The approach used here is a 
relaxation method. Each node’s position is adjusted in turn, 
using only local information to minimize the cost of the path 
sections on either side of that node. Since moving one node may 
affect the cost of its neighbors, the entire procedure is repeated 
until no node moves farther than some small amount. 
Node motion has to be restricted. If nodes were allowed to move 
in any direction, they would all end up at low cost points, with 
many nodes bunched together and a few long links between 
them. This would not give a very good picture of the actual cost 
along the path. So in order to keep the nodes spread out, a 
node’s motion is restricted to be perpendicular to a line between 
the preceding and following nodes. Furthermore, at any one 
step a node is allowed to move no more than one unit. 
As a node moves, all three factors of cost are affected: distance 
traveled (from the preceding node, via this node, to the next 
node), proximity to objects, and relationship to unmapped 
regions. The combination of these factors makes it difficult to 
directly solve for minimum cost node position. Instead, a binary 
search is used to find that position to whatever accuracy is 
desired. 
The relaxation step has the effect of turning jagged lines into 
straight ones where possible, of finding the “saddle” in the cost 
function between two objects, and of curving around isolated 
objects. It also does the “right thing” at region boundaries. The 
least cost path crossing a border between different cost regions 
will follow the same path as a ray of light refracting at a bound- 
ary between media with different transmission velocities. The 
relaxed path will approach that path. 

Example Run 
In Figure 8 we see a run using real data. Objects are represented 
as little circles, where the size of the circle is the positional 
uncertainty of the stereo system. The numbers are not all 
consecutive, because some of the points being tracked are on the 
floor or are high off the ground, and therefore are not obstacles. 
The dotted lines surround the area not in the field of view; this 
should extend to negative infinity. The start position of the 
robot is approximately (0, -.2) and the goal is (0, 14.5). The grid 
path is marked with O s .  After one iteration of relaxation, the 
path is marked by 1’s. After the second relaxation, the path is 
marked by 2’s. The greatest change from 1 to 2 was less than .3 
meters, the threshold, so the process stopped. The size of the 
“hills” in the cost function is 1 meter, which means that the robot 
will try to stay 1 meter away from obstacles unless that causes it to 
go too far out of its way. 

An Architecture for Distributed Control 
Mobile robots pose a number of fascinating problems from the 
point of view of overall software system design. A large number 
of semi-independent activities are necessary to achieve autono- 
mous mobility. These tasks include controlling actuators, 
monitoring several qualitatively different sensors, interpreting 
and integrating data from the sensors, and performing plan- 

Figure 8. An example run 

ning and problem-solving activities in several different areas 
and on various levels of abstraction. 

These problems are aggravated by the fact that, to achieve 
real-time response, large amounts of processing power are 
necessary. One way of achieving this is to apply several proces- 
sors to the problem. All this, however, brings the need to develop 
new and adequate distributed control and problem-solving 
mechanisms. 

To face some of these concerns, we have designed a distributed 
software control structure [ 11 for mobile robots equipped with a 
variety of sensors and actuators. In this architecture, Expert 
Modub run as independent processes and exchange informa- 
tion over a blackboard (Figure 9a). The modules are distributed 
over a processor network and communicate through messages. 
We are now working on an experimental implementation of this 
system. 
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Expert Modoler 

Figure 9a. General architecture of the distributed control system 

The Architecture 
Expert Modules are specialized subsystems used to control the 
operation of the sensors and actuators, interpret sensory and 
feedback data, build an internal model of the robot’s environ- 
ment, plan strategies to accomplish proposed tasks, and super- 
vise the execution of the plan. Each Expert Module is composed 
of a master process and a slave process, where the master process 
controls the scheduling and the activities of the slave process 
and provides an interface to other modules. The master retrieves 
data from the blackboard that is needed by the slave, changes 
the status (Tunlsuspenrilknninale/rcsume) of the slave, and posts 
relevant results generated by the latter on the blackboard. The 
slave process is responsible for the processing and problem- 
solving activities as such. 

One of the modules, the supervicor, dynamically abstracts sched- 
uling information for the Expert Modules from a Control Plan. 
The Control Plan provides information specific to the execution 
of a given task by specifying subtasks and constraints in their 
execution. High-level information needed by the different sub- 
systems is shared over the blackboard [2]. This includes informa- 
tion on the robot’s status, relevant interpreted sensory and 
feedback data, and control information. Actual access to the 
blackboard is done only by the bluckboard monitor, to insure the 
integrity of the posted data. A bluckboard scheduler schedules the 
master processes to interact with the blackboard, according to 
their own priorities and the priorities of data and events being 
recorded there. 

The Expert Modules are distributed over the processor network. 
An executive local to each processor is responsible for process 
scheduling. Besides using the blackboard, processes also 
exchange data of more specific interest directly among 
themselves. The system is built on top of a set of primitives that 
provide process handling, message-based interprocess commu- 
nication and access to the blackboard. 

An Example: Sonar-based Navigation 
To provide an experimental testbed for the proposed architec- 
ture, we are re-implementing our sonar-based navigation sys- 
tem [8] as a distributed system. The main modules of the sonar 
system are sonar control, the scanner, the mapper, the path 
planner, and the conductor; for the distributed version we add 
to these a guardian and a supervisor process. The functions of 
these modules are: 
Sonar Control: Interfaces to, and controls the sonar sensors. 

Scanner: 

Mapper: 
Path Planner: 

Conductor: 

Guardian: 

Supervisor: 

Provides range readings. 
Preprocesses the incoming sonar data and 
catches erroneous readings. Annotates sonar 
readings with sensor position, generating what 
is called a view. 
Integrates the view into a sonar map. 
Using the information about free, unknown and 
occupied areas stored in a sonar map, generates 
safe paths for the robot. 
Performs the actual locomotion of the robot 
vehicle along the proposed path. 
Does a simple check on the sonar range data 
that is being acquired continuously during 
locomotion, to make sure that enough distance 
is maintained relative to objects in the robot’s 
environment. This is a safety system to take care 
of rapidly moving objects that were not regis- 
tered in the sonar map. 
Takes care of the overall behavior of the system 
and extracts scheduling information from the 
Control Plan. 

The original, monolithic version of the system worked by pass- 
ing control to each module in sequence. However, such a serial- 

- 
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Figure 9b. A distributed implementation of the sonar-based mobile robot navigation system 

ization is inconvenient when the processes involved are logically 
distinct or when they operate on different time-scales. For 
example, the path planner certainly requires the output of the 
mapper, but the planning activity is distinct from mapping and 
there is no reason why planning and mapping should follow a 
rigid pattern. They can be viewed instead as working on differ- 
ent sides of a shared database, with one process adding to and 
correcting the database while the other draws inferences from 
the information therein. As an example of different time-scales, 
both the guardian and the scanner act on sonar readings, but 
the guardian runs continuously whereas the scanner waits until 
its views come from sufficiently different positions of the robot. 
In the distributed version of the system, each of the modules 
described above is an expert, with a master process that watches 
the blackboard for conditions that warrant a change in status 
(run/terminate/suspend/resume) of its slave. Information con- 
cerning the availability of data or results, the status of the robot, 
the activities of the Expert Modules and other relevant high- 
level data and control information is shared over the blackboard. 
The supervisor provides additional scheduling information to 
achieve an overall integrated and coherent behaviour. The bulk 
of the data is still passed directly between the modules themselves, 
since it consists of information relevant only to specific routines. 
Figure 9b illustrates the main flow of data control. 

In a typical run, sonar ranging is done continuously. All read- 
ings are checked by the guardian to see whether any object is 
dangerously near. Selected sets of readings, taken from 
sufficiently distinct positions, are processed by the scanner and 
the mapper to provide an improved sonar map. Path-planning 
is done, and the existing path is updated. Locomotion proceeds; 
if the guardian issues a warning, the robot stops immediately 
and only proceeds after reassessing the situation of its 
environment. With this architecture, the system is able to respond 
in an asynchronous fashion to the various needs for data 
processing and problem-solving as they arise. 

New Work 
We have begun work in a major new area; road following systems 
for the DARPA Autonomous Land Vehicles program. The goals 
of the DARPA program begin with following well defined roads 
with no intersections or obstacles, then progress to navigation 
and obstacle avoidance in road networks and eventually to navi- 
gation in open terrain. 
We are working on this in cooperation with other Robotics 
Institute groups led by William Whittaker and Takeo Kanade. 
The vehicle for this project is the Terregator, a large mobile 
robot built by Whittaker’s group. Powered by an onboard gaso- 
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line fueled generator, it is designed for long outdoor journeys 
and is equipped with a television camera and microwave T V  
link. We have written a program that drives it along benign, 
well-defined roads in real time, visually tracking the left and 
right edges. We are extending this work to more difficult roads, 
longer journeys, and faster speeds, and plan to incorporate 
obstacle detection, landmark recognition and long range 
navigation. The effort complements our other projects and is a 
natural application of a number of the techniques we have been 
developing. 

Conclusion and Philosophy 
The most consistently interesting stories are those aboutjourneys, 
and the most fascinating organisms are those that move from 
place to place. These observations are more than idiosyncrasies 
of human psychology, but illustrate a fundamental principle. 
The world at large has great diversity, and a traveller constantly 
encounters novel circumstances and is consequently challenged 
to respond in new ways. Organisms and mechanisms do not exist 
in isolation, but are systems with their environments, and those 
on the prowl in general have a richer environment than those 
rooted to one place. Mobility supplies danger along with 
excitement. Inappropriate actions or lack of well-timed appro- 
priate ones can result in the demise of a free roamer, say over the 
edge of a cliff, far more easily than of a stationary entity for 
whom particular actions are more likely to have fixed effects. 
Challenge combines with opportunity in a strong selection pres- 
sure that drives an evolving species that happens to find itself in 
a mobile way of life in certain directions quite different from 
those of stationary organisms. The last billion years on the 
surface of the earth has been a grand experiment exploring 
these pressures. Besides the fortunate consequence of our own 
existence, some universals are apparent from the results to date 
and from the record. In particular, intelligence seems to follow 
from mobility. 
The same pressures seem to be at work in the technological 
evolution of robots and it may be that mobile robots are the best 
route to solutions for some of the most vexing unsolved prob- 
lems on the way to true artificial intelligence-problems such as 
how to program common sense reasoning and learning from 
sensory experience. This opportunity carries a price: programs 
to control mobile robots are more difficult to get right than 
most, and the robot is free to search the diverse world looking 
for just the combination that will foil the plans of its designers. 
There is still a long way to go. 
We believe that our real-world experimental approach is teach- 
ing us important lessons. It is our experience that many percep- 
tual and control problems succumb to simple techniques, but 
that only a very small fraction of the plausible simple methods 
work in practice. Determining which methods work often cannot 
be decided theoretically, but can be decided readily by realistic 
experiments. 
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High Resolution Maps from Wide Angle Sonar 

Hans P. Moravec Alberto Elfes 

The Robotics Institute 

Carnegie-Mellon University 

A bst ract 

We describe the use of multiple wideangle sonar range measurements 
to ntap the surroundings of an autonornous mobile robot A sonar range 
reading prvvides iilforniation concerning cnipty and occupied volumes in 
a cone (subtending 30 degrees in our case) in front of the sensor. The 
reading is modelled as probability pmflles pmjected onto a rastenzed 
map. where somewhere occupied and everywhere empty areas an? 
represented Range measurements fmm multiple points of view (taken 
jiom multiple sensors on the robot, and fmm the same sensors Mer  robot 
moves) are systematically integrated in the map. Overlapping empty 
volumes reinforce each other. and serve to condense the range of 
occupied volumes. The map definition unpmves as more readings am 
added The final map shows regions probably occupied probabb 
uqoccupied and unknown a r e a  The method deals efleclively with 
clutter, and can be usedfor motion planning and for extended landmark 
recognition This system has been tested on the Neptune mobile mbol at 
CMU. 

1. Introduction 
This papcr dcscribes a sonar-based mapping system developed for 

mobilc robot navigation. It was tcstcd in cluttcrcd cnvironmcnts using 
the Neptuite mobilc robot[S], dcvcloped at the Mobile Robot 
Laboratory of thc Robotics Institutc, CMI;. The Ncptune system has 
been uscd succcssfully in several arcas of rcsearch, including stcreo 
vision navigation [5, lo] and path planning [Ill. Other rcscarch in the 
laboratory includes the invcstigation of adcquatc high-levcl robot 
control smcturcs, the usc of distributed and parallel processing 
methods to improvc thc real-timc response of the system, navigation in 
outdoor environments and the design and construction of more 
advanced robots with higher mobility. 

Primarily because of computational expense, practical rcal-world 
stcrco vision navigation systems [7, IO] build very sparse depth maps of 
their surroundings. Evcn with this economy our fastest system, 
dcrribrd in [SI, takcs 30 - 60 scconds pcr one meter step on a 1 mips 
machine. 

This work has been supported in part by Denning Mobile Robotics, 
Inc., by chc Wcstcrn Rnnsylvania Advanced Technology Ceiitcr and 
by the Office of Naval Research undcr contract numbcr NCKlO14-81- 
K-0503. I h e  sccond author is supportcd in part by the Consclho 
Nacional de Dcscnvolvimento Cicntiftco c Tccnolbgb - CNPq, Brazil, 
undcr Grvlt 200.986-80; in part by the lnstituto l'ccnolbgico de 
.4cron&utica - ITA, Brazil; and in part by Thc Robotics Institilte. 
Carnc&Mcllon Univcrsity. 

Ihc vicws and conclusions containcd in this documcnt are thm of 
thc authors and shoiild not he intcrprctcd as rrprcssiiting the oTiial 
p:)lkics, cithcr cxprcsscd or implicd, of thc funding agcncics. 

Direct sonar rangc mca~urcnicnt~ prornird to provide basic 
naviga'jlon and dcnscr maps with considcrably lcss computation. 'Ilic 
readily availahlc Polaroid ultraonic range transduccr 191 was sclrvtcd 
and a ring of 24 of thcsc Sensors was rnountcd on Ncptunc. 

Wc find sonar scnwrs intcrcsting also bccausc wc would likc to 
invcstigatc how qualitatively difTcrait sensors. such ,IS a smar array and 
a pair of caincras, could coopcratc in building up a inorc complex and 
rich dcscription of the robot's cnvironment 

1 .l. Goals 
Wc cxpcctcd sonar mcasurcmcnts to provide maps of tlic robot's 

cnvironmcnt with rcgions classificd JS cmpty, occupicd or unknown, 
and inatchcs of new maps with old oncs for landmark classification m d  
to obtain or correct global position and orientation information. 

1.2. Approach 
Our method starts with a number of rangc measurements obtained 

from sonar units whosc position with rcspcct to one another is known. 
Each mcasurcment providcs information about cmpty and possibly 
occupied volumes in the space subtended by the bcam (a thirty degree 
conc for the prcsent scnson). This occupancy information is projected 
onto a rasterizcd two-dimensional horizontal map. Sets of reading 
takcn both from diffcrcnt sensors and from diffcrcnt positions of the 
robot are progressively incorporatcd into the sonar map. As more 
readings are added the area dcduccd to be empty expands, and the 
expanding empty area encroach= on and sharpens the possibly 
occupicd region Thc map becomes gradually more dctailed. 

For navigation and recognition we developed a way of convolving 
two sonar maps, giving thc displaccment and rotation that best brings 
one map into registration with the other, along with a mcasure of the 
goodncss of the match. 

The sonar maps happen to be very usefi11 for motion planning. They 
are denser than those made by our stcrco vision programs and 
computationally about an order of magnitude faster to produce. We 
prcsently usc thcm with the Path Relaxation method [ll] to plan local 
paths for our roba 

1.3. Related Work 
Sonar is a developed technology but few applications until recently 

involved dctailcd map building. Traditional marine applications, 
camera autofocus systems, and some simple robot navigation schcmes 
[2,4 rcly on sparse proximity mcasurcments to accomplish their 
narrowpoats. 

CH2152-7/85/oooO/0116$01 .oO Q 1985 IEEE 
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?hc most advanced sonar systcm~ used & marine &rlligeace 
apcratiom locate swnd sourc~ passively D]. Ulvasound systuns uscd 
io mcdicinc arc typically active and build maps for human perusal, but 
dcpcnd on accurate physical modcls of thc environmcnu that the sound 
t n v c r s c s ~ ~  and work with very small bcun widths, about 1' - 3'. 
Narrow bcam widths. formed by p l d  array tcchniqucs. arc also uscd 
in advanced side looking mapping sonar system for submeniblcs. An 
indcpcndcnt CMU wnar mapping cffon [3] also uscd ;I narrow beam, 
fonncd by a parabolic reflator, in its attempts to build a linebased 
dcscription. 

In contrast thc sonar scnson that wc choorc to cmolov have a widc 
bcun, with an cffcctivc anglc of about 30". 

2. The Sonar System 

2.1. The Sensor 
Thc sonar dcvica bcing uscd arc Polaroid laboratory grade ultrasonic 

transduccn [9]. Thcse sonar clcmcnts have a wful mcasuring rangc of 
0.9 to 35.0 It Thc main lobe of the scnsitivity function corresponds to a 
bcam anglc of 30" at -38 dB. Expcrimcntal results showed that ebe 
range m r a c y  of thc scusors is on the ordcr of 1 %. We arc using the 
control circuitry provided with the unit, which is optimized for giving 
the range of the nearest sound rcflcctor in its ficld of view. and works 
well for this purpose. 

2.2. me Army 

the Neptune mobile robot is canposed oP. 
'Ihe sow array, built at Denning Mobile Robotics, and mounted on 

0 A ring of 24 Polaroid sonar elemen& spaced 15' rpan and 
mounted af an height of 31 incha above the ground (see 
Fa 1). 

0 A 280 convolling miaoprocmor which celects and Ares 
the sfllson, times the returns and provides a nngc value. 

0 A serial line over which nngc information k sent to a VAX 
mainframe that presently intuprcts the sonar data md 
perfonns the hieher kvel mapping and mvigaUon 
M o l l &  

3. Sonar Mapping 

3.1. Obtainlng Rollable Range 0.1. from tho Son8r Senror 
We begin our map building by prepmessing h e  bmming rrdina 

I o ~ e ~ Q I D I E . T h e t o l l o r v i n g r t c g , u c u w d :  

'Ibresholdii: Range rrdinpc above ;I CQtrilr nuximum R, 
ucdipuded We obscrvc that sonar rudings a d  by 
tpcculpr rcflcctions arc o h  near thc rauhnum nap of 

device (R-). With R slightly below R, many of 
t t w s e r e a d i n g s u c 4  n ~ s p t a n b a ~ m a ~ t t y  
myopk. but the ovcrall qwlity of tbe map improva. Vay 
hrpe opcn rpra uc decated by malying the set of 
distance values obtaincd fhnn the mar, md in thiasc the 
filtering is not done. A Mhr hcurirtiC b rpplicd for onrlf 
readings: valucs bcbw thc minimum sensor mngc R- arc 
usually glitches and arc disrudcd 

0Avcnginp: Scvcral indqxndcnt rcading from thc siunc 
scnsor at thc samc position arc avcragcd. I h c  sonar 
rcadings arc subjcct to crror not only from rcflcctions but 
also from other causcs such as fluctuations in thc effcctivc 
sensitivity of thc ttansduccr. As a mult madings show a 
artain dispcrrion. hvcraging narrows the sprcad. 

0Qustcriap: A sct of madings from onc sensor at a given 
position somctima shorn a clustcring of thc data around 
two diffcrent mcan valucs. This happcns when diffcrcnt 
rcadings arc being originatcd by objects at staggered 
distances. We apply a simple clustcring analysis to thc data. 
and extract a mcan value for each cluster for use in 
Subsequent p r a a s i n e  

3.2. Representing the Sonar Beam 
Bcfaux of thc wide beam angle the filtered data from the above 

methods provides only indimt information about the location of the 
detected objats. Wc combiue the constraints from individual rcadings 
to d u c e  the uncertainty. Our infcrcnca are represented IS 
probabilities in a discrete grid. 

A range reading is interpreted IS providing information about space 
volumes that arc probably mupTy and m e w h e n  OccUpIm. We 
model the sonar beam by probability distribution functionr Informally, 
t h e  functions model our confidence that the various points inside the 
conc of the bcam arc empty and our uncertainty about thc location of 
the point, somewhere 011 the range surtpCe of the cone, that caused the 
echo. The functions ue based on the range reading and on the spatial 
sensitivity pattcrn of the mlw. 

Consider I position P -- (x,y.z) belonging to the volume swept by the 
sowbcrm. Let. 

R be the range mwurrment nturncd by the sonar sensor, 
e be the mean sonar deviation m r ,  
obcthe beamapermn. 
S = (xs. yr. 3 be the position of the sonar sensor, 
6 be the d l s t a m  han P to s. 
0 be the angle between the main axis ofthe beam and SP. 

We now identify two regions in tbe sonu beam: 

Emptr R q h  hints inside the sonar bcam ( 6  < R - e  and 
8 ~ 0 / 2  ), tht h v e  a probability pr=/J6,B) of being 
empty. 

osomeukre Occupii Reglop: hints on the sonar beam 
froat ( ba[R-e .R+e)  and 0SoR ), that have (I 

probability po=/&l.U) of k i n g  occupied. 

Fig 2 shocws thc probability profilcs for a sonar bcam that rcturncd a 
range rcrding R. Thc horizontal crosscction of thc barn is associated 
with two probability ddbut ions  corraponding to the cmpty and the 
occupicd probabilities 

Thc cmpty probability density function for a point P insidc thc sonar 

(1) 

beam is &en by: 

pJxa.z)=d position (XYA is empty I=E,W.E,,(B) 
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Figure I: The Neprurlc mobilc robot, with a pair of camera and the 
sonar ring. in our laboratory. Sonar maps of thb lab 
can bc xen in Figurcs 3 through 8, 

where: 

EJS)  = 1 -((S - R&/(R - c - R,JY for 8 E [R-,R- e] (2) 

E p = o  o t h e m k  

,F&e)=l-(Ze/~y for U c [ - ~ R , d 2 ]  (3) 

And 

Thc ocxupicd probability dcnslty function for a point P on the beam 

po(x,y.z)=A position (XJJ) is -pied ]=O,(d)O.(s) (4) 

front is given by: 

wherr: 

Op)= 1 -((a - Rycy for 6 e [ R -  8.R +e] 

01(6)=0 o t h c r n k  

o&O)=1-(2e/wy for O c ( - d 2 . d 2 ]  (a) 

(9 

And 

lhex probability density hnctioru arc now pmjated on a horizonral 
We use the profiles that plane to gcneratc map information. 

correspond to a horizontal section of thc sonar berun (z=zJ 

3.3. Representing Map8 
Sonar Maps arc two-dimensional arrays of cells corresponding to a 

horizontal grid imposed on the area to be mappcd. The grid has M x N  
cells, cach of size AxA. The final map has cell valucs in the ranee 
(-1J). where values less than 0 mprcsent probably empty rcgionr. 
exacQ zero rcpmcnrs unknown 00cl1p;~ncy. and greater than 0 implia 
a probably oocupicd sp;wr This map is computed in a Anal step horn 
two scparate arrays analogow ra the empty and occupicd probability 
distributions introduced Pbovc 

A cell k consided UNKNOWN if no information concernin# it b 
available. Cells can be EMFTY with a dcgrcc of certainty or confidence 
Emp(X,Y) and OCCUPIFD with a dcgrcc of certainty 0cdX.Y) borh 
values rangiq fiwn 0 ra L 

Thc oprioi cmpty and oaupicd ccrwinty values for a given grid cell 
(X,Y) and reading arc dctcrmincd by taking thc minimum of the 
rcading'r pF and maximum of po rcspcctivdy. over thc ccll through a 
horiwnd dice through the bcam mter. 

3.4. Composing Information from Several Readings 
'llc map iE built by projecting thc bcam probabilitia onto the 

discrcte cclls of the sonar map and thcrc combining it with information 
from othcr bcamb Thc position and thc orientation of thc sonar WllSOT 
arc uscd to rcgistcr the bcam with thc map. 

Diffcmt rcadings asserting that a ccll b mpry will enhance each 
other. as will reading implyiiig that the cell may k OCCUPII~) while 
cvidcncc that thc cell is EMPTY will W e n  the certainty of it beiq 
-PIED and viccvcnr 
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A 

Figure 2: The Probability Profila conrsponding to the probably Fmpty 
and somcwhcrc Occupicd rcgionz in the sonar bcam. 
lhe profilcs rcpmcnt a horizontal cross section of 
the beam. 

The opcrations performed on thc empty and occupied probabilities 
am not symmcuical. The probability distribution for mply areas 
rcprcscnts a solid volumc whosc totality is probably cmpty but the 
occupied probability distribution for a single reading rcpmcnts a lack 
of knowlcdge we have about the location of a single reflecting point 
somewhere in thc range of the dhbut ion .  Empty regions am simply 
addcd using a probabilistic addition formula The ~cupirdprobabilides 
for a singlc reading, on the other hand, arc rcduccd in the areas that the 
other data suggcsts is empty, thcn nomi i tcd  to make their sum unity. 
Only after this narrowing proccn arc the occupied probabilities froar 
each reading combined using the addition formula. 

One range measurement contains only a small amount of 
information. By combining thc evidcncc from many readings as the 
robot mova in its environment, the area known to be empty is 
expanded. 73c number of rrgions somewhcre conraining UI occupied 
cell increases. while the rangc of uncertainty in each such rc8ion 
dccrcases The overall effect as morc readings are addcd is a gradually 
increasing coverage along with an increasing precision in thc objcct 
locations. Typically aftcr a few hundrcd readings (and less than 8 
sccond of computer time) our pnress is able to "condense out" 8 
mprchcnsive map covering a thousand square fcct with bcuer than 
one foot position accuracy of the objccts dctcctcd. Note that sucb 8 
rcrult does not violatc information thcoreric or degm of Freedom 
constraints. since the detatcd boundaries of objccts arc linear. not 
quadratic in the dimensions of the map. A thousand squat foot map 
may contain only a hundrcd linear feet of boundmy. 

Formally the evidence combination prarrss proceedr along thc 
following steps: 

1. RESET: The whole Map u sct to UNKNOWN by makhg 

z swmmmoN or WPTY AREAS For evcry sonar reading A 
modify thc cmptyncss information over its projection by: 

mttma: Emp(x.Y):= 
hp(X,Y)  + Bnp&X,Y)- EmdX,Y)xEmpk(XY) 

Emp0L.Y): = 0 and Occ(X,Y): = 0. 

3. SUpmposmON OF occwiim AREAS: For cach miding 4 
shin the occupicd probnbilira around in rcsponsc to the 
combincd cniptyncs map Using: 

CANCEL: Occk(X.Y): = Occ,(X.Y). (1 - Emp(X.Y)) 

N O R H A W :  OCC&x.Y): = oCCk(x.Y)/x oCCk(x.Y) 

ENHANCE: oCcfx,Y): = 
OCciX.Y)+ occ&(x.y)-oc~x.y)x~c&(xy) 

4. n1RESIIOLDING: The final axupation vdue auributcd to a 
cell is given by a thmhoiding method: 

llIRESSHOU): Map(XY): = 
Oc((X,y) if 0cc(X,Y)~ EmdXY) 
- &mp(X.k') if Occ(X,Y) c Emp(XY) 

3.5. Map8 
A typical map obuincd through this mcthod is shown in Fig. 3. and 

the corresponding ccrtainty factor distributions are shown in Figs. Fig 
4 and 5. Thew are the maps obtained bcforc the thrcsholding stcp. 

The final ma+ obtained after thrcsholding arc shown in Fw 67  
and a. 

............ ............ .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... 

Figure 3: A Two-Dimcnsiond Sonar Map. Each symbol rcpmcnts a 
squarc area six incha on a side in the mom pictured 
in Figure 1. The right edgc of this diagram 
cormponds to the far wall in the picture. Empty 
uw with a high ccrtainty factor arc rcpmented by 
white space; b w u  certainty factors by "+"  
symbols of increasing thickness Occupied arcas arc 
represented by " x " symbols and Unknown areas by 
"-" . The robot positions where scans wcn taken an 
shown by circles and the outlime of the room and of 
the major objects by solid lina 

4. Matching 
Sonar navigation would bmeflt Prom a procedure Ihat can match two 

maps and report the displrcment and rotation that best taka one illto 
the otbu. 

Our most SucCasfLl program begin with the thresholded maps 
devribed above, with cell values that arc negative if the cell is empty. 
positive ifoccupied and ZM ifunknown. 



23 

Figure 4 The Occupied Areas in the Sonar Map. This 3-D View shorn Fipre ,: The Occupied Areas in the M~~ ~ f t ~ ~  Th,.&ol&,& 
the Certainty Factors O d X  ,Y). 

Figure 5: 'he Empty Areas in the Sonar Map. This 3-D view shows the Figure 8: The Empty Areas in the Sonar Map AAer nresholding 

A measure of the goodnes of the match between two maps at a trial 
d i s p h c n t  and rotation is found by computing the sum of products 
of conaponding cclb in the two maps. An occupied cell falling on an 
occupied cell contributes a positive increment to the sum, as doa an 
empty cell falling on an cmpty cell (thc product of two negativcs). An 
cmpty ccll f a n g  on an occupied one rrduces the sum, and any 
comparison involting an unknown value causcs ncither an increase nor 
8 dccrcase. This naive approach is vcry slow. Applicd to maps with a 
lincar dimension ofn. e a ~ h  vial position rrquircs an3 multiplications. 
Each scardl d i m d o n  (two axes of disptsccmcnt and onc of rotation) 
rcquim an) trial positions. The total cost of the approach thus grows 
a at?). With 8 typical n of u) this approach can burn up a good 
fhcfim of an hour of V u  timc 

Certainty Factors EmdLY). 

..................................... 

. . . . 

Q ~ d e r a b k  savings come the &emation that most of the 
infomation in rhc maps is in the occupicd cclls alone. Typically only 
an) cclb in the map. wrrcsponding to wall and objcct boundaria. arc 
hbcllcd occupied A rcviscd matching proccdurc compam maps A and 
B through trial transformation T(rcpmcntcd by a 2x2 rotxion matrix 
and a 2 clcmcnt displaccmcnt vector) by cnumcrating the mupicd cells 
of A. transforming the coordinates of each such ccll through 710 find 8 

Figure 6 The TwoDimensiond %oar Map After lhrahddiog. 

i 
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corrcsponding ccll in B.Thc [A, B] pain obtained this way are 
multiplicd and summcd as in thc original proccdurc. Thc occupied 
cclls in I% arc cnumcratcd and multiplicd with corrcsponding cclls in A. 
found by transforming thc 1% co-ordinates through T” (thc inverse 
knction of 7). and thcse products arc also addcd to thc sum. l h c  mult  
is normalizcd by dividing by thc total numbcr of tcrms. This proccdure 
is implcmcntcd cffcicntly by prcproccssing cach sonar map to give 
both P rastcr rcpmcntation and a lincar list of the co-ordinates of 
mupicd cclls. Thc cost growns as 4n‘) .  and the typical Vax running 
time is down to 3 fcw minuta. 

A further spccdup is achicvcd by generating a h i cmhy  of reduced 
resolution versions of each map. A cOaeSer map is produccd fimn a 
h e r  one by converting two by two subarrays of cclls in the original into 
single cells of the reduction. Our existing pmpam.5 assign the 
maximum value found in the subarray as thc value of the result Ceg 
thus pmcrving occupied ccllr If the original array has dimcnsion n, 
the first rcduction is of size nR. the second of n/4 and so on. A kt of 
occupied ccll locations is produccd for each reduction kvel so that the 
matching method of the previous paragraph can be applied. The 
maximum number of reduction lcvels is log2n. A match found at OM 
kvel can be refined at the next finer level by trying only about three 
values of each of the two translational and one rotational parameters, in 
the vicinity of the values found at the coarser kveL for a total of 27 
uials. With a moderate a-priori constraint on the transformation this 
amount of search is adequate cvcn at the fim (coarsest) kvel. Since the 
m t  of a vial evaluation is proponional to thc dimcnsion of the map. 
the coarse matches are inexpensive in any casc. Applicd to in  fuks& 
this method brings the matching cost down to slightly larger than o(nh 
and typical Vax times to under a scam& 

We found one funher preprocessing stcp is required to make the 
matching process work in praaice. Raw maps at standard rrsolutions (6 
inch cells) produccd from moderate numbcn (about 100) of sonar 
measurements have narrow bands of cclb labelled occupird In 
separately gcneratcd maps of thc same area the relativc positions of 
these narrow bands shifts by as much as sevcral pixels, making good 
registration of the occupied areas of the two maps impossible. This caa 
be explained by saying that the high spatial frrsucncy component of 
the position of the bands is noise. only the lower frcqucida carry 
information. The problem is fued by filtering (blurring) the occupied 
cells to remove the high hrqucncy noise. Expcrimcnt ruggcs~ that a 
map made from 100 rcadings should be blurred with a spread of about 
two feet, whilc for map made from 200 readings a one foot smear ir 
adequate. Blurring increases thc number of cclls kbcllcd occupied So 
as not to incrcasc the computational cost from thii c k t .  only the Anal 
raster version of the map is blurrcd The occupied ccll list uscd in the 
matching proms is still madc from the unfiltered raster. 

With thc process outlined hcrc. maps with about u)o six inch celb 
madc from 200 wcll spaccd readings can bc matclicd with an accuracy 
of about six incha displaccmcnt and three d q m a  rotation in OM 
sccond of Vax time 

5. Results 
Wc incorporatcd thc sonar map builder into a systcm that 

successfully naviptcs the Ncptunc robot through cluttcrcd obotaclc 
COUISCS. Thc existing program incrcmcntally builds e single sonar tpap 
by combining the readings from successive vchiclc stops mode about 
onc mctcr apah Navigation is by dcad reckoning - we do not yet use 
the sonar map matching code. Thc next move k planncd in the most 
recent vcnion of the map by a path-planning mcthod b a d  on path 
relaxation(ll]. Since this method CM cope with a probabilirtic 

reprcscntation of occupicd and empty arcas and docs patli-planning in 
a grid. it fits naturally into our pmcnt framework. Thc systcm has 
successfully driven Ncptunc thc length of our cluttcrcd 50 by 15 foot 
laboratory using less than onc minute of computer time. 

6. Conclusions 
We have dcrribed a program that builds modcratcly high resolution 

spatial maps of a mobile robot’s surroundings by combining scveral 
hundrcd rangc rcadings from unadorncd Polaroid ultrasonjc un i t s  The 
main innovation is an cffcicnt mathcmatical mcthod that reduces the 
position uncertainty of objccts dctccted by wide anglc sonar beams by 
combining interlocking constraints in a raster occupation probability 
map. We have also developed a fast algorithm for rclating two maps of 
the same area to derive relative displaccmcnt, anglc and goodness of 
match. 

We have used this mapping method in a systcm that navigates a 
mobile robot to a dcsircd destination through obstacles and clutter, and 
are preparing a more elaborate navigation system that depends on 
matching of the sonar maps to recognize key locations and on higher 
levcl repmcntations to navigate ovcr long distances. 
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Abstract 

This paper describes a sonarbased mapping and navigation g ~ s t m f o r  
aulonomous mobile robors operating in unknown and unstructured 
surroundings The system uses sonar range data IO build a niulri-leveled 
descriprion of the robot's environment. Sonar maps are represented in the 
system along several dimensions: Ihe Abstraction axis the Geographical 
axis and the Resolution axis Various kinds ofproblem-solving acrivities 
can be performed and different levels of pefloonance can be achieved by 
operating with these mulriple representations of maps The major modules 
of the Ddpbin system are described and related lo the various mapping 
represenlalions used. Results from actual runs are presented and fitrther 
research is mentioned The system is also siruated within rhe wider context 
of developing ai1 advanced sofrware architecture for aulonomous mobile 
robots 

1. Introduction 

The IBoIpljn system is intended to provide sonar-based mapping and 
navigation for an autonomous mobile robot operating in unknown and 
unstructured environments. The system is completely autonomous in 
the sense that it has no a priori model or knowledge of its surroundings 
and also camcs no user-provided map. It acquires data from the real 
world through a set of sonar sensors and uses the interpreted data to 
build a multi-leveled and multi-faceted description of the robot's 
operating environment. This description is used to plan safe paths and 
navigate the vehicle towards a given goal. 

The system is intended for indoor as well as outdoor use; it may be 
coupled to other systems, such as vision, to locate landmarks that would 
scrve as intermediate or final destinations. 

In the course of this paper, we will briefly identify some of the 
conceptual processing levels needed for mobile robot software, relate the 
present system to this framework, discuss the multiple representations 
dcvclopcd for sonar maps as well as their use in different kinds of 
problem-solving activities, describe the overall system architecture and 
show somc results from actual mns. We finish with an outline of further 
research. 

2. Conceptual Processing Levels for an 
Autonomous Mobile Robot 

The sonar mapping and navigation system discussed hcre is part of a 
rcscarch effort that investigates various issues involved in the 
dcvcloprncnt of the software stmcturc of an autonomous mobile robot. 

To situate the Wl$n system within this wider coniext, we characterize 
in this section somc of the conceptual proccsdng Icvcls rcquircd for an 
autonomous vehicle (see Fig. 2-1). Each is bricfly discussed below: 

VII. Global Control 

VI. Global Planning 

V. Navigation 

IV. Real-World Modelling 

111. Sensor Integration 

II. Sensor Interpretation 

1. Robot Control 

Figure 2-1: Conceptual Activity Levels in a Mobile Robot Software 
Architecture. 

0 Rob01 Conrrol: This level takes care of the physical control of 
the different Sensors and actuators available to the robot. It 
provides a set of primitives for locomotion. actuator and 
sensor control, data acquisition, etc., that serve as the robot 
interface, freeing the higher levels of the system from low- 
level details. This would include dead-rcckoning motion 
estimation and monitoring of internal sensors. Internal 
Sensors provide information on thc status of the different 
physical subsystems of the robot. while External Sensors are 
used to acquire data from the robot's environment. 
Sensor In!erpreation: On this level the acquisition of sensor 
data and its interpretation by Sensor Modules is done. Each 
Sensor Module is specialized in one type of sensor or even in 
extracting a spccific kind of information from the sensor 
data. They provide information to the higher levels using a 
common representation and a common frame of reference. 
Sensor Integration: Due to the intrinsic limitations of any 
sensory device, it is essential to integrate information coming 
from qualitatively different sensors. Specific assertions 
provided by the Sensor Modules are correlated to each other 
on this level. For example, pcomctric boundaries of an 
obstacle extracted by sonar can be projcctcd onto an image 
provided by the vision subsystem and can help in identifying 
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a certain object. On this Icvcl, information is aggregated and 
assertions about specific portions of the environment can be 
made. 
Real- Ubrld Modelling: To achieve any substantial degree of 
autonomy. a robot system must have an understanding of its 
surroundings, b) acquiring and manipulating a rich model of 
its cmironmcnt of operation. This model is based on 
assertions integrated from the various sensors, and reflects 
the data acquired and the hypotheses proposed so far. On 
this level, local pieces of information arc used in the 
incremental construction of a coherent global Real-World 
Model; this Model can then be used for several other 
activities. such as landmark recognition, matching of newly 
acquired information against already stored maps, and 
generation of expectancies and goals. 

0 Nuvigurion: For autonomous locomotion, a variety of 
problem-solving activities are nccessary, such as short-term 
and long-term path-planning, obstacle-avoidance, detection 
of emergencies, ctc. These different activities are performed 
by modules that provide specific services. 

0 Globd Planning: To achieve a global goal proposed to the 
robot. this level provides task-level planning for autonomous 
generation of sequences of actuator, sensor and processing 
actions. Other nccessary activities include simulation, error 
detcction, diagnosis and recovery, and replanning in the case 
of unexpected situations or failures. 

0 Glob01 Conrrol: Finally, on this level Supervisory Modules 
are responsible for the scheduling of different activities and 
for combining Plan-driven with Data-driven activities in an 
integrated manner so as to achieve coherent behaviour. 

This conceptual structure provides a paradigm within which several of 
our research efforts are situated [6,11, 121. It has influenced, in 
particular, the architecture of the BIUIJOI system for sonar-based 
mapping and navigation, as mentioned in Section 5. 

3. Sonar Mapping 

3.1. Introduction 

The Z J ~ ~ I J I I I  sonar system is able to build dense maps of the robot's 
environment and use them for autonomous navigation. The central 
representation of sonar mapping information is the Pmbabilisric or 
SemorLevel Local Map, which uses a medium-resolution grid (with a 
typical accuracy of 0.5 ft). The cells of a two-dimensional array spanning 
the area of interest arc used to store occupancy information (EMPTY, 
OCCUPIED or UKKNOWK ), as well as the associated confidence factors. 

Currently. the cycle of operation of the sonar system is as follows: 
from its current position. the robot acquires a set of range measurements 
provided by the sonar sensor array: these readings are then interpreted 
as assertions concerning empry and occupied areas, and serve to update 
the sonar map. Ihe map is now used to plan a safe path around 
obstacles. and the robot moves a certain distance along the path. It 
updates its position and orientation estimate and rcpcats the cycle. 

3.2. Building Maps 

reviewed here only briefly. 
represcnlations are derived from it. 

I h e  ]..oca1 Map building process is discussed in detail in [ll], and is 
We procecd to describe how other 

The sonar sensor array is composed of 24 Polaroid laboratory grade 
ultrasonic transducers. These devices are arranged in a ring and 
controlled by a microprocessor that also interfaces to a VAX mainframe. 
For experimental runs, the array was mounted on two different robots 
(Aleprune [13] for indoor runs, and the Terraguror[12] for outdoors). 

The mapping system processes range measurements obtained from the 
sonar transducers. annotated with the positions of the corresponding 
scnsors, which are derived from the position and orientation of the 
robot. Each measurement provides information about probably empry 
and possibly occupied volumes in the space subtended by the beam (a 
30' cone for the present sensors). This occupancy information is 
projected onto a rasterized two-dimensional horizontal map. Sets of 
readings taken both from different sensors and from different positions 
of the robot are incrementally integrated into the sonar map, using a 
probabilistic approach. In this way, errors and uncertainties are reduced 
and the map becomes gradually more detailed. 

The sonar beam is modelled by probability distribution functions. 
Informally, these functions describe our confidence that the points 
inside the cone of the beam are empty and our uncertainty about the 
location of the point that caused the echo. The functions are based on 
the range value and on the spatial sensitivity pattern of the sonar device. 

These sonar maps are very useful for motion planning. They are much 
denser than those made by typical stereo vision programs, and 
computadonally at least one order of magnitude faster to produce. 

3.3. Related Work 

In the Robotics area, ultrasonic range transducers have recently 
attracted increasing attention. This is due in part to their simplicity, low 
cost and the fact that distance measurements are provided directly. Some 
research has focused specifically on the development of more elaborate 
beam-forming and detection devices (see. for example, [SI). or on the 
application of highly sophisticated signal processing techniques [l] to 
complex sonar signals. 

Specific applications of sonar sensors in robot navigation include 
determining the position of a robot given a known map of the 
environment [9.10.5] and some ad hoc navigation schemes [2]. An 
independent CMU wnar mapping and navigation effort [3,4] uses a 
narrow beam. formed by a parabolic reflector, to build a line-based 
description of the environment 

4. Multiple Axis of Representation of Sonar 
Mapping Information 

From the Probabilistic I n a l  Maps described in the previous section. 
several other data structures arc derived. We use the following 
dimcnsions of rcprcscntation (Fig. 4-1): 

0 ME ABSTRACTION AXIS: Along this axis we move from a 
sensor-based. data-intcnsive representation to increasingly 
higher lcvels of interpretation and abstraction. Three levels 
are defined: the Sensor Level, the Geornefric Level and the 
Symbolic Level. 

0 THE GEOGRAPHICAL AXIS: Along this axis we define Views, 
Local Maps and Global Maps, depending on the extent and 
characteristics of the area covered. 

.ME RESOLLTION AXIS: Sonar Maps are generated at 
different values of grid resolution for different applications. 
Some computations can be performed satisfactorily at low 
levels of detail, while others need higher or even multiple 
degrees of resolution. 
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symbolic Level 
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Global Map 

Lor Resolution 

Figure 4-1: Multiple Axis of Representation of Sonar Maps. 

4.1. The Abstraction Axis 

The first kind of sonar map built from the sonar range data uses the 
Probobilisric representation described earlier. A two-dimensional grid 
covering a limited area of interest is used. This map is derived directly 
from the interpretation af the sensor readings and is, in a sense. the 
description closest to the real world. It servcs as the basis from which 
other kinds of reprcscntations are derived. Along the Abstraction Axis 
this data-intensive dcscription is also defined as the Semur LevelMap. 

The next level is called the Geometric Level. It is built by scanning the 
Sensor Level Map and identifying blobs of cells with high OCCUPIED 
confidence factors. Thcsc are mcrgcd into uniquely labclcd objects with 
cxplicitlq rcprcscntcd polygonal boundaries. If needed, the same can be 
done with I:MI'IY areas. 

71ic third is thc Synibolic Level. where maps of larger arcas (typically 
Global Maps) arc dcscribcd using a graph-like rcprcscntation. This 
dcscription bcars only a topological equivalence to the real world. Nodes 
rcprcscnt "intcrcsting" areas. wherc more detailed mapping information 
is necessary or available. while edges correspond to simpler or 
"uninteresting" areas (navigationally speaking), such as corridors. 

Different kinds of problem-solving activities are better performed on 
different levels of abstraction. For example, global path-planning (such 
as how to get from one building wing to another) would be done on the 
symbolic level. while navigation through a specific office or lab uses the 
sensor-level map. where all the detailed information about objects and 
free space, as well as the associated certainty facto6 is stored. 

4.2. The Geographical Axis 

In order to be able to focus on specific geographical areas and to 
handle portions of as well as complete maps, we define a hierarchy of 
maps with increasing degrees of coverage. Progressing along the 
Geographical Axis, we start with Views, which are maps generated from 
Scans taken from the current position, and that describe the area visible 
to the robot from that place. As the vehicle moves, several Views are 
acquired and integrated into a Local Mop. The lauer corresponds to 
physically delimited spaces such as labs or offices, which define a 
connected region of visibility. Global Maps are sets of several Local 
Maps, and cover wider spaces such as a whole wing of a building, with 
labs, offices, open areas, corridos etc. 

4.3. The Resolution Axis 

Finally, along the Resolution Axis, we again start with the Sensor- 
Level Local Map and generate a progression of maps with increasingly 
less detail. This allows certain kinds of computations to be performed 
either at lower levels of resolution with correspondingly less 
computational expense, or else enables operations at coarser levels to 
guide the problem-solving activities at finer levels of resolution. 

The most detailed sonar maps that can be obtained from the method 
outlined in Section 3 (considering the intrinsic limitations of the sensors) 
have a cell size of 0.1 x 0.1 ft  . For navigation purposes, we have 
typically been using a 0.5 f t  grid for indoors and a 1.0 f t  grid for 
outdoors. Nevertheless, several operations on the maps are expensive 
and are done more quickly at even lower levels of resolution. For these 
cases we reduce higher resolution maps by an averaging process that 
produces a coarser description. One example of an application of this 
technique is the Map Matching procedure described in [ll], where two 
Local Maps being compared with each other are first matched at a low 
level of detail. The result then constrains the search for a match at the 
next higher level of resolution. 

5. Overall System Architecture 

To provide a context for these multiplc dcscriptions. wc present in this 
Scction thc overall architccturc of rhc D o l ~ l ~ u t  Sonar-lbscd Mapping and 
Navigation system (Fig. 5-1). l'hc function of thc major modulcs and 
their intcraction with the various sonar map rcprcscntations[7] is 
described below: 

SpbOliC nip 

Graph Building 

Pith-Pl inn.  r 

Scanner 

T 
I 

Sonar Sensors Locowtion 

Figure5-1: Architecture of the Sonar Mapping and Navigation 
System. 
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Sonar Control: Interfaces to and runs the sonar sensor array, providing 
range readings. 

Scanner: Preprocesses and filters the sonar data. Annotates it with the 
position and orientation of the corresponding sensor, based on the 
robot's motion estimate. 

Mapper: Using the information providcd by the Scanner, generates a 
View obtaincd from thc currcnt position of the robot. This View is then 
intcgratcd into a Local Map. 

Cirtogriphcf: Aggrcgatcs scts of I.ocal Maps into Global Maps. 
Providcs map handling and bookkccping functions. 

Matcher: Matchcs a ncwly acquired Local Map against portions of 
Global Maps for opcrations such as landmark idcntification or update of 
the absolutc position cstimate. 

Object Extraction: Obtains geometric information about obstacles. 
Objccts arc extracted by mcrging blobs of OCCUPIED cells and 
dctcrmining thc corrcsponding polygonal boundaries. A region-colonng 
approach is used for unique labeling. 

Graph Ruildinp: Searches for larger regions that are either empty or 
elsc have complcx patterns of obstaclcs, labeling them as "frce" or 
"interesting" spaces. 

Path-Planning: Thrcc lcvcls of path-planning are possible: Symbolic 
Path- Planning is done over wider areas (Global Maps) and at a higher 
level of abstraction (Symbolic Maps); Geomerric Path-Planning is done 
as an intermediary stage. when the uncertainty in Local Maps is low; 
and Sensor Map Path-Planning is used to generate detailed safe paths. 
The latter performs an A* search over the map cells, with the cost 
function taking into account the obstacle certainty factors and the 
distance to the goal. The planned path is provided to the Navigator. 

Navigator: Takes care of the overall navigation issues for the vehicle. 
This includes examining already planned paths to determine whether 
they are still usable. invoking the path-planner to provide new paths 
setting intermediary goals, overseeing the actual locomotion, etc. 

Conductor: Controls the physical locomotion of the robot along the 
planned path. The latter is currently approximated by sequences of line 
segments. using a line-fitting approach. Provides an estimate of the new 
position and orientation of the robot 

Guardian: During actual locomotion. this module checks the incoming 
sonar readings and signals a stop if the robot is coming ux) close to a 
(possibly moving) obstacle not detected previously. It serves as a "sonar 
bumper". 

Supervisor: Oversees the operation of the various modules and takes 
care of the overall control of the system. It also provides a user interface. 

Comparing this architecture with the activities outlined in Section 2, 
we see that the Sonar Control and Conductor modules belong to the 
Robot Control levcl; the Scanning and Mapping modules operate on the 
Sensor Interpretation level: the Object Extraction, Graph Building, 
Cartographer and Matcher modulcs provide functions on the Real- 
World Modelling Icvel; Path-Planning, the Guardian and Navigation 
arc situatcd on thc Navigation level; and the Supervisor belongs to the 
Control level. 

6. Tests of the System 

The Wl~ut systcm described here was tested in several indoor runs in 
cluttcred environmcnts using the Neptune mobile robot [13], developed 
at the Mobilc Robot Laboratory of thc Robotics Institutc, CMU. It was 

also tcstcd in ciutdoor cnvironmcnts. opcrating among trccs, using the 
Trrraga/or robot in thc c~ntcxt of Ihc CMU ALV projcct. Ihc  system 
opcratcd succcssfully in both kinds of cnvironrncnts. navigating the 
robot towards a givcn destination. 

In Fig. 6-1, an example run is givcn. Ihc  scqucnce of maps presented 
shows how the sonar map bccorncs gradually morc dctailcd and how the 
path is improved, as morc information is gathcrcd. The example 
corresponds to an indoor run, donc in our laboratory. A distance of 
approximately 25 A was covered: the grid size is 0.5 ft. Objccts present in 
the lab included chairs. tablcs. boxcs, workstations, filing cabincts. ctc. 
Enip/y spaces with high ccrtainty factors arc rcprcscntcd by white areas: 
lower certainty factors by "." symbols of increasing thickness. Occupied 
areas are shown using "x" symbols, and Unknown areas using "." . The 
planned path is shown as a dotted line, and the routc actually followed 
by the robot as solid line segments. The starting point is a solid + and 
the goal a solid x. 

In Fig. 6-2, an outdoor run is shown. togcthcr with a n  cxamplc of the 
Objcct Extraction algorithm. 'Ihc ohjccts arc uniqucly idcntificd and thc 
polygonal boundarics arc shown. 'Ihc map corrcsponds to a run donc 
,among trees. A distance of approxirnatcly 50 ft was uavcrscd. The grid 
s i x  was 1.0 ft. which proved adcquatc for navigation. but did not allow a 
more prccisc description of the rcal boundarics of thc dctcctcd objccts. 

7. Further Research 

lines to be further pursued 
We conclude our discussion by outlining in this Section some research 

7.1. Handling Position Uncertainty 

Our current system presupposes that the position and orientation of 
the robot (and by that of the sonar sensors) as it acquires sonar data is 
known with reasonable precision. This is crucial for integrating readings 
taken over shorter disranccs, which are combined as previously outlined. 
Drifts over longer distances are inevitable, but lead only to a topological 
distortion of the map. 

To update the current position of the robot we presently rely on 
dead-reckoning estimates bascd on whecl cncodcn and an onboard 
inertial navigation systcm. These drifi with travelling tirnc and distance. 
As a result ground truth (the real-world environment) and the sonar 
map drift apart. This problem is charactcristic of navigation without 
access to absolutc position informittion. In  stcrco vision navigation. ii has 
traditionally been addressed by cstimating motion bascd on imagc 
matching. 

Wc arc currcntly invcstigating two complcmcntary approachcs to this 
problcm: incorporating the unccnainty in the position of Uic robot into 
the map-making process and do motion solving by matching ncw sets of 
readings against the map bcing incrementally built 

7.2. Extending the Architecture 

The architecture described above embodies a scqucntial control-flow 
organization. This. however, does not reflcct thc problcm-solving 
characteristics inherent to mobile robot software. Thc various modules 
involved in the problem-solving effort arc frequcntly quasi-indcpcndent 
and have a low degree of coupling: therefore. they should conccptually 
proceed kt parallel, interacting with each other as necdcd. We have 
reccntly started the implementation of a distributed version of Dolphin 
[12) along the lines discussed in[6], where muluplc agcnts work on 

concurrent activities. 
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5 

Figure6-2: Objects Extracted from a Sonar Map. The objects are 
numbered and their polygonal boundaries are shown. This 
map describes an outdoor run, and the objects are trees. 
Distances are in R Grid size is 1.0 ft. 
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Another issue we arc currently investigating is the development of a 
task-level Global Planner that would automatically generate a Control 
Plan, establishing sequences of parallel and sequential actions. We are 
considering a hierarchical approach similar to NOAH (141. using a graph 
to represent the plan and explicitly storing alternatives and sensor- 
dcpendcnt conditions as part of it. The elementary operations of sensor 
information gathering. interpretation, actuator control and specific 
problem-solving activities arc the primitives used by the planner. 

8. Conclusions 

We have described a system that uses a Sensor Level, probability- 
based sonar map representation of medium resolution to build several 
kinds of maps. Three different dimensions of representation are 
defined: the Absuaction Axis, the Geographical Axis and the Resolution 
Axis. These maps arc uscd by a sonar mapping and navigation system 
that performed successfully in indoor and outdoor environments. We 
are now investigating motion recovery techniques and expanding the 
system to test distributed control and global planning mechanisms. 
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Three Dimensional Images from Cheap Sonar 
Hans P. Moravec 

The Robotics Institute 
Carnegie-Mellon University 

Pittsburgh, PA 15213 
December 21, 1985 

1 Introduction 
We propose to build and use moderate resolution three dimensional space occupancy maps built from 

multiple measurements from cheap sonar sensors. By cheap sonar I mean range readings obtained from 
unmodified Polaroid sonar transducers driven by the original Polaroid circuit board, or by an improved 
board (allowing closer minimun ranges) from Texas Instruments. This is a simple, but highly developed 
and reliable, not to mention inexpensive, system that returns the distance to the nearest reflector in a 
certain wide cone of sensitivity. Though much more information can be obtained, in principle, from single 
sound bursts by modifying the aperture, phase relationships, frequencies and processing, such an 
approach ignores the present very good solution. 

2 Past Work 
In earlier work [Moravec&Elfes 19851 we described the use of multiple wide-angle sonar range 

measurements to map the surroundings of an autonomous mobile robot. A sonar range reading provides 
information concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in 
front of the sensor. The reading is modelled as probability profiles projected onto a rasterized map, where 
somewhere occupied and everywhere empty areas are represented. Range measurements from multiple 
points of view (taken from multiple sensors on the robot, and from the same sensors after robot moves) 
are systematically integrated in the map. Overlapping empty volumes re-inforce each other, and serve to 
condense the range of occupied volumes. The map definition improves as more readings are added. The 
final map shows regions probably occupied, probably unoccupied, and unknown areas. The method deals 
effectively with clutter, and can be used for motion planning and for extended landmark recognition. This 
system was tested on our Neptune mobile robot, and recently outdoors on the Terregatorrobot. 

3 Experimental Approach 
Processing a single reading from a standard unit is computationally cheap; only one number is 

generated, limiting the computations necessary or possible. The range accuracy of a typical reading is 
better than a centimeter, but because of the wide angle of the pulse, the lateral position of the reflection is 
uncertain to on the order of a meter. By exercising multiple units repeatedly, readings from multiple 
viewpoints may be combined to deduce the location of the reflecting surfaces more precisely. The 
combining process is a kind of deconvolution - each point in the final high resolution map is a 
consequence of many of the individual readings combined in a particular, unique way and each reading 
participates in many map points. 
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Our existing approach uses the idea that the interior of each sonar reading cone (bounded by the 
sensitivity profile laterally, and by the range surface lengthwise) is known to be empty, and that the 
reflecting point is somewhere on the range surface in this cone. The empty interiors of other readings 
overlapping this range surface reduce the region of uncertainty of the location of the echoing point in a 
probabilistic way, while intersecting range surfaces reinforce each other at the intersections. The 
deconvolution is essentially non-linear. 

The old programs work in two dimensions, collapsing the measurement cones vertically into flat pie 
wedges that are combined in a two dimensional map array that ultimately holds numbers giving the 
confidence that a given cell is empty or occupied. We have experimentally noted that maps with a range 
of 10 meters and a resolution of 15 to 30 cm can be reliably constructed with data from a ring of 24 
robot-mounted transducers looking out horizontally at 15 degree intervals and pulsed at six locations a 
few meters apart in the robot’s travels (144 independent measurements). The sharpness of the map can 
be seen to improve as more readings are added. Many readings are combined to form one map 
probability point, and this process makes our method quite tolerant to the occasional range errors 
encountered in the sonar data. 

A highly optimized version of the program, using fixed point arithmetic, can process 144 points in 
roughly 1 second on a big Vax, 2 seconds on a Sun2 and 4 seconds on a Macintosh, building a 32x32 
map of eight bit probabilities. A companion program correlates two such maps, using a coarse to fine 
hierarchy of reductions and a dual representation (raster and list of occupied cells) to search over X, Y 
shift and angle, in similar times. Another program devises good robot paths through the probability maps. 

3.1 3D mapping 

in the 2D program is its greatest single approximation, and information waster. 
Our approach generalizes very naturally to three dimensions - in fact the collapse of cones to wedges 

The sensors must be configured differently, however. The only height information in the present planar 
ring comes from the vertical divergence of the cones of sensitivity, whose symmetry makes it impossible 
in principle to distinguish reflections from above the ring plane from those an equal distance below the 
plane. Even without this ambiguity, the present arrangement could provide very little vertical resolution. 

An arrangement of sensors on the surface of a partial sphere would be much better. The 15 degree 
spacing of the 24 sensors on the planar ring was chosen to give some overlap of fields of view. It was 
discovered that this spacing allowed multiple sensors to be fired simultaneously without serious 
interference, in three, or even two, interleaved banks, greatly speeding data gathering. Using the same 
idea and spacing to fill a sphere instead of a circle leads to the following calculation. 

A sphere represents 4a of solid angle. Spacing the sensors 15 degrees from each other assigns a 
cone with 15 degree apex to each sensor. A cone with apex angle T subtends 21c( 1 -cos(T/2)) solid angle, 
and we can (glossing over packing problems) arrange about 4d(2a(l-cos(T/2)) = 2/(1-cos(T/2)) of them 
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into a sphere. With T=15 degrees 233 transducers fill a sphere. If we content ourselves with a 90 degree 
wedge (almost a fisheye if you note that the beams fan out an additional 15 degrees on all edges, for a 
net coverage of 120 degrees) then this gets reduced to a more manageable 34 transducers. 

If actually packed onto a spherical cap, the sensor group would greatly resemble a compound insect 
eye, each facet being a Polaroid transducer. The insect would be a monster. The transducers are 
somewhat less than 5cm in diameter, which would demand a sphere radius of about 40cm. A 90 degree 
cap from this sphere would be a shallow bowl 56cm in diameter and 12cm deep. 

One such sensor array on the nose of a vehicle, tilted down somewhat, should be adequate for many 
tasks, but imagine getting better side coverage, say for obstacle avoidance, by placing two, one on each 
side of the head, enhancing the giant insect effect. 

3.2 How Many Readings, How much Computation? 

and will require more data. How much? 
The 3D map we hope to derive from this array has more cells than the 2D maps we have worked with, 

Suppose we build our maps to a range of about 10 meters in the vehicle forward direction, 5 meters 
laterally and 3 meters in the vertical direction, and to a resolution of 30cm in each direction. There will be 
33x17~10 cells, each holding a number, in the final map. This is 5,610 numbers. A naive degrees of 
freedom analysis suggests that a similar number of readings each returning one number are necessary to 
determine this many variables. Fortunately our 20 experience suggests that far fewer will suffice. 

We have noted experimentally that 144 readings nicely spaced around our cluttered laboratory is just 
enough to give us good 32 cell by 32 cell maps covering a square area 10 meters on a side. There are 
1024 points in such maps, so we seem to be accomplishing the impossible, extracting 1024 unknowns 
from 144 equations. Actually, the 1024 numbers are not very informative as their magnitude represents 
our certainty (or uncertainty) about particular cells being occupied, not something intrinsic about the 
scenery. Most of the cells in the final mape are labelled an unsurprising "unknown" (represented by 0) or 
"probably empty" (represented by a negative number). The real information is concentrated in the 
locations of the reflecting boundary seen by the robot, Le. the minority of cells labelled "probably 
occupied". To first approximation this boundary is a one dimensional contour embedded in the 2D map. 
Its length in cells is on the order of the boundary length of the map, 4x32. The information is not in the 
contents of these cells (positive probability numbers), but in their location. Each cell represents about one 
number - think of the boundary expressed in polar co-ordinates - the information is in the radius at each 
angle, the angle itself is just the independent variable. SO - we have 144 equations to determine about 
4x32 = 128 variables -just about right! Mathematics is great. 

In 3D the contour becomes a surface. In our example of two paragraphs ago the map size was 
33x17~10 cells. The surface of this volume has about 2,100 cells, and thus requires about 2,100 
readings by the above analysis, or 62 full scans of the 34 transducers in the 90 degree eye. The sensors 
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can be pulsed about twice per second. With two way interleaving, a full eye poll takes a second. The 62 
readings would thus take about a minute. Computation times on a big Vax, extrapolating from the fast 2D 
program, would also be at about 30 seconds to a minute. It is assumed that the robot travels about ten 
meters during this minute (a speed of 0.6 km/hr) to give each reading set a fresh vantage point, and that 
adequate dead reckoning is provided to correctly relate the 60 sets geometrically. Of course, lower 
resolution maps, or simple obstacle detection, can be accomplished faster, in as little as one (half second) 
pulse gathering period. 

These numbers suggest that high speed travel is best left to longer range sensors, and perhaps 
simpler techniques. The sonar mapping could be very useful for slow, close in, tight maneuvering in 
complicated environments and on very rough ground. The very general path passability grid route 
planners demonstrated by the group extend in a natural way to the dense 3D data this approach will 
provide. 

4 Research Plan 
All our sonar experiments so far have been conducted with early prototype sonar rings provided by our 

sometime collaborator, Denning Mobile Robotics, Inc. of Woburn, Massachusetts. Because of a rather old 
fashioned (small buffer) serial interface on our Vax computers, the processors on these rings can't reliably 
communicate with the Vaxes in the present configuration, and this has been a serious hinderance to 
sonar experimentation. We will begin the work by building new interfaces for the transducers using Texas 
Instrument driver boards funneling into an MC68000 microprocessor. Denning has agreed to help in this 
effort - they have been using a TI board based design successfully for six months. 

A second stage is design and construction of the physical array. This will require a mathematical 
optimization and an evaluation by simulations of the individual sensor placements. 

The bulk, and point, of the work will be an extended series of experiments with 3D map building and 
navigation programs. One small but interesting subproblem in the early stages is 3D raster fill of conically 
bounded sphere surfaces and volumes. A more significant problem is the handling of position uncertainty 
in the measurements made during an extended run. Our probability raster permits a very direct 
representation for uncertainty - it can simply be added to the probability distribution, increasing the spread 
of each reading in the appropriate directions. 

We'd like to try an approach that projects the incremental uncertainty of each move onto old 
measurements rather than new ones. The result would be a map that is always detailed for the local area 
around the vehicle, and fades to fuzziness under the cumulative effect of errors in the distance. Very old 
readings that provide almost no information because of uncertainty in their location could eventually be 
eliminated from the mapmaking. 

The three dimensional nature of the images will permit some work in identification of large objects. 
Recognition of small objects is ruled out by the coarseness (about 10cm) of the anticipated maps. 
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Experiments and Thoughts on Visual Navigation 

C. Thorpe, L Matthies, and H. Morrvoc 

Carnegie-Mellon University 

Abstract 

We describe a second generation system that drives a camera- 
equipped mobile robot through obstacle courses The system, 
which evolved from earlier work by Moravec [SI, incorporates a new 
path planner and has supported experiments with interest 
operators, motion estimation algorithms, search constraints, and 
speed-up methods. In this paper we concentrate on the effects of 
constraint and on speed improvement. We also indicate some of 
our plans for a follow-on system. 

1. Introduction 
FIDO is a navigation and vision system for a robot rover. Using 

only stereo vision, it locates obstacles, plans a path around them, 
and tracks the motion of the robot as it moves. FIDO'S main loop 
repeatedly: 

opicks about 40 points from one member of a stereo 

0 stereo-ranges those points by a hierarchical correlation 

0 plans a path that avoids those points 
0 moves forward 
0 takes two new stereo pictures 
0 relocates those same points and stereo ranges them 

0 deduces vehicle motion from apparent point motion. 

image pair 

technique 

again 

This paper describes our experimental investigations and 
improvements in FIDO'S performance. Early versions of FlW and its 
predecessor, the Stanford Cart programs, used Qeyed stereo, took 
15 minutes or more per step, and were not always reliable. Ey wing 
additional geometric constraints, we have been able to increase the 
reliability while using only 2 stereo images instead of 9. With fewer 
images and several optimizations, we reduced the run time from 15 
minutes to less than a minute per step. We also explored using 
parallel hardware for further speedups. 

Section 2 of this paper discusses the constraints used and their 
effects on system precision. Section 3 presents optimizations for 
speed and prospects for parallelism. Finally, section 4 presents 
some extrapolations on the FIDO experience. 

The FIDO system has supported experiments in other aspects of 
visual navigation, notably interest operators, used to pick points to 
be tracked from image to image, and path planning. The resuk 
have been presented elsewhere [8,9]. We found that the simple 
interest operator used in the original Cart program worked as weti 
as more expensive ones, and it was retained with only slight 
changes. FIDO does incorporate a new, more flexible, path planner 
based on a grid combinatorial search and incremental path 
smoothing. 

1.1 Constraints 
FIDO uses a variety of constraints to improve the accuracy of its 

stereo vision and motion solutions. Most reduce the area of the 
image to be searched by the correlator. A smaller search window 
reduces the chance of finding a false ma:ch and improves System 
performance in several ways. First, as more points are tracked 
correctly it becomes easier to identify those incorrectly tracked and 
delete them. Secondly, more points (and higher precision) improve 
the accuracy of the motion calculations [lo]. Finally, points can be 
successfully tracked through more images, and over longer 
distances, for more accurate long term navigation. 

Some of the constraints arise from the known relationship 
between the cameras and the vehicle. Other constraints come from 
vehicle hotion estimates: the image location of an object that has 
been stereo ranged on a previous step is constrained by 
approximate knowledge of the vehicle's new position. 

We tested FIDO using various combinations of constraints in order 
to judge their effect. We usually made a live vehicle run with the 
current best settings, and saved all the images and position 
predictions in a file. Subsequent runs were done off-line using this 
stored data, with different constraint settings. Such runs were 
compared for accuracy of the final calculated position, number of 
features successfully tracked at each step, and occurrence of any 
catastrophic failurea 

1.2 Imaging Geometry Constraints 
These constraints are the simplest to understand and to apply. 

They depend only on camera and robot geometry, and 'they are 
applicable to stereo point matches of both new and previousiy 
ranged point!% 

Near and Far Limits. Point distances are not permitted to be 
greater than infinity (by the real world) or less than a certain 
distance (by the nose of the robot). This determines a maximum 
and minimum stereo disparity of the feature match. 

Epipolar Constraint. This is the standard stereo epipolar 
constraint: if the point of view moves purely sideways the image of 
a point will also move sideways (in the opposite direction) but not 
up or down. In the real world of misaligned cameras and distorted 
vidicons, the image might appear to move a little vertically, so we 
allow some slop (10% of the image height typical). 

1.3 Motion Geometry 
The estimated motion of the vehicle from step to step p l a a  a 

strong constraint on point matches. I t  can be used either a priori to 
limit the search area within an image, or a posteriori to gauge the 
mSOnablem of a match. The predicted position of the vehicle 
CBn alS0 be combined with the points tracked by vision in the 

motion calculation. FIDO uses the motion geomety 
constraints in the following 4 w a p  

CH2152-7/85/0000/0830$01 .OO Q 1985 IEEE 
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Two D Motion. We usually run our tobd on locally Rat ground, h 
which case we know it will not pitch, rdl, or move wtkalty. Thb 
reduces the problem d determining u e h i i  motion from 6 degrsa 
of freedom to 3, simplifying the computation and tightening the 
COMtrainta 

to a previous vdhicle position, and a d a d  rock-  ne^^ poahion 
and heading for the vehicle, I is poesuo to predict when, thaw 
should appear in the new stereo pair of hag- If this conrtnint b 
active FIDO will use the prediction to limit the stereo 
search. Three user-settable variables control the error estimates in 
robot position and orientation, and consequently the .site of the 
search box around the predicted image positbn. 

reacquired at a new vehicle location and stereo-ranged, there b 
pruning step that looks for points that do not move rigidly with th. 
rest of the points. The points that do not appear to move @idly 
have probably been tracked mcwreCny, and can be deleted befw 
the least-squares process that solves for v e h i i  motion. k t imun~ 
the Prune constraint causes the predicted vehicle position to be 
included as one of the points in the rigidity test, maps weighting 
the selection to the correctly matched points rather than a 
coincidentally consistent incorrect set. 

Motion Solution. The motion solver determines the motion that 
minimizes the error between where points have been 58811 and 
where they should have been seen given that motion. The 
predicted vehicle position can be included as one of the pointa in 
thii least-squares process, weighted more or less depending on th. 
assumed precision of the prediition. 

1.4 Results 
We made several Nns of the FIDO system on Neptune, with takfv 

consistent results. Data from June 24,1984 was most ~*tendvely 
analyzed. On that run a single large obstacle was placed a dose 2 
m e t e ~ ~  ahead of Neptune's cameras with the destination set to the 
far side. It was a tough test for FIDO, since it required the maximum 
allowed turn (limited by the need to have s i g n i f i i t  overlap in th. 
views from sucwsive positions) on each step to get around th. 
obstacle and back on coume. We ran FIM) with each constraint in 
what we thought to be its best state, and saved images and dead 
reckoning information. Then we made a series of off-line NM On 
the stored data, varying settings and watching the results. SaMnl 
runs differed in only one parameter from the original, a few 0th- 
changed two or three. The last grQup Of runs began With aM) d n g  
none of the constraints, followed by a series each with only 
constraint on. 

Figure 6 summarizes the results. The most hportrvlt measurn d 
a run's success is the (program's) calculated position at the end d 
the run: the nearer to the actual (manually) measured podtion, th. 
better. 

Some cautionary notes are in order. The relative success of the 
run with only the far distance constraint Q accidental. During that 
run, there were two steps where the motion solution was completely 
wrong but that by coincidence nearly offset each other. Many of 
the other single constraint runs that appear worse actually had only 
one wild miscalculation. 

Some of the all-but-one constraint runs aho appear too good. In 
many of these ~ 8 ~ 0 5  the dead-reckoning information wa8 
sometimes better than the visual tracking. The run with no epipolar 
constraint has a better final position than the run with no reacquire 
constraint, because, by luck, it tracked fewer points at the rigM 

Rercquiro constraint. Given the 30 locutor, of a poifit 

Prune. When all points from a previous postion &- 

timesad relied on dead reckoning while the htterplaced too much 
roliwtceonwcrllnumbemoftrackd points 

Based on our exf&ence& wenuke the following observatiow 

.The apipolu constmint b lho singb most powerful 
comraint. Turning it off, wd all the others on, 
significantly decreases the minimum and averam 
number of features tracked and the accuracy of th. 
motion solution. Turning it on. with all others On, 
significantly increased the number of points tracked. In 
a sense, thii is not surprising, since the epipohr 
constraint rules out 90% of the image, more than any 
other constraint 

0 No single constraint makes the difference between a 
successful and a catastrophic outcome. 

.In none d the runs was vision as accurate rt 
calculating translation as straight dead reckoning 
based on motor commands, though in the best runs 
vision determined the rotation more correctly. It would 
have been better to use the dead reckoned motion 
rather than the visually determined one if the number of 
features Imcked dropped below 6 or 7, rather than 4 
which was the threshold, at least for the level of ground 
roughness and mechanical accuracy in tho 
experimnta 

0 We noticed that even the best runs have about a 2096 
error in calculated translation, always on the short sick. 
We suspect a small camera calibration error, and 
possibly systematic mom in representing uncertainty. 
FIDO calculated a point's 30 location by projecting rays 
through the centers of the pixek.in the Stereo images, 
which givesa location on tho near ride of the ranged 
uncertainty of distance. 

.There b a problem in using cdl the ~ e o m e t r i ~  
constraints to cut down the search area since it leaves 
none for verification and pruning. If we had very 
accurate motion prediction, we would have to resort to 
photometry instead of geometry to identify points that 
hadbeenOCClUdedWothemwt * lost. 

2. Speed-up Methods 
moo now takes30 to40mcondsperstepon a Vax 11/180 under 

Unix. To run in real time, we would have to reduce that to about t 
second per step. We have looked at several &-up khnQW8,' 
including faster procasxm, dedited hardware, coding hack8, 
a n d w l e l m n g .  

Fastor General Purpose Computon 
Our VAX b about a OCI(EYIP (Million instructions per second) 

machine. It is technically possible to get me required speedup by 
simply obtaining a 3D.uip or faster computer. Budget md logistia 
leave this as a t ~ t a l i g  future pamibi#ty. 

Commercial Array Procorson 
Buying a commercial array procerrsor b more feasible for us than 

buying a faster computer. About 90 percent of the runtime in FlDO 
occurs in image array Dperawm . and geometric calculations, 
particularly the convolution8 in point matching. Thme am done by 
small pieces of code that work on large amounts of data, and are 
w!i suited to the pipelined vector arithmetic af available array 
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processors. We estimate. for instance, that a 160 MIP array 
processor could give us the desired factor of 30 speedup. We’ve 
made several serious attempts to acquire one; so far, this remains 
another tantalizing possibility. 

Coding optimizations 
Much effort has been..expended on speeding up the Vax 

implementation. We feel there is.little room for left for significant 
improvements in a time-shared, paged-memory environment. The 
basic routines, such as the correlator and the interest operator, fit 
all the criteria for good candidates for optimization (21: the code is 
fairly well understood, stable, small, and accounts for a large 
amount of run time. For instance, the implementation of the 
correlator uses the following coding techniques: 

The calculations of parameters of the correlating 
window are done once, outside the main loop. 

Sums and sums of squares for consecutive columns 
and rows are calculated by Price’s technique 171. The 
next window total is calculated by adding in the total for 
the column that just entered the window and 
subtracting off the total for the column that just left the 
window. 

*Squares are calculated by table lookup. Since the 
squares are of sums of two pixel values, the table 
needs only 51 1 entries. 

Image windows are moved by pointer swapping, rather 
than by data transfers. 

Loop indices count down to 0, since the VAX hardware 
has an efficient test-for-not-0-and-branch instruction. 

Formulas are rewritten to eliminate extra calculations. 
For example, 
2 Z(img1 img2) = 

gives a way of calculating the sum of the products of 
the pixel values by additions (which are cheap) and 
squares (which can be done by table lookup) rather 
than multiplications. The individual sums are also used 
in other parts of the calculation, so in this case the sum 
of products comes for free. 

Z((img1 + img2)~) .  Z(imglt2). Z(img2t2) 

Loop unrolling. The code in the innermost loop is 
written n times in line, rather than written once inside a 
loop that counts to n. This saves n increments of the 
counter and n tests for the end of tho loop. 

Register use. The most frequently used variables are 
located in hardware registers. 

These programming techniques reduce the run time of the 
correlator from 140 ms per call for astraightforward implementation 
to 4 to 5 ms per call. Similar optimizations have been performed on 
the other tight loops, such as in the interest operator and the image 
fine to coarse reduction routine. The user-level routines have been 
optimized to the point that the single routine that uses the most 
CPU time is now an image unpacker. 

Dedicated hardware 
A dedicated microcomputer running FIDO with enough memory to 

store all the relevant images offered some hope. We tried an 

implementation of the correlator on a 10-MHz MC68000 system, 
with all the images held in integer arrays. After eliminating all 
floating point operations the resulting code still took 29 
microseconds per call to the correlator, compared with 4 to 5 on the 
VAX. 

2.1 Parallelism 
There are several ways to break FlDO into separate processes that 

can run in parallel on different machines, including pipelining on 
macro or micro scales or the use of a masterlslave system. 

Macro Pipelining 
One process might do the reductions, the next could do 

reacquires, the next the match, another motion-solving, and the last 
path planning. This organization improves throughput but not the 
latency. The problem with this method is the sequential nature of 
FIDO. Since all the image reductions have to be finished before the 
reacquires can start, all the matches done before the path planning, 
and so forth, each pipeline stage has to wait for the previous stage. 
Since each step takes as long as on a seriat machine, and since the 
steps are done sequentially, the time to process any one set of 
images is the same as on a single processor system. 

Micro Pipelining 
The processes could be subdivided more finely. For instance. 

one processor might do the first level of matchsfor one p i n t  after 
another, handing its results to the process that does the next level 
of match. When matches are finished, the pipeline could be 
reconfigurM for path planning, and so on. This approach requirm 
huge communication bandwidth between processes. 

Masterlslave 
This method has one master process and several identical slave 

processes. Each slave handles every image processing task: 
reduction, matching, and interest operator. At any time all the 
slaves work on the same task with different data. For example, 
during image reduction, each slave reduces part of the image, and 
during matching each slave processes its own queue of points. 
The master process does tasks that require global knowledge such 
as path-planning or motion-solving, and coordinates the slaves. 
This more flexible organization avoids several delays inherent in 
pipelines. 

We implemented variants of this idea in our Ethernet-connected 
multi-Vax environment. Given the existing uniprocessor code, the 
task was not difficult. The slaves required new code for 
communication with the master, but the actual work is done by calls 
to the old image processing routines. The master contains the old 
path planning and display code, and new communication code and 
dispatch tables to keep track of each slave’s activities. When a 
slave completes a task the master updates its dispatch table, finds a 
new task and puts the slave to work again. For instance during 
point matching each slave is initially given one point to correlate. 
When a slave finishes its correlation, the master hands it a new 
point to find. When all the points are handed out the master 
redundantly hands out points that are still in process on other 
slaves, and accepts the first answer to be returned, giving some 
protection against overloaded or crashed processors. 

A version of the system that used several V ~ x e s  in parallel was 
swamped, as expected, by the overhead af squeezing images 
between machines through the Ethernet. Another version that used 
multiple Processes on a single Vax gave us some ldea of the 
performance that might be possible if faster communication, 
perhaps through shared memory, were available. 
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The single machine version uses the same decomposition as the 
multiple machine version, and the same general-purpose 
interprocess communication package. Because of limitations in the 
communications package, each slave calculated its own image 
pyramid. 

2.2 Timings for a 28-Step Run 

Single Processor 978 

One Slaw 
MastW 21 0 
slave 1 

Five Slav- 
MaStW 
Slave 1 
Slave 2 
Skve 3 
Slave 4 
Slave 5 

Notes: 

234 

628 

403 
402 
903 
402 
400 

0 The time for the Master varies little with the number of 
slaves. 

0 Without image acquisition or communication package 
overhead the time for a single slave would be about 325 
seconds or 12 seconds per step. 

0 Without image or communication overhead, and with 
the time for picture reduction shared evenly, the time 
for each of the five sfaves would be 65 seconds, 01 
about 2.5 seconds per step. 

0 The work spreads very evenly among the slaves. WM 
5 slaves. the workload is balanced to within the 
accuracy of our measurements. 

0 If the master process did not handle images, had zero- 
cost communication, and didn't have to do image 
distortion correction, it could run in 75 to 80 seconds, 
or about 3 seconds per step. 

0 By comparison, the original uniprocessor system rum 
in 978 seconds, or 35 seconds per step. With the 
advantages we assumed above (no image handling 
overhead) it would still have taken 503 seconds, or 18 
seconds per step. 

2.3 Remarks 
Our experiments suggest that it is possible to decompose no0 

into a 5 to 10 fold parallel set of efficiently cooperating part8 
running on conventional processors. To realize the run times 
suggested above we would need the following: 

0 Shared main memory large enough to hold at bast two 
image pyramids without swapping or data packing. (2 
(256 + 64 + 16 + 4 +  1 + 251 I 700KiloByte8). 

0 Fast interprocess communication for small messagea 

0 At least 5 processors. It takes 5 slave processors to 
bring the image processing time into the same range m 
the master process' time. 

0 A device able to digitize images directly into the shared 

0Cameras with less image distortion than our current 

memory. 

vidicons, so image warping would not be needed. 

3. The Next System 
Some simple hardware enhancements could improve FIDO'S 

performance. A pan mechanism for the stereo cameras would 
permit larger turns while still maintaining continuity of field of view. 
Motion and heading Sensors would improve navigational accuracy 
and eliminate some catastrophic misperceptions. 

Navigational accuracy could also by improved by modifying the 
motion estimation algorithm. The current algorithm reacquires 
features in new a image by Searching for the features within 
windows predicted by an a priori motion estimate. This makes poor 
use of the assumption that objects do not move; that is, that they 
appear to move rigidly from frame to frame. Since all search 
windows are defined before any search begins, constraint is not 
propagated from one match to another. A seemly better approach 
is the iterative registration method [l], [3], (41. In this method, 3-D 
feature positions are projected onto a new image using an initial 
motion estimate, then the motion estimate is refined to optimize 
some measure of match in the image. We are currently 
experimenting with the variation proposed by Lucas [S] and plan to 
report empirical results in the near future. 

Two bugbears in w r  systems to date have been the calibration of 
camera and motor parameters and the represention of uncertainty 
in the 3-D locations of perceived objects. We are considering an 
adaptive approach that calibrates the cameras (semi-)continuously 
on the fly and adjusts tpe motor control parameters from 
observations of past vehicle motions. A simple technique like this 
was used successfully in an early program that drove the Stanford 
Cart in straight lines[5]. We are also looking at carrying along 
uncertainties in feature locations and updating the uncertainty tm 
new measurements are taken. Eventually, we hope to automate the 
process to the point where calibration simply requires turning on 
the vehicle and letting it run by itself for a whib. 
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Path Relaxation: Path Planning for a Mobile Robot 

Charles E. Thorpe 

Computer Science Department, Carnegie-Mellon University 

Absrmct Path Relaxation is a method of planning safe paths around 
obsuclcs for mobile robots. It works in two stcps: a global grid scarch 
thdt finds a rough path. followcd by a local relaxation step that adjusts 
each node on the path to lowcr the orcrall patli cost The representation 
uscd by Path Relaxation allows an explicit trddcoff among length of 
path, clearance away from obstaclcs, and distance traveled through 
unmapped afcas 

1. Introduction 

Path Relaxation is a two-stcp path-plnaning process for mobile robots. 
It finds a safe path for a robot to travem a field of obstacles and arrive at 
its dcstination. The first step of path relaxation finds a preliminary path 
on an eightsonnccted grid of points. The second stcp adjusts, or 
"relaxcs", the position of each preliminary path point to improve the 
path. 

One advantage of path relaxation is that it allows many different 
factors to be considered in choosing a path. Typical path planning 
algorithms evaluate the cost of alternative paths solely on the basis of 
path length. The cost function used by Path Relaxation. in contrast, also 
includes how close the path comes to objects (the funher away, the lower 
the cost) and penaltics for travcling through areas out of thc Field of view. 
'nic cffcct is to produce padis that neither clip the comers of obstacles 
nor make wide deviations around isolated objects and that prefer to stay 
in inappcd terrain unless a path through unmapped regions is 
substantially shorter. Other facton. such as sharpness of corners or 
visibility of landmarks, could also be added for a particular robot or 
mission. 

Path Relaxation is part of Fido. the vision and navigation system of the 
CMU Rover mobile robot. [7] The Rover, under Fido's control, navigates 
solely by stereo vision. It picks about 40 points to track, finds them in a 
pair of stereo iniages. and calculates their 3D positions relative to the 
Rover. The Rover then movcs a b u t  half a meter, takes  a new pair of 
pictiircs. finds the 40 tracked poiiits in each of the new pictures and 
recalculates their positions The apparent change in position of those 
points gives the actual change in the robot's position. 

Fido's world model is not suitable for most existing path-planning 
algorithms. Thcy usually assume a completely known world model, with 
planar-faced objects. Fido's world model. on the other hand, contains 
only the 40 points it is tracking. For each point, the model records its 
position, the uncertainty in that position, and the appearance of a small 
patch of the image around that point. Funhermore, Fido only knows 
about what it has seen: points that have never been within its field of 
view are not listed in the world model. Also, the vision system may fail 
to track points correctly. so them may be phantom objccts in the world 
modcl lhat have bccn wen once but are no longer bcing trackcd. All this 
indicates tlic need for a data structure that can rcprcscnt uncertainty and 
inaccuracy, and for algorithms that can usc such data. 

Scction 2 of this paper outlincs the constraints available to Fido's path 

planner. Scction 3 discusscs some common typcs of path planner& and 
shows how they are inadcquate for our application. 'The Path Relaxation 
algorithm is cxplaincd in detail in Section 4, and some additions to the 
basic scheme arc pmcntcd in Scction 5. Finally, Scction 6 discusses 
shortcomings of Path Relaxation and some possible extensions. 

2. Constraints 

~n intelligent path planner nccds to bring lots of information to bear 
on the problem. This scction discusscs somc of the information useful 
for mobile robot path planning, and shows how the constraints for 
mobile robot paths differ from those for manipulator trajectories 

Low dimensionality. A ground-based robot vehicle is constrained to 
three degrces of frcedom: x and y position and orientation. In particular, 
the CMU Rover has a circular cross-section, so for path planning the 
orientation does not matter. This makes path planning only a 2D 
problem, as compared to a 6 dimensional problem for a t y p d  
manipulator. 

Imprecise control. Even under the best of circumstance$ a mobile 
robot is not likely to be very accurate: perhaps a few inches, compared to 
a few thousandths of an inch for manipulators. The implication for path 
planning is that it is much less important to worry about exact fits for 
mobile robot p3ths. If the robot could. theoretically. just barely fit 
through a certain opening. then in practicc that's probably not a good 
way to go. Computational rmurces are better spent exploring alternate 
paths rather than worrying about highly accurate motion calculations. 

Cumulative crror. Errors in a dead-reckoning system tend to 
accumulate: a small error in heading. for instance, can give rise to a large 
error in position as the vehicle moves. The only way to reduce error is to 
periodically measure position against some global standard, which can be 
time-consuming. The Rover, for example, does its measurement by 
stereo vision, taking a few minutcs to compute its exact position. So a 
slightly longer path that stays fanher away from obstacles, and allows 
longer motion bctween stops for measurcment, may take less time to 
travel than a shorter path that rcquircs more frcqucnt stops. In contrast, 
a manipulator can reach a location with approximately thc Same error 
regiirdlcss of what path is taken to arrive there. Thcre is no cumulative 
error. and no time spent in rcorientation. 

Unknown areas. Robot manipulator trajcctory planners usually know 
about all the obstaclcs. The Rover knows only about thox that it has 
sccn. This leaves unknown areas outside its field of view and behind 
obstacles. It is usually prcferable to plan a path that traverses only 
known cmpty rcgions but if that path is much longcr man UIC shoitcst 
path it may be worth looking at the unknoan regions. 

Yurty  ohjects. Not only do typical m.irtipulator path-planiicn know 
about all the objccts they know prcciscly where each objcct is. 'lhis 
information might comc. for instnncc. from the CAD system that 
dcsigncd the robot workstation. Mobilc robots on the other hand, 
usucllly snse the world as they go. Fido, instead of having prccise 
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bounds for objects, knows only abwt f u u y  points. 'lhc location of a 
point is only known to the prccision of the stcrco vision systcm. and the 
extent of an object bcyond the point is cntirely unknown. 

In summary, a good system for mobile robot path planning WP k 
quitc different From a mipulator  path planner. Mobile robot path 
planners need to handle uncertainty in the sensed wodd model and 
errors in path execution. Thcy do not have to worry about h@ 
dimensionality or extremely high accuracy. Section 3 of this paper 
discuses some existing path planning algorithms and their shoncomings. 
Section 4 then presents the algorithms used by Path R e h t i w ,  and 
shows how they address these problems. 

3. Approaches to  Path Planning 

This section wtl ina several approaches to path planning and some of 
the drawbacks of each approach. All of these methods except tbe 
potential fields approach abstract the search space to a graph of p d b k  
paths. This graph is then searehed by some standard search technique. 
such l'b 
important thing to nom in the following is the information made explicit 
by each representation and the information thrown away. 

Frec Space mcthodr (2.3.91 One type of PJth planner cxpliitly d d s  
with the space between obswcler Paths arc forced to run down the 
middle of the corridors bctwecn &tacks. for instance on the Voronoi 
diagram of the free space. Free space algorithms suffer from two nlatcd 
problems. both resulting from a data abstraction that throw away too 
much information. The first problem is that paths always run down the 
middlc of corridors In a narrow space. this is desirable. sincc it allows 
the maximum possiblc robot error without hitting an object But in some 
cases paths may go much further out of thcir way than necessary. 'he 
sccond problem is that the algorithms dv not use clearance information. 
The shortest path is always selected, even if it involva much closer 
tolerances than a slightly longer path. 

Vertex Graphs. [S. 10,q Another class of algorithms is bawd on a 
graph connecting pairs of vertices. For each pair of vertices, if the line 
betwecn thcm does not intersect any obstacle, that line is addcd to the 
graph of possible paths. Vertex graph algorithms suffcr tium the "too 
close" problem: in their concern for the shortest possiblc path, they find 
paths that clip the corncrs of obstacles and even mn along the eJgcs of 
some objccts. It is. of course. possible to build in a margin of e m  by 
growing the obstacles by an extra amount: this may. however, block 
some paths 

Both Free space and vcrtcx graph mcthods throw away too much 
information too won. All obsrnclcs are modcled as polygons, all paths 
arc considcrcd cithcr opcn or block$, and the shortcst path is always 
bcst Ihcrc is no mechanism for d i n g  a slightly longer path for more 
clearance, or for making local path adjustments Thcre is also no clean 
way to deal with unmapped rcgions, other than tu cluse them off entirely. 

The Potcntirl Ficlds[1.4] approach tries to malrc thm tradcofEs 
explicir Conceptually. it urns the robot into a marble. tilts the tloor 
towards thc goal. and watches to see which way thc marble rolls. 
Obstaclcs arc rcpresented as hills with sloping sidcs, so the marble wi l l  
roll a prudcnt distance away from them but not too far, and will seck the 
passes between adjacent hills The problem with potential ficld paths is 
rhat they can get caught in dead ends: once the marble rolls into a box 
canyon. thc algorithm has to invoke specialcase mechanisms to cut off 
that route, backtrack. and stan again. Moreovcr. thc path with the lowest 
thmhold might urn out to bc a long and winding road, while a path that 
must climb a s m l  ndge at the -and then hasan easy run to thegoal 
might never be investigated. 

Another approach that could explicitly represent the c o n f l i  between 

breadth-fim or A. 19 and the drortnt path is 

short paths and obstacle avoidance is the Rcgular Grid m c t h d  This 
covers the world with a regular grid of points, each connected with its 4 
or 8 neighbors to form a graph. In existing regular grid implcmentations. 
the only information stored at a node is whether it is inside an object or 
not Then the graph is searched, and thc shortest grid palh returned. 
This straightforward grid search has many of the same "too close'. 
problems as the vertex graph approaches. 

4. Path Relaxation 

Path Relaxation combines the best katrires of grid search and potential 
fields Using the rolling marble analogy, the first step is a global grid 
seazch that finds a good valley for the path to follow. The sccond step is 
a local relaxation step. similar to the potential ficld approach, that moves 
the nodes in the path to the bottom of the valley in which they lie. The 
terrain (cost function) consists of a gradual slope towards the god, hills 
with sloping sidcs for obstacles, and plateaus for uncxplorcd regions. 
The height of thc hills has to do with the confidence that thcre really is 
an object there. Hill diamctcr depends on robot precision: a more 
praise robot can drive closcr to an objcct, so the hills will bc tall and 
narmw, while a les accuratc vehicle will need more clearance, requiring 
wide. gradually tapcring hillsides. 

This section first presents mults on how large the grid size can be 
without missing paths. It next discusses the mechanism for assigning cost 
to the nodcs and searching the grid Finally. it presents the relaxation 
step that adjusts the positions of path n o d a  

How large can a grid be and still not miss any possible 
paths? That depends on the niimbcr of dimensions of the problem. on 
the connectivity of the grid, and on thc size of the vchicle. It also 
dcpends on the vehicle's shapc: in this scction. we discuss the simplcst 
cast. which is a vchicle with a circular cross-section. 

G d  Size 

q$ 1 

1 2  
Figure 1: Grid Size Problems 

The area to be traversed can be covered with a grid in which cach node 
is connected to either its four or its eight nearcst neighbors. For a four 
connccted grid, if the spacing wen r, then would be a chance of missing 
diagonal paths At lcft in Figure 1. for instance. thcrc is enough mom for 
the robot to move from (1.1) to (2.2). yet both nodes (1.2) and node (2.1) 
lllc blocked. To guarantee that no paths are miss&, thc grid spring 
must be reduced to r sqrt(2) / 2, as in the center of kigure 1. That is 
the largest size allowable that guarantees that if diagonally opposite 
nodes are covered, there is not enough room between them for the robot 
to safely pass Note that the converse is not neccmrily true: just because 
there is aclcar grid path does not guarantec that the robot will fit At this 
stage, thc important th iq  is to find dl possiblc paths, rather than to find 
only possible paths 

If the grid is cight-connectcd, as in thc right of Figurc 1, (each node 
connected to I& diagonal, as well as orthogonal, neighbors). the problem 
with diagonal paths disappears. The grid spacing can be a full r. while 
guanntccing th3t if there is a path it will bc found 



Grid Search Oncc the grid size has been fixed, thc ncxt step is to 
assign costs to paths on the grid and then to search for the best path 
along the grid from the start to the goal. "Bcst", in this case, has three 
conflicting requirements: shorter path length. greater margin away from 
obstaclcs. and less distance in uncharted arcas. Thcsc three are explicitly 
balanccd by the way path costs are calculatcd. A path's cost is the sum of 
the costs of thc nodes through which it passes, each multiplied by the 
distance to the adjacent nodes. (In a 4-connected graph all lengths an 
the same, but in an 8-connccted graph we have to distinguish between 
orthogonal and diagonal links.) The node costs consist of three parts to 
explicitly represent the three conflicting criteria. 

1. Cost for distance. Each node starts out with a cost of one 
unit, for length traveled. 

2. Cost for ncar objects Each object near a node adds to that 
node's cost. I'he ncarcr thc obstaclc. thc more cost it adds. 
Ihc exact slope of the cost function will dcpcnd on the 
accuracy of ~ I i c  vchiclc (a morc accurate vchiclc can afford to 
comc closcr to objccb). and thc whiclc's spccd (a fastcr 
vchicle can afford to go farther out of its way), among other 
factors. 

3. Cost for within or ncar an unmapped rcgion. The cost for 
travcling in an unmappcd rcgion will depcnd on the vehicle's 
mission. If this is primarily an exploration trip, for example. 
the cost might be relativcly low. There is also a cost added 
for being near an unmapped region, using the same sort of 
function of distance as is used for obstacles. I'his provides a 
buffcr to keep paths from coming too closc to potcntially 
unmappcd hazards. 

The first step of Path Rclaxation is to set up the grid and read in the list 
of obstacles and the vehicle's current position and ficld of view. The 
system can then calculate the cost at each node, based on the distances to 
nearby obstacles and whcther that node is within thc ficld of view. lhe 
next step is to create links from each node to its 8 neighbors The start 
and goal locations do not necessarily lie on grid points, so special nodes 
need to be crcatcd for thcm and linked into the graph. Links that pass 
through an obstacle, or between two obstacles with too little clearance for 
the vehicle, can be detected and deleted at this stage. 

The system then searches this graph for the minimumsost path tiom, 
the start to the goal. The search itself is a standard A* [8] search. The 
cstimatcd total cost of a path, uscd by A* to pick which nodc to expand 
next, is the sum of thc cost so far plus the straight-line distance from the 
current location to thc goal. This has thc effcct, in regions of cqual cost, 
of finding thc path that most closely approximates thc straight-line path 
to the goal. 

The path found is guarantetd to be the lowatsost path on the grid. 
but this is not necessarily the overall optimal path. First of all. even in 
areas with no obstacles thc grid path may bc longcr than a straight-line 
path simply because it has to follow grid lines. For a 4-connected grid. 
the worst case is diagonal lines, where the grid path is sqrt(2) times as 
long as the straight-linc path. For an 8-connected grid, the cquivalent 
worst case is a path that goes equal distance forward and diagonally. 
This gives a path about 1.08 times as long as thc straight-line path. In 
cases where the path curves around sevcnl obstaclcs. the extra path 
length can be even more significant. Secondly. if the grid path goes 
between two obstacles, it may bc non-optimal because a nodc is placed 
closcr to one obstaclc than to the other. A node placcd exactly half way 
bctwccn the two obstacles would. for most types of cost functions, have a 
lower cost. The placcmect of the node that minimizes the overall path 
cost will dcpcnd both on nodc cost and on path Icngth, but in any case is 
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unlikely to be exactly on a grid point. If the grid path is topologically 
equivalent to the optimal path (Le. goes on the m e  side of each object), 
the grid path can be iterativcly improvcd to approximate the optimal 
path (sce Section 5). Rut if the grid path at any point gocs on the 
"wrong" side of an obstacle. then no amount of local adjustment will 
yield the optimal path. 'nic chancc of going on thc wrong side of an 
obstacle is related to the size of the grid and the shape of the cost vS. 

distance function. For a givcn grid size and cost function, it is possible to 
put a limit on how much worse thc path found could possibly be than the 
optimal path. If the result is too imprecisc, the grid sizc can be decreased 
until the additional Computation time is no longcr worth the improved 

A few details on the shapc of the cost function deserve mention. Many 
different cost functions will work, but some shapes are harder to handle 
properly. 'fie first shape we tried was lincar. This had the advantage of 
being easy to calculate quickly. but gavc problcms when two objccts were 
close togcther. The sum of the costs from two nearby objects was equal 
to a linear function of the sum of the distances to the objects This 
creates ellipses of equal cost. including the degenerate ellipse on the line 
between thc two objects In that case, there was no reason for the path to 
pick a spot midway between the objects, as we had (incorrectly) 
expected. Instead, the only change in cost came from changing distance. 
so the path went wherever it had to to minimize path length. In our first 
attcmpt to remedy the situation we replaced the linear slope with an 
exponentially decaying value. This had the desired effect of creating a 
saddle betwcen the two peaks. and forcin? the path towards the midpoint 
between the objects. The problem with exponentials is that they never 
reach zero. For a linear function, there was a quick test to %e if a given 
object was close enough to a given point to havc any influence. If it was 
too far away, the function did not have to be cvaluated. For the 
exponential cost function, on the other hand, the cost function had to be 
calculated for every obstacle for each point. We tried cutting off thc size 
of the exponential, but this left a small ridge at the extremum of the 
function, and paths tendcd to run in nice circular arcs along those ridges. 
A good compromise, and the function we finally scttlcd on, is a cubic 
function that ranges from 0 at some maximum distance. set by the user, 
to the obstacle's maximum cost at 0 distance. This has both the 
advantages of having a good saddle betwcen neighboring obstacles and 
of being easy to compute and bounded in a local area. 

Rehution Grid search finds an approximate path: the next step is 
an optimization step that fine-tunes the location of each node on the path 
to minimize the total cost. One way to do this would be to preck!y 
define the cost of the path by a set of non-lincar equations and solve 
them simultaneously to analytically determine the optimal position of 
each node. This approach is nof in gencral. computationally feasible. 
The approach uscd here is a relaxation mcthod. Each node's position is 
adjusted in turn, using only local information to minimizc the cost of the 
path sections on either side of that node. Since moving one node may 
affcct the cost of its neighbors, the entire procedure is repeated until no 
node moves farther than some small amount. 
No& motion has to be mtrictcd. If nodes wcre allowcd to move in 

any direction. they would all cnd up at low cost points, with many nodes 
bunchcd togcthcr and a fcw long links bctwccn thcm. This would not 
givc a very good picturc of the actual cost along thc path. so in ordcr to 
kecp the nodes spread out. a nodc's motion is restrictcd to be 
perpendicular to a line between the preceding and following nodes. 
Funhermore. at any one step a node is allowcd to move no more than 
onc unit. 

As a node moves, all three factors of cost arc affcctcd: distancc traveled 
(from the pmtding nodc. via this node, to thc ncxt node), proximity to 
objects and relationship to unmapped regions. Thc combination of 
thcse factors makes it diflicult to directly solve for minimum cost node 

Pa& 
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position. 
whatever accuracy is desired. 

o n n  where possible. of finding thc "saddlc" in thc cost function between 

Instead a binary scarch is used to find that position to b%In?Pk Rru. E-k~n 2 is a run from ma, using real data 
extracted from images by thc Fido vision system. The circles arc 
obstacles where the sue of the circle is the uncertainty of me stem 

fie area out of fie field of 
staR position of the - is approximately (o, -.2) and the 

The relaxation step has thc effect of turning jageed lines into suaieht *on system. me dotEd bc 

tU'0 objects and of curving around isolated o b j a  It dOCS goal (0, 14.5). The grid path found is -ked by o s  After one 
"right thing" at boundaries. The least cost PJth crossing a iteration of relaxation. the path & marl;& by 1's and after -nd 
between differcnt cost regions will follow the Same path as a ray of wt (an4 in 
refracting at a boundary bctwcen media with different fransmm . 'on 
velocities. The relaxcd path will approach that path. 

5. Additions to the Basic Scheme 

One extension we have tried is to vary the costs of individual obstacks. 
The current vision system sometimes reports phantom objects, and 
somctirnes loses mal objects that it had been tracking comtly. 'k 
solution to this is to "fadc" objccts by decreasing thcir cost each slep that 
they are within the ficld of view but not =ked by the vision module. 

Another extension implemcnted is to reuse existing paths whencver 
possible. At any one step. the vchiclc will usually moYe only a fraction of 
the length of the planned path. If no ncw objects are Seen during that 
step, and if the vchicle is not ton far off its planned coum. it is possible 
to use the rest of the path as planned. Only if new objects have bcen 
seen that block the planned path is it ncccSSary to mplan from scratch. 

The relaxation stcp can be greatly speedcd up if it runs in parallel on 
several computcrr Although an actual parallel implementation has not 
yet bccn done, a simulation has becn written and tcsted. 

6. Remaining Work 

Path Relaxation would be easy to extend to highcr dimensions. It 
could be used. for cxample. for a 3D search to be used by undcnvater 
vchicla mancuvering through a drilling platform. Another use fix 
higher-dimcnsional searches would be to include rotations for 
asymmctric vehicles Yet anothcr application would bc to model moving 
obstacles; then the third dimcnsion bccomes time. with the cost of a grid 
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Abstract 

We are studying the accuracy with which stereo vision can guide a mobile robot. In stereo 
navigation, a robot uses a sequence of stereo images to estimate its own motion as it travels through 
a world of stationary objects. A set of landmarks is established by finding corresponding features in 
one stereo pair. This yields an initial 3-0 model of the local environment of the robot, defined in 
robot-centered coordinates. As the robot moves, it periodically digitizes another stereo pair, finds the 
landmarks in the new images, and computes their coordinates relative to its new location. The motion 
of the robot since the last stereo pair is determined by fitting a transformation mapping between the 
new and the old coordinate values. 

Previous algorithms for stereo navigation have suffered from poor accuracy and low tolerance to 
correspondence errors. This is partly due to inadequate models of stereo triangulation error. 
Typically, scalar reliability factors are associated with landmarks to indicate the uncertainty in their 
SD coordinates. These scalars are used to weight the contribution of each landmark in the motion 
solving algorithm. This paper argues that stem triangulation error is better modelled by treating 
landmark locations as random variables with 3-0 normal distributions. This leads to revised 
algorithms for motion solving in which the covariance matrices weight the contribution of each 
landmark. Preliminary simulation results show that the matrix weights achieve substantially more 
accurate motion estimates thh scalar weights. These results should carry over into applications of 
3-0 vision outside of navigation. 

1. Introduction 
Mobile robot navigation is a problem of growing interest and practical importance. A travelling 

robot must be able to detect the shapes and positions of nearby objects and to monitor its own 
position in a global reference frame. This requires range sensors and motion sensors; we are 
currently exploring stereo vision for use as both. 

Our paradigm for stereo navigation operates as follows [13]. For simplicity, assume that nothing in 
the environment moves except for the robot. A set of landmarks is defined in a robot-centered 
coordinate system by matching features in a pair of stereo images. The robot then takes a step, finds 
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the landmarks in a new pair of images, and calculates their coordinates relative to its new location. 
The motion between stereo pairs is reflected in the difference between the new and the old landmark 
coordinates; an estimate of this transformation is found with least squares. The whole process is 
repeated periodically to monitor robot motion over long distances. 

We have previously used this paradigm in systems that were able to guide a robot through short 
obstacle courses [13], [17). In one set of experiments, the robot accumulated approximately half a 
meter of error in its global position estimate over a course six meters long [l 11. However, the motion 
estimates were rather unstable. This instability is reflected throughout the computer vision literature: 
algorithms for visual motion estimation are generally very sensitive to noisy data [2] . 

Part of this sensitivity is due to inadequate modelling of stereo triangulation error. Triangulation 
induces an uncertainty on 3-D coordinates that is greater for distant points than for near points and 
greater in the direction of the line of sight than perpendicular to it (see figure 2). This phenomenon 
has been recognized and modelled for a long time in photogrammetry [15], but has been 
comparatively ignored in computer vision. In photogrammew it is common to model all 
measurements as corrupted by normally distributed noise. 3-D positions inferred by triangulation 
have an uncertainty modelled by 3-D normal distributions. In computer vision, Blostein and Huang 
[2] have recently derived other probabilistic models of triangulation error, but they appear not to use 
them in their algorithm for motion solving. Moravec’s system [13] approximated triangulation error 
with scalar coefficients used to weight the contribution of each landmark to the motion solution. 
However, this does not capture the elongated and oriented nature of the uncertainty. 

The purpose of this paper is to demonstrate the importance of modelling triangulation error. The 
next section shows how S D  normal distributions modelling the uncertainty in landmark positions can 
be inferred from stereo data. This model is used in section three to derive new equations for 
estimating motion. In these equations the covariance matrices of the normal distributions replace the 
scalar weights of previous methods. Section four shows how to update the local 3-0 model with 
measurements from succBssive s tem pairs. It proposes to keep the representation in robot-centered 
coordinates and shows how to use the error model to weight successive range measurements of 
point locations. Only translational motion is treated. In section five we discuss the cascading of 
incremental robot motion estimates to obtain an estimate of the global robot position and positional 
uncertainty. The results of simulations on synthetic data are presented in section six. These compare 
the new error model with a scalar weighting scheme and show substantially better performance with 
the new model. Finally, the last section discusses the significance of these results, the difficulties we 
expect to have in transferring them to real images, and our plans for extending the work. 

2. Modelling Stereo Triangulation Error 
The geometry of stereo triangulation is shown in figure 1. For the moment we consider just the 2-D 

case in which two dimensional points project onto one dimensional images. Two cameras are placed 
at offsets of *b from a coordinate system centered between the cameras. Given the coordinates x, 
and xtof the left and right images of the point P, the coordinates of P are given by 



45 

+ xr )  
xp= X1-Xr 

(1 1 
2b Yp=-  

This estimate can be in error for several reasons. The finite resolution of the images contributes a 
quantization uncertainty shown in figure 2a. A point projecting to pixels xr and xr can lie anywhere in 
the shaded region. As shown in figure 2b, this region grows with the distance to the point, becomes 
more skewed with increasing distance, and is always directed along the line of sight to the point. 
Besides this quantization effect, the stereo matcher can return slightly incorrect values of xI and xr 
due to perspective and photometric distortions of the image. On top of this their may be geometric 
distortions in the image or calibration errors between the two cameras. These errors are of a more 
random nature, but they all contribute uncertainty similar to that shown in figure 2. 

Our goal is to find a model that accurately reflects the nature of this uncertainty and that can be 
used conveniently to constrain algorithms for motion solving. Scalar weights can capture the "size" 
of the uncertainty, but nothing of its shape. In a dightly different context, Baird (11 used polygons to 
outline the border of the uncertainty region. These became constraints in a motion solving algorithm 
based on linear programming. In our situation the random nature of the errors makes a statistical 
approach more appropriate. Motivated largely by the example of photogrammetry and the stereo 
calibration work of Gennery [7], we model the image coordinates as random variables with known 
distributions and derive distributions on the point coordinates. For simplicity, we use linear models 
and normal distributions throughout, rather than try to determine exact distributions from nonlinear 
functions. 

We begin by treating xI and x, in equation (1) as corrupted by zero-mean, gaussian (normally 
distributed) noise; that is, 

XI= XI + e, 
x,= xr + e, 

where e,--N(O,ul), er-N(O,ur), and xpnd x,are the true values of xIand x,. Since (1) is nonlinear, X p  
and Yp will not be normally distributed. However, we will approximate them as binormal, with means 
given by (1) and covariances obtained by linearization. Thus, 

P = P + t ,  

e - N(0, VP, 
and Vp = NJT 

Here P is the true value of P, e p  is its random component, J i s  the Ja obian of (l), and V i s  the 2x2 
covariance matrix of the image coordinates. In the model we have described, iwill have u, and or on 
the diagonal and zeroes off the diagonal, since we are assuming there is no correlation between 
images. 
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Note that constant probability contours of the error distributions describe ellipses that approximate 
the shape of both the non-random (figure 2) and the random contributions to landmark uncertainty. 
The principal shortcoming of the model we have proposed is that it is not long-tailed as the true 
distribution would be. Figure 2 hints at this; the uncertainty regions have a skew that isn’t modelled 
by a symmetric distribution. The skew is not significant for nearby points, but grows with distance. 
We have not analyzed the effect of this other than by way of the simulations presented later. The 
extension of this error model to 3-D points projecting onto 2-D images is straightforward. 

3. Solving for Robot Motion 
With the procedure above, 3-D coordinates and covariance matrices are estimated for a number of 

points matched in the first stereo pair. After the robot moves and digitizes another stereo pair, we find 
the same features in the new images, triangulate, and compute new covariance matrices. This leads 
to two models of the same points, with coordinates differing by the motion of the robot. If the robot 
approached a landmark there will be less measurement error in the landmark coordinates, so the 
terms of its covariance matrix will be smaller. The opposite will be true if the robot receded from the 
landmark. See figure 3. 

We now wish to determine the motion of the robot between stereo pairs. Suppose for the moment 
that the motion is purely translational. Let P, represent landmark coordinates with respect to the first 
robot position, Qi represent the coordinates with respect to the second position, and T = [Tx Ty TZlT 
be the unknown translation vector. The motion is described simply by 

Q, = PI+ T 
(2) 

In (2) we have observations of Pi and Qi and wish to find T. The standard method is to apply least 
squares to minimize 

n 

f=l  
(Qf- P,- V(Qf- PI- T )  

Differentiating, setting the result to zero, and solving for T we obtain 

When one has information on the reliability of each point, as we do here, the terms in the sum are 
typically weighted according to their reliability. For scalar weights this modifies expression (3) to be 

w,(Qf- Pf- W ( Q f -  Pf-T) 
n 

I=1 

with the resulting motion solution given by 
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T = (ei- pi> 
“i=1 

With the new error model we proceed differently. Since Pi and Qjare treated as normally distributed 
vectors, the motion equation (1 5) can be rewritten as 

T= Qj - Pi= D, 
(5) 

where D, will be a normal vector with distribution N(O,VA. + VQj) = N(O,Vi). Equation (5) is a linear 
statistical model whose optimal solution can be reached several different ways [5]. One of these is to 
minimize the following least squares expression: 

n 

i= 1 
(6) 

This is equation (4) with the scalar weights w, replaced by the matrix weights Wi (the inverses of the 
covariance matrices Vt). The solution for T is 

n n 

i=1 I= 1 

The inverse covariance matrices in (6) have the effect of replacing the usual Euclidean distance 
norm, represented by the vector dot product in (4), with new norms for each point that stretch the 
space as appropriate for the error in that point. This is shown in figure 4. Without the matrix weights, 
residual vectors lying on circular contours have equal contributions to the total error of fit with the 
matrices, these contours become elliptical. This effectively gives more weight to errors perpendicular 
to the line of sight than parallel to it, which intuitively is what we want. In fact, scalar weights are just 
the special case of matrices in which the matrix is diagonal with all diagonal dements equal, ie. 
Wf = Wi’. 

Since the translation T is given as a linear combination of normal random vectors, it will itself be a 
normal random vector. The mean of its distribution is simply the value computed by equation (7). The 
covariance matrix is given by 

VT’ <E Wf>” 
f=1 

This maMx can be analyzed to determine the quality of the motion estimate. 

All of the foregoing was derived assuming that the robot motion was purely translational. This is 
convenient because the equations remain linear, allowing solutions to be obtained simply and 
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preserving the normal error model. In the case of general motion, the presence of rotation introduces 
a nonlinearity that complicates matters. The motion is now expressed by 

Qi= R P i + T  
(8) 

where R is a 3x3 rotation matrix. The standard least squares approach would find R and T by 
minimizing 

n 

(9) 
Since the matrix R is a complicated function of the rotation angles, the equations obtained by 
differentiating are nonlinear. The original approach to solving them was to linearize and iterate; 
however, recently two methods have been found to obtain a solution directly. In first, Hebert 
[lo] expressed the rotation as a quaternion and found a direct solution by applying certain identities 
in quaternion algebra. The other is a technique from statistics called Prbcrustes analysis that solves 
the matrix formulation directly [14]. Both of these methods apply to equations such as (9) that involve 
only scalar weights, but fail when matrix weights are used. Applying our error model to general 
motion leads to minimizing 

n 

f=1 
(Q, - RPi  - DT W&Qi - R Pi - T )  

(1 0) 

.with Wi = ( R  V' RT + VQi)-' 
where Pi" N O ,  VA.1 rmd Q, NO, VQi) 

The only method we have found for solving this equation is iterative. An initial approximation is 
obtained using the Procrustes method with scalar weights, then several iterations are performed on a 
linearized version of (10). Since-the initial approximation is close to the solution, weight matrices Wi 
are calculated only once with the initial approximation for R, rather than recalculated every iteration. 

As in the purely translational case, the computed motion parameters are random vectors, but 
because of the nonlinearity of the rotation they are no longer normally distributed. A normal 
approximation to the true distribution can be obtained from the converged solution to (10). 

4. Updating the Local Model 
The foregoing triangulation and motion solving algorithms provide a series of 3-D models defined 

relative to successive robot locations. Combining these models can serve two purposes. First, 
averaging landmark sightings from several views should provide more accurate estimates of the 
landmark positions, which should in turn lead to more accurate estimates of robot motion. Second, 
all of the models can be incorporated into a single map of the entire area traversed. Previous 
approaches to these tasks differ according to whether they have an incremental or a batch nature. 

One of the best examples of a batch approach is the classical photogrammetric block adjustment 
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[15]. The problem here is to find the 3-D coordinates of ground points from their correspondences in 
a block of overlapping aerial photographs. The solution involves writing a set of simultaneous 
equations relating all of the image coordinates to the unknown ground points and camera positions, 
then solving for the unknowns via least squares. Typically, all of the measurements and all of the 
unknowns are treated as normally distributed random variables, much as we have just done. A large 
aerial survey may involve several hundred unknowns. 

The drawbacks of this approach are that it is expensive in time and space, it is difficult to find errors 
in the mass of data, and its off-line nature makes it'inappropriate for continuous, real-time navigation. 
Photogrammetrists have responded to these problems with an incremental technique called on-line 
photogrammetry [a]. This method processes new measurements sequentially to update previous 
estimates of camera and ground point positions, rather than first accumulating all measurements and 
then estimating the unknowns. Kalman filters are used for the update process. On-line 
photogrammetry is used as an automation aid when processing aerial images and as an initial screen 
for erroneous measurements, but it appears that the batch solution is still used to deliver the final 
values for coordinates. 

In computer vision, the best example of an incremental technique is the system developed by 
Hallam [Q]. This involved a 2-0 world in which a moving submersible used sonar to track moving and 
stationary targets. The positions and velocities of the robot and the targets were modelled as state 
vectors defined in a fixed, global coordinate system. Incoming sonar readings created a local model 
of the targets in robot-centered coordinates. The current robot parameters were estimated from the 
difference between the local and global target models, then added to the local target models to 
update the global target positions and velocities. Kalman filters were the basis for the state updates. 
Errors in the sonar data were modelled by 2-D normal distributions. This system was found to work 
quite well on simulated data, but has not yet been applied to real data. 

Broida and Chellappa(3) have taken a similar approach to motion estimation from a monocular 
image sequence. They estimate the position and velocity of a single moving object seen by a 
stationary camera. Feature correspondences are used as input to a Kalman filter-based state update. 

Chatila and Laumond have developed an incremental navigation system for a robot equipped with a 
laser range finder and an odometer [4]. The robot is modelled as travelling through 2-0 world of 
stationary, polygonal obstacles. The key features of their system are that it uses a scalar model of 
uncertainty similar to Moravec [13] and that object models are rooted in a common global coordinate 
frame. Their approach to world model update is intermediate between classical photogrammetry and 
recursive filtering; when new information on robot position arrives, they percolate this backward to 
update positions of previously seen objects. This effect "fades", so that the percolation stops after a 
short time. 

In our problem we are concerned with stationary points (landmarks) seen from a moving vehicle. 
We adopt an update method similar to Hallam, but keep the landmark coordinates in robot-centered 
rather than global coordinates. For example, consider the situation after solving for the first step of 
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robot motion (figure 5). We have landmark sightings obtained from the previous robot location, 
sightings from the current robot location, and an estimate of the intervening motion. Covariance 
matrices are associated with all landmark positions and the robot motion. We propose to transform 
the previous sightings into the current coordinate frame, average the two sets of coordinates, and use 
the result as a new, robot-centered estimate of the landmark locations. The transformation and 
averaging will result in new covariance matrices for the landmarks that should represent diminished 
uncertainty in their robot-centered coordinates. 

The rationale for this approach lies m the uncertainty of the motion estimate. For a robot travelling 
in an unknown environment, its position relative to any fixed reference frame must become more and 
more uncertain. If new landmarl( sightings are related back to this fixed frame, then their positions in 
the fixed frame also become more and more uncertain. Thus, if we transform new measurements 
back to an old frame for the sake of averaging, we inflate the uncertainty of the new measurements 
and degrade their contribution to the average. Unfortunately, for a robot travelling forward the most 
recent stereo measurements will be the most accurate and should be weighted the most heavily; 
transforming backward will weight it the least heavily. Therefore, in what follows we transform 
information forward to maintain the landmark coordinates in robot-centered coordinate frame. We 
expect that this will lead to better estimates of step-by-step robot motion, although other procedures 
may be preferred for mapping the area covered in several robot steps. 

We will treat only translational-motion. Let Pi be the robot-centered coordinates of a landm'ark at 
time i and Pi+1 be its updated, robot-centered coordinates at time i +  7. Pi is transformed to the i+ 1"' 
coordinate frame by 

P,'=P,+T 
(11) 

where T is the intervening robot motion. Since we are modelling both Pi and T as corrupted with 
zero-mean, gaussian noise with known covariance, P,' will also have a zero-mean, gaussian noise 
component. If the noise in Pi is ei-N(O,V) and in T i s  eT- JV(O,V+, then the uncertainty E; in P,' is 
distributed N(0, V,!) with 

VI'= Vi+ VT 
(1 2) 

That is, transforming the point to the current coordinate frame inflates its covariance by the amount of 
uncertainty in the transformation itself. In this we have overlooked some correlation induced by (1 1). 
Our initial assumption is that the errors in any landmark location are independent from all other 
landmarks. Equation (1 l), by applying the same uncertain transformation to all landmark locations, 
will cause the new coordinates P,' to be correlated bemeen landmarks (121. Taking such correlations 
into account would increase the cost of the update quadratically for a small performance 
improvement, so we choose to ignore It. 

Let the measurement of the landmark taken from the new robot location be Qi with covariance Vei. 
We wish obtain an updated estimate of the landmark's coordinates by combining Pf and e,. Treating 
these as two estimates of the mean and covariance of an unknown SD normal distribution and 
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t+ 1 

Figure 6 

L+ 1 
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applying standard linear statistical theory leads to the following updated estimates of the point 
location and its uncertaint;: 

Vi+l = (VI"' + VQi -1 )- 1 

Pi+l = Vi+l ( V,? Pi' + VP;' Qj )  

Recall that the V's are 3x3 covariance matrices. The intuition behind (13) is as follows. The elements 
of the covariance matrices V: and VQi will be large if the uncertainty of the corresponding estimates 
P,! and Qi is large. The larger the elements of a covariance matrix, the smaller (loosely speaking) will 
be the elements of its inverse. Hence, the more uncertain a measurement, the less weight it receives 
in estimating Pi+l .  Laumond and Chatila(41 have described the analogous averaging scheme for 
scalar quantities. 

Another way to formulate the point location update is to use Kalman filters. Taking Qi as the new 
measurement and P, as the state to be updated, we obtain [6] 

(1 
Vi+l here is the same as in equation (6); furthermore, it can be shown that the estimates of 
arrived at by (13) and (14) are identical. There is, however, a difference in the cost of the two 
formulations; using (13) requires three matrix-vector products and one vector-vector add, whereas 
(14) requires two matrix-vector products and two vector-vector adds. The latter is cheaper overall. 
The intuition behind (14b) is fairly simple. The second term takes the difference of the new 
measurement from the old state estimate (Qi - P;), weights the difference by (Vi+ VQi-'), and applies 
it as an update to the old state estimate P,!. Matrix VQi-' will be "larger" for more accurate new 
measurements, giving them more weight, and "smaller" for less accurate measurements, giving them 
less weight. Conversely, V,+l will be "small" for an accurate old estimate, so that the new update is 
weighted less, and vice versa for an inaccurate old estimate. We have used the filter formulation of 
(14) in our implementation. 

5. Updating the Global Robot Position 
Previous sections have dealt with estimating each step of the robot's motion and updating the local 

world model. In this section we are concerned with estimating the robot's global position and 
positional uncertainty. This involves summing or integrating the stepwise motion estimates. Smith 
and Cheeseman [16] have recently shown how to do this for motion in the plane, involving two 
degrees of translation and one degree of rotation. They give the details of a Kalman filter formulation 
of the problem. Hallam [Q] appears to have used a similar approach, although detailed equations are 
not shown. An extension to unconstrained, six degree-of-freedom motion has not yet appeared in the 
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computer vision and 
summarize the Smith 

robotics literature. We will illustrate the approach for translational motion, 
and Cheeseman treatment of planar motion, and discuss the difficulties with 

extending this to unconstrained motion. 

Suppose that after i steps the robot’s position is Ti with covariance Vi and that the next step is 
estimated to be TSwith covariance Vs. The new global position is 

Ti+1= Ti -t- Ts 
(1 5) 

Since (15) is linear and involves gaussian variables, the error in Ti+l will be gaussian with covariance 

The difficulty in extending this to motions involving rotation is that the update equation (15) is no 
longer linear, so the error propagation is no longer strictly gaussian. Smith and Cheeseman solve this 
for planar motion by linearizing. Each step-wise motion is represented by an uncertain translation 
(X,Y) in the floor plane and an uncertain rotation 8 about the vertical axis. Given two such motions 
(XI, Y,,81) and (X,, Y,,S,), they obtain closed form expressions for the variables X,. Y,, and 8, of the 
combined motion in terms of the variables XI, . . . ,e2. The equations are nonlinear and result in a 
non-gaussian distribution for the combined motion. They approximate this with a gaussian 
distribution obtained by linearizing. They also show how to use Kalman filter methods to incorporate 
motion estimates from several Sensors into one overall position estimate. 

When the motion involves all six degrees of freedom, the linearization approach is harder to apply 
because it is difficult to obtain closed form expressions for the combined motion in terms of the 
component motions. We speculate that expressing the rotation as a quaternion may lead to a 
manageable formulation. It seems likely that this problem has been addressed before in aerospace 
applications. 

6. Simulation Results 
A number of simulations were run to compare the performance of the SD normal error model to the 

performance of scalar weights. These experiments first examined the performance on a single step of 
robot motion, then the performance over several steps. The methodology attempted to mimick the 
configuration of cameras, objects, and motions used in our previous experiments with a real vehicle 
and real images [17]. The simulated cameras had a resolution of 512x512 pixels, a focal length of 
12mm, and a field of view of 53 degrees. The baseline between cameras was 0.5 meters. The LScene 
consisted of N o m  points uniformly distn’buted in a SD volume in front of the cameras. Typically 
this volume extended 5 meters to either side of the cameras, 5 meters above and below the cameras, 
and from 2 to 10 meters in front of the cameras. Image coordinates were obtained by projecting the 
points onto the images, adding gaussian noise to the floating point image coordinates, and rounding 
to the nearest pixel. These coordinates would be the input to the algorithms described above for 
triangulation, motion solving, and model update. 
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To obtain covariance matrices for point locations, image coordinates were assigned a distribution 
with standard deviations of one pixel for each of xl,y,,xr,yr and no correlation' between any two 
coordinates. These were propagated through the triangulation as described in section 2. Scalar 
weights were derived by taking the 2 variance from the covariance matrix. Scalars obtained by 
several other methods were tried and found to give very similar results. These include the volume and 
length of the major axis of the standard error ellipsoid and Moravec's half-pixel shift rule [13]. 

6.1. Single step motion e, 

Planar motion estimation was tested first. After a step of one meter directly forward, the robot 
estimated its lateral translation (X axis), forward translation (Z axis), and rotation about the vertical (Y  
axis). Experiments were done varying the number of points tracked and the distribution of the points 
in space. For any one experiment, averages and standard deviations were calculated for the results 
of 5OOO trials. In this set of simulations no noise was added to the image coordinates, so that 
quantization of the image was the only source of error. 

When all points were 2 to 10 meters away, which corresponds to disparities of 13 to 64 pixels 
(roughly 3% to 11 % of the image width), the mean estimate of the foward motion was within 0.1 % of 
correct for both scalar and matrix weights and for anywhere from 6 to 50 points tracked. Since the 
true motion was 1 meter, this implies average estimates of about 0.9995 meters. The error that did 
occur showed a slight bias to underestimate the true motion. 

Standard deviations of the motion estimates as a function of the number of points tracked are 
plotted in figures 6 and 7. Figure 6 shows the results for rotation. Estimates based on scalar weights 
have about 10 times the spread of estimates based on matrix weights. With 20 points tracked, the 
standard deviation with matrix weights is about 0.03 degrees. Figure 7 shows the results for X and Z 
translations. There is a factor of 10 difference in spread between the scalar and matrix cases for X, 
but only a factor of 5 for 2. This is explained by the fact that lateral translations and vertical rotations 
have a coupled effect on errors of fit, 80 that small lateral translations strongly resemble small 
rotations about the vertical axis. It is significant that the coupling is reduced by using matrix weights. 
With matrix weights, tracking 20 points yields standard deviations in X and Z of approximately 0.004 
meters over a 1 meter motion, or 0.4% of the distance travelled. This compares to 3.5% and 1.9% for 
X and Z, respectively, with the scalar algorithm. 

The results for motion solving in space are comparable to the results for motion in the plane. The 
previous experiment was rerun with the motion solver estimating all six parameters of motion. The 
average solution for 2 translation still underestimated the true motion by about 0.1%. Figures 8 and 9 
show the standard deviations of the rotations and the translations, respectively. The pattern is very 
similar to the three degree of freedom case. The deviations are roughly the same size and the ratios 
between scalar-based and matrix-based motion solving are the same. The scalar-based algorithm 
shows a coupling between lateral translation and panning rotation, vertical translation and tilting 
rotation, but not between forward translation and roiling rotation. Using full covariance matrices 
moderated this effect. 
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estimates. After 10 meters of simulated motion, the standard deviation of the matrix-based estimates 
of total distance travelled was 1.6 cm, versus 4.4 for the Scalar method. 

7. Discussion 
The goal of this paper was to show that using a model of stereo triangulation error based on 343 

normal distributions would lead to more accurate motion estimation than Scalar error models. The 
simulations have verified this claim. Step-wise motion estimates, global position estimates, and 
landmark location estimates are better with the new method than the scalar method. Other motion 
solving algorithms from the literature [2], not based on probabilistic error models, had performance to 
our scalar-weighted algorithm and poorer than the matrix-weighted version. 

Three dimensional normal distributions model triangulation error better than do scalars, but they are 
not entirely faithful to reality either. This shows up in the biased estimates obtained in the simulations. 
However, these biases are small enough that it may be acceptable to ignore them. 

One of the most striking aspects of the new model is the improved performance is gives with distant 
points. This implies that the new method permits shorter stereo baselines to be used without 
sacrificing accuracy of the motion estimate. Since the length of the baseline directly affects the 
difficulty of stereo matching, this may offer a way to alleviate the correspondence problem. 

Our first priority for future work is to verify the simulation results with tests on real images. Should 
the results hold up on data free of correspondence errors, the next step will be to pursue the idea of 
shortening the baseline to reduce the likelihood of mismatches. This will be augmented with 
statistical tests to filter any remaining mismatches. Further extensions include coping with general 
rotation in the global position update, tracking lines as well as points, and estimating velocity as well 
as position. 
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The Vision and Navigation Program 

The Primary task of wr vision and navigation program is to 
the vehicle centered on the road as it rdls dong at a constant 
speed. The p ~ r a m  accomplishea this task by repeatedly 
digitizing road images, locating the road edges in the imago, 
calculating the deviation from the center line, Md steering to 
realijn the vehicle. 

The program was designed to be fast yet reliable. While the 
vehicle b moving along a planned path, en image is digitized. 

Fig. 2. Terregator 
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Since images are digitized frequently, the appearance of the road 
edges does not change appreciably across successive images; 
consequently. searching the entire image is unnecessary. In order 
to constrain the search, the program maintains a model of the 
road The model contains the position and orientation of the left 
and right road edges seen in a recent image. The program USeS 
these model edges to generate two small subimage rectangles in 
which to search for the lefl and righi road edges. Since the 
approximate direction of each road edge is known a priori, the 
program uses directed curve tracing to reduce processing time 
and to preclude spurious edges. Generally the program finds 
more than one edge in each subimage rectangle. The model is 
used to select the pair of extracted edges most likely to be road 
edges. This new pair replaces the old pair in the model. From the 
model pair, the program computes a center line, the vehicle's drift 
from the center line, and a steering command to bring the vehicle 
closer to the center line. As the vehicle executes a steering 
command another image is digitized and the cycle repeats. Figure 
3 depicts the program control flow. In the remainder of the paper 
we explain each component of the program in greater detail. 

Constraining the Search 

Each time the program digitizes an image it chooses two 
subimage rectangles to constrain the search for left and right 
edges. The representation of the rectangle is two horizontal and 
two vertical bounding line segments. The vehicle always "lodcs" 
8 fixed distance ahead; therefore, the placement in the image Of 
the horizontal bounding segments is predetermined and remains 
fixed across successive images. The placement of the segments 
is partly determined by two parameters selected manually: the 
height of the rectangle (typically 50 to 100 pixels) and rectangk 
overlap, that is, the percentage of the road in a rectangle seen in 
the preceding image (typically 50%). These two Parameters 
present important trade offs: If a large height is chosen, the 
extracted road edges will be longer, thus providing more accurate 
information about the road; however, the processing time will be 
increased, and the road will be scrutinized less often. If a large 
overlap is chosen. more information is available from the previous 
image and spurious edges are less likely to deceive the algorithm; 
however, the vehicle's speed must be slowed to enable such 
overlap. The two parameters, coupled with the vehicle's speed, 
the image processing time, and the camera's tilt determine the 
placement of the horizontal bounding segments in the image. 

The vertical bounding segments change from image to image. 
The program selects bounding segments so that the road edges, 
basal on predictions from the model and a preset error tOkranW, 
will appear within the rectangle. This error tolerance arises from 
two sources: First, the program obtains its estimates of the 
vehicle's motion by dead reckoning, which is somewhat 
inaccurate. Second, the program assumes the road is straight, 
that is, predictions are made by linearly extending the road edges. 
Road curvature introduces a discrepancy between these 
predictions and the actual road; consequently, the rectangle must 
be wide enough to see the road edge within a preset tolerance. 

Selecting the Cest Edges 
The line finding routine generally returns more than one line 

from each rectangle. The program passes these lines through a 
number of filters to determine which, i f  any, are road edges. The 
new road edges are used to plan a path for the vehicle and to 
update the model. The 16 best left and right edge candidates 
(based on weights supplied by the line finding routine) are 
retained, and the rest are discarded. The program assurnes that 
the camera's calibration. position, and orientation with respect to 
the road are known, that the ground is locally level and that all 
candidate edges arise from ground features. These assumptions 

allow the program to project each candidate edge into a unique 
line in the ground plane. We establish a righthanded coordinate 
system with the vehicle at the origin and the xy-plane on the 
ground, with the positive x-axis directed to the right of the vehicle 
and the positive y-axis directed forward. For each transformed 
edge, the program calculates the following parameters: the 
perpendicular distance r measured from the origin to the edge and 
the angle 0 measured from the positive x-axis. The differences in r 
and I9 between each transformed candidate edge and the 
corresponding model edge are calculated (call these values dr 
and dB respectively). The quantity dr is the difference in 
displacements of the vehicle from the model edge and from the 
Candidate edge. The quantity dI9 is the angle between the model 
edge and the candidate edge. Test runs have shown that the 
vehicle tends to remain aligned with the center line; most of the 
error is in the form of lateral drift from this line. Hence, dr provides 
the most information for evaluating candidate edges. The quantity 
d8 tends to be small (less than 10 degrees); consequently, an 
early filter uses it to eliminate spurious edges. After this round of 
edge elimination, one of three cases remains: 

1. All edge candidates have been eliminated 

2.All edge candidates have been eliminated for a 
particular road edge (either left or right) 

3. At least one edge candidate remains for both the left 
and right road edge 

In the first case, the program obtains no new information and the 
vehicle continues to execute the path planned from the previous 
image. In the second case, onbj one road edge is visible. The 
other road edge is occluded, shadowed, or poorly defined. 
Suppose for example the program found a set of candidate road 
edges on the right side but none on the left. From the candidate 
edges on the right side the program selects the one with the 
minimum dr value. It inserts this new edge into the model, retains 
the old model edge for the left side, and generates a new steering 
command. In the third case, both road edges are visible. Tho 
program selects one edge from each list of road edges (left and 
right) by comparing each left edge to each right edge candidate 
and choosing the pair that minimizes the difference in their dr 
values, that is, it selects the two edge candidates that differ from 
their corresponding model edge in the same way. Figure 3 
illustrates road edge selection in this case. This decision is based 
on the observation that vehicle motion error and road curvature 
shift the location of each edge in the image in the Same way. The 
program inserts the two new road edges into the model and plans 
a new path. 

Line and edge extraction 

At the lowest levels of the vision system for our vehicle, the edge 
and line extraction modules. we found that for detecting road 
edges we could rely on the principle "almost anything works in the 
simple cases." That is, any of a number of simple edge and line 
finding techniques could be used to extract road edges in various 
situations. Our approach then was to try everything. We tested 
various edge and line finding programs on static road images and 
3n images acquired by the vehicle in actual runs. Simple 
techniques proved adequate in many situations we encountered. 

The basic approach of all the vision modules we tried was to find 
the left and right boundaries of the road and represent them as 
lines. Therefore, the task of the low level vision modules is to find 
line segments which are plausible candidate road edges. We 
sought to make only the most general assumptions about what 
might constitute a road in an image. The technique used to 
extract road edges and represent them as lines depends on ! 
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whether we think of a road as an intensity change from 
background, a texture change, a color change or a combination. 
We experimented with 7 methods for extracting road edges from 
images and three methods for fitting lines to the edges. The seven 
techniques we used to find edges in road images were: 

1. Correlation. Assuming that a road edge is a more or 
less vertical feature in a subimage it can be followed 
by selecting a small sample patch of the edge and 
correlating this on a row-byrow basis with the 
subimage. Where the correlation is strongest in each 
row a road edge element is assumed. The result is a 
list of points where the road edge appears in each 
row. A line can be fit to these directly. The 
correlation approach worked very well when the 
sample road edge patch was hand selected. 

2. DOG operator. A Difference of Gaussian edge 
operator was tried at a wide range of spatial 
resolutions on road images. Road edges tend to be 
low spatial frequency signals so large DOGS were 
required to find them directly. Two-dimensional DOG 
filters tended to break up the road edges even at low 
frequencies. One dimensional DOG operators applied 
horizontally in the image produced more connected 
road edge pieces, since the road boundaries were 
almost vertical features in the image. High spatial 
frequency DOG operators can be used as the basis of 
a texturebased segmentation of road images, 
however. 
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road edges. 

3. Temporal Edge Detector. Subtracting two 
successive image frames is an inexpensive method for 
detecting image features that change from one 
moment to the next. If a vehicle is traveling down ail 
ideal road (where the intensity of the road is uniform, 
the intensity of the surrounding region is uniform and 
the road edges are straight and parallel) then the 
difference of two successive road images is zero. 
When the vehicle begins to turn left or right off the 
road, however, simple image differencing finds the 
road edges. This strategy was used in one 
experiment to servo Neptune visually down a hallway. 
Here the road edges were particularly distinct so the 
idealness assumption was more or less satisfied. 

4. Roberts Operator. A 2x2 Roberts edge operator 
was sufficient to find road edges where they were 
relatively well-defined intensity step functions, such as 
when the vehicle traveled down a hallway or when we 
artificially marked the road edges with tape. 

5. Intensity Segmentation. A simple binary intensity 
segmentation of the road image works in many cases 
where the road is a set of pixels most of whose 
intensities are grouped together in the image 
histogram. We used a simple segmentation technique 
based on classifying all the pixels in the bottom 50% 
of the histogram as one region and those in the upper 
50% as another. Standard procedures for expanding 
and shrinking the resulting segments to join closely 
spaced segments and eliminate small ones are 
applied. Road edges are assumed to lie along the 
boundaries of the resulting regions. 
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Figure 4: System Block Diagram 
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6. Texture Segmentation. Texture based 
segmentation often proves better than intensity based 
szgmentation fo; road edges where the road is 
relatively smooth and the surrounding region is not, 
such as when the road is asphalt against a grass 
background. A simple texture operator which we 
have found useful in detecting road edges is one 
which counts the number of edges per unit area and 
classifies all those areas where the edge count is high 
as a single region. 

7. Row Integration. Summing the intensities column- 
by-column in a set of scanlines in the image results in 
a single-scanline intensity image where the road is 
roughly a one dimensional box function. given that the 
road is a more or less vertical feature and the road 
and surrounding area each have fairly uniform but 
different intensities. Finding the boundaries of the 
box amounts to finding the average position of the left 
and right road edges over the scanlines summed. 
Repeating the procedure for another set of rows in the 
image locates another pair of road edge points which 
can be joined with the first to approximate the road 
boundaries as line segments. 

The three line-extraction techniques we used were: 

1. Least Sqaures Line Fitting. When we had onlyone 
possible line in an edge image, such as the result of 
running a correlation operator over the rows or 
collecting a number of road edge points by row 
integration, a line could be fit to the points by least 
squares. 

2. Muff Transform. A modified Hough (Muff) transform 
was used to fit lines to edge data where the edge 
extractor returned points that could plausibly be parts 
of several lines. The Hough transform has been used 
to detect road edges in other road finding programs 
[6] [l]. The Muff transform uses a new 
parameterization for lines in images. The Muff 
transform has several implementational advantages 
over the conventional p.8 parameterization. The 
details and implementation of the Muff transform are 
presented elsewhere [5]. 

3. Line Tracing. Most of the subimages we processed 
to find lines were bands about 50 pixels tall and 250 
pixels wide. A simple raster tracking algorithm found 
in [3] proved sufficient to trace the road edges. 
Basically, if an edge point P above some high 
threshhold d is found while scanning the subimage, 
then we search on Scan lines below for connected 
edge points above some lower threshhold 1. The last 
such point found in the subimage is called 0 and we 
assume PO is a line segment. The line tracing 
procedure is much like the inverse of a Bresenham 
algorithm for drawing lines, with the similar limitation 
that we can find lines that are only with 45 degrees of 
vertical. We find lines more than 45 degrees from 
perpendicular and lines with gaps by searching in a 
neighborhood below an edge point for the next 
adjacent edge point. Striclly speaking. our tracing 
program returns the endpoints of a curve which may 
not necessarily be a line, but over the'small distances 
in the subimages we search for lines we have found 
this fast tracing procedure yields an adequate 
approximation. The line tracing procedure was used 
in all of the real time continuous motion runs of our 
vehicle under vision control. 

A combination of three factors enabled us to reduce the image 
processing tlme for each image sainpla to about 2 seconds. First, 
special image processing hardware in our Grinnell GLlR 270 
display processor was used for the low-level correlation and 
convolution. Second, oiily small subimages (50 by 250 pixels) 
were searched for road edges by the line finding routines. Third, 
selection from among the possible set of candidate road edges of 
the actual road edges was accomplished by simple means (q.v.). 

The next step in our plans for development of low.level road. 
finding vision is lo integrate several types of feature detectors in a 
blackboard data struc!ure. We want to evaluate the success of 
combining intensity. texture and color edge and region features to 
find road edges. Earlier we said that we relied on the principle 
"almost anything works in simple cases". For complicated cases, 
such as we have encountered in actual outdoor road scenes, we 
have found that none of the techniques we have tried always 
works. We believe that a combination of techniques will enable us 
to find road edges reliably in a wide range of situations. 

Control 
The control procedure translates the visual measurements into 

vehicle motor commands that, i f  successful, keep the vehicle 
moving along the road. We evaluated a half-dozen approaches 
experimentally with our vehicles and analytically. One approach, 
servoing to keep the road image centered in the forward field of 
view, excelled in all the measures, by such a margin that we feel it 
deserves to be considered a fundamental navigational principle 
for mobile robots. 

Figure 5: Processing Graphics. Here a road image is 
shown after processing to enhance intensity changes. 
The vision program selects a window in which to 
search for road edges. Candiate left and right road 
edges are lines fit to the raw edge data, shown here as 
black lines. Heavy black lines indicate the left and 
right road edges selected by the program. The 
computed road center line is shown as a double line. 
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Let x represent the shortest distance between the center of our 
vehicle and the centerline of a straight road. B is the angle 
between tlie heading of the robot and the road direction, Le. when 
B = 0 the robot is driving parallel to the road. Suppose the vehicle 
travels at a constant scalar velocity v. and that control is achieved 
by superimposing a steering rate, dB / dt (where t is time) on top 
of the forward motion. If there is no slippage. the following 
kinematic relationship will hold: 

(1 1 
dx/dt  = -vsin8 

The general problem for continuous road following is to find a 
steering function F such that by setting d8 /dt = F(x,B) :he 
vehicle approaches the road center. We tried several functions 
and noticed a number of recurring problems. Estimating 8 and x 
from the image requires both a precise calibration of the camera 
and accurate determination of the position and orientation of the 
road edges in the image. Both are difficult to achieve in practice, 
and the high noise level in these quantities made most of our 
functions unstable. A second problem led directly to our solution. 
The road image sometimes drifted out of the camera's 40 degree 
field of view, and in the next sampling period the program would 
fail to find a road, or (worse) identified some other feature, like a 
door edge, as road. The obvious solution was to servo to keep the 
road image centered. Experimentally this approach was a 
stunning success. Besides helping the vision, it seemed to be 
insensitive to even large calibration errors and misestimates of the 
road parametera 

The theoretical analysis was remarkably sweet also, and bore 
out the empirical observations. A first order analysis, where we 
assume the road image is kept perfectly centered, gives the 
relation 

(2) 
x / r  = sin6 

where r is the distance in front of the robot where a ray through 
the camera image center intersects the ground (i.e. the range at 
which we do our road finding). The parameter r can be changed 
by raising or lowering the camera, changing its tilt, or by using a 
different scanline as the center of the region in which road edges 
are sought. 

Equation (2) can be substituted into (1) to give 

(3) 
dx/dt  = - v x / r  

which can be solved directly, giving 

x = %e*w' 
(4) 

where xo is the initial value of x when t = 0, so to first order the 
vehicle approaches the centerline of the road exponentially with 
time. 

A more detailed analysis considers the actual servo loop 
behavior. The displacement of the road centerline image from the 
center of the forward field of view is proportional to 

(5) 
(sin8 - x / r ) / c o s 8  

Servoing the steering rate on (5) sets 
(6) 

dB/dt' = -g(sinB - x / r ) / c o s 8  

where g is the servo loop gain. The full behavior of the robot can 
be found by solving (1) with (6) simultaneously. These equations 
are made linear and easily solvable by the substitution Q = sin 8, 
giving 

(7) 
dx/dt  a *vQ 

dQ/dt = - g ( Q . x / r )  

By co-incidence or cosmic significance of all the servo functions 
we considered, only this one yielded a fully general analytic 
solution. 

The solution has three cases distinguished by the sign of the 

(8) 
expression 

g r  - 44 

In all cases the solution converges to x = 0, Q (and 8) = 0 
exponentially with time. When g<4v/r the convergence is a 
decaying oscillation - the sluggish steering causes repeated 
overshoots of the road center. When g>4v/r the solution 
contains a second exponential, and the robot approaches the 
road center more slowly. When g = 4v/r, the critically damped 
case, we have the fastest convergence and no overshoot, and the 
behavior is given by the equations 

(0) 

(10) 

x = e-hR/r(vt(%/r-o,,)+q 

o = (2vl/r (ao/' - Q& + O,J 

The gain sets the turn rate required of the robot. Note that to 
retain the critically damped situation while increasing v without 
changing g, it is necessary only to increase r, i.e. arrange to have 
the vision look further ahead. 

The method is successful for several reasons. It keeps the road 
in view at all times. Because the system always converges, e r r m  
in g or camera calibration do not jeopardize performance. 
Because the parameter being servoed is the most robust direct 
measurable, namely road position in the image, the noise 
problems of the other approaches are almost totally eliminated. In 
particular, 8 (or 9) and x though they occupy a central position in 
the theoretical analysis, need never be calculated in the actual 
servo loop. 

Conclusions 

We have developed a vision and control system for a mobile 
robot capable of driving the vehicle down a road in continuous 
motion. The system has beem tested on two mobile robota, 
Neptune and the Terregator. in both indoor (hallway and artificial 
road) and outdoor (asphalt paths in a park and cement sidewalk) 
environments. In our best run to date the Terregator traversed a 
20 meter outdoor path at 2 cm/sec. Image processing time has 
been reduced to 2 seclimage. 

Failure modes of our vehicle have included driving off the road, 
driving into trees and walls, and driving around in circles. Such 
failures were mostly due to bugs in our programs, imprecise 
calibration procedures, and limitations of current hardware (s.g., 
B8W camera with narrow angle lens). not fundamental limitations 
of the techniques used. 
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Future Work 

There are several areas that we plan to address. First is the 
construction of a true testbed. This involves mostly software 
engineering, such as cleaning up and documenting the interfaces 
between vision and control. This will enable us to try other vision 
methods, such as texture and color operators. 

Further work will require the use of a map, along with program 
access to a magnetic compass and a gyro. The map will list 
road direction, width, appearance, and intersections, which will 
provide strong cues to both the image processing and the 
navigation system. The compass, along with the map information, 
will help predict road location in the image. This will become 
increasingly important as we venture onto curved and hilly roads, 
and as we encounter intersections and changes in the road 
surface. 

The next step is obstacle avoldance, which will require limited 
3D processing. Projects in the CMU Mobile Robot Laboratory 
have already demonstrated obstacle avoidance with sonar [2] and 
stereo cameras [4]; we intend to integrate these into the testbed. 
Later work may add a laser rangefinder and programs to handle 
that data. 

Finally, as the testbed becomes more compllcated, eystern 
control wilt become a major Issue. We plan to work on a 
blackboard system with cooperating and competing knowledge 
sources. All the data, from the lowest level signals to the highest 
level models and maps, will be on the blackboard and available to 
all processes. 
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-4 Modificd Hough Transform for Lines 

Richard S. Wallace 
Department of Computer Science 

Carnegie-Mellon Univeristy 
Pittsburgh, PA 15213 

Abst rac t  

A new paranieterizntion for lines in images is presented 
with application to the Ilough transform. The modified 
ITotigh (Muff) transforill has several implementational ad- 
vanntagcs over the conve~~tional p-8 paramc.tcrization. The 
Muff transform paranieter space is better suited to coni- 
yuter graphics line drawing routincs. The Miiff transform 
rcquircs no tritnscendental function calls or table lookup. 
Thc relation between the tesselation of the parameter space 
and the resolution of the lines represented is discussed. The 
shapc of the Miiff space is amenable to compaction into a 
rcct.nngiilar array. The implementation of the Muff trans- 
form is prcscnted. 

Tlie lloiigh transform can be used to End lines in images's2. 
Jhcll edge elcnicnt in the pictiire votes for all of the lies 
that could possibly pews throng11 it. The voting takes place 
in a tw+diiiiensionnl yaraiiicter space, whcre each line is 
reprcsentcd as a point. This s p c e  is tesselated into a 
grid of rectangular cells, and cach cell acciiinulates votes 
for lines represented by valiies in that cell. In iniplemen- 
tations of the Hough transform the tesselated parameter 
spare is an ;rcciin~iilator array. To extract the lines in an 
image, the llough parameter space is searched for peaks 
which lie above some thresshhold: these are assumed to 
correspond with lines in the iniage. Two problems which 
arise in the iinplenie~~tation of the digital Hough trans- 
form are the selection of the Hough parameters and the 
choice of granularity of tesselation for the p'uanieter space. 
The usual paranieters selected to represent lines in Hough 
space are p and 0, where lines are given by the expression 
p = z cos 8 + y sin 0. These paammeters have the advantage 
over m and b in the y = mz + b  for111 that they are bounded. 
It. is ecuy to see that for an rectangular image extending 
froln (z,,,,,y,,,) to (zmar,ymaz) the values of p and 0 are 

0 < 8 < A, whereas m and b are unbounded. This paper 
presents a different bounded p.lrameterization of lines in 
an image and several advantages of this ncw representation 
over the p - 0 paranieters. 

bounded by - d m i  < P < J z L z  + Y ? L  and 

The new Hough line parameterization is illustrated in fig- 
ure 1. We assume for simplicity that the iiiiagc is bounded 
by a rectangle parallel to the 2- and y-axes <and extend- 
ing from the origin to some (z,,,, y,,,). A bounding box 
extending around the image provides the basis for the pa- 
ranieterization. A line passing through the image is pa- 
rameterized by the two points where the line intersects the 
perimeter of the bounding box. These points are given by 
their distance along the perimeter of the bounding box, 
where distance is measured counterclockwise along the box 
starting at the origin. Thus a line has two parameters, s1 
and 82, representing the two points where the line inter- 
sects the box. To preserve uniqueness of the representa- 
tion, we assume 81 < 82. The range of possible value are 
0 5 81 < 82 < 2(2,,= + ymar). This new Parameterization 
is called the Muff transform. 

An immediate advantage of the Muff tr,ansforni is purely 
graphical. The transforiii parameters easily map back into 
points on the image's bounding rectangle. The line repre- 
scnted by (81, s2) in figure 1, for example, passes through 
the iniage at  ( s 1 , O )  and (2zmaZ + gnlnl - 8 2 ,  ymaZ). These 
points can be passed directly to a coniputer graphics rou- 
tine to draw the line. No clipping is needed. Thc cal- 
culation of the endpoints for a line p - 8 requires more 
work. First, the peak value indecies in the ;ulcuniulator ar- 
ray niust be mapped back into tlicir corresponding p -- 8 
values. These are then used to write a line equation of the 
form Az +By + C = 0, which then niust be solved for z 
and y at each side of the rectangle. The Muff representa- 
tion requires at most two subtractions to deterniine both 
endpoints. 

/ 
2 xmax + 

2 ymax 

' Figure 1. 

CH2145-1/85/~/0665$01.0001985 IEEE 
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Implenientations of the Ilough transform for lines can suffer 
from two problems related to the use global edge informa- 
tion in the image to find local lines. First, edge elements on 
colinear but not connected line segments vote for the same 
line. Second, the transform of an image with many noisy 
edge points or many irregular blobs may contain spurious 
lines linking distant edge elements because the thresshhold 
on peak detection in the Hough space must be set low in 
order to obtain any lines. The pure Hough transform does 
not preserve information about which edge points voted for 
a particular line and hence the transform cannot find di- 
rectly the endpoints of line segments. One obvious solution 
is to store in each bin of the Hough space not only the count 
of edge elements voting for a particular line, but also a list 
of the pixel coordinates of the edge elements themselves. 
Later processing can then fit line segments to connected 
sets of pixels in peak Hough bins. Another approach is 
to divide the image into a number of smaller rectangular 
regions, and compute the transform for each. The Muff 
transform is best suited to the latter. 

The transform is implemented by the following procedure. 
Given an edge element (a, b) find the point (e, d )  on the 
bounding box so that (O,O), (a, b) and (c ,d)  are colinear. 
(c,d) is parameterized by a value s,,,. Then for each 81, 
0 < 81 < 8,,,, and the point along the box associated with 
81, there is another point given hy 82 so that 81’s point, 
(a, b) and 82’s point are colinear. The calculation of 82 is 
straightforward and depends on which side of the rectangle 
a line intersects. In any case the computation of 82 from 81 
and (a ,b)  reduces to the problem of intersecting a line in 
two-point form with a horizontal or vertical line3. Thus an 
advantage of the Muff transform over the p - 8 transform is 
that no transcendental function calls are needed. The need 
for actual transcendental function calls can be eliminated in 
implementations of the p - 8 transform algorithm by table 
lookup, however. The p-B transform requires only divisions 
and no transcendental function calls or table lookup. 

The choice of tesseslation for the parameter space affects 
the resoltion of the lines which can be found. Intuitively, 
the h e r  the tesselation, the finer the accuracy of the lines 
which can be represented. One measure of resolution is the 
distance measured between two lines where they intersect 
one side of the image. For the z-axis, let’s call this distance 
Az. Figure 2 shows that for the p - B representation the 
resolution Az is a function of p. The furtber the line from 
the origin, the coarser the representation. In the Muff rep- 
resentation, however, the resolution Az is constant around 
the perimeter of the image. In all fairness, the angular 
resolution of lines in the Muff representation is finer near 
the comers than near the center of the image. The Muff 
representation, however, caputures exactly the set of lines 
that can be drawn by computer graphics from one point on 
the rectangle to another, up to the resolution of the tes- 
selation. The absolute upper bound on the useful she  of 
the Muff parameter space is (Zmo. + Y ~ , . ) ~ ,  where Z,a= 
and ymar are respectively the number of pixels along the 
z-axis and y-axis sides of the image, because no more lines 
than this number can be drawn by graphics from a pixel 
on one side to a pixel on another side of the image. The 
p - B representation will not represent thii entire set or rep- 
resent some of its elements redundantly, depending on the 
granularity of the parameter space tesselation. 

A peculiarity of the p - 8 form for the Hough space is 
that, although it is bounded, it has an irregular shape (see 
fig. 3). Not all pairs of ( p , B )  in the rectangle given by 
- &fin + Y:,,, < P < dzLa, + Y $ ~ ,  and - ~ / 2  < B < T 
represent possible lines in the image. If minimizing stor- 
age were an issue in a Hough transform implementation, 
the compaction of the p - 8 space would prove difficult. 
Figure 3 shows the set of possible values in the Muff r e p  
resentation. It is clear how these could be compacted into 
a rectangular array if necessary. Also, it is simple to write 
an algorithm which efficiently scans only the Muff array’s 
possible cells for peaks or local maxima. For each row in 
the accumulator array, the cells can be scanned from left 
to right starting at the first possible value in that row. 

AX AX 

Figure 2. In  the p-9 representation the resolution 
of  lines that can be represented is  a function of 
p and 8. This diagram illustrates two lines that 
appear adjacent in the tesselated transform space. 
The distance between these lines where they intersect 
the x-axis grows as p increases. 

AX 

In  the fluff representation the resolution of lines 
represented i s  constant throughout the space. 
The muff representation captures exaclty the set 
of  lines that can be drawn across the rectangle 
by computer graphics. 

J 
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The Muff transform has been implemented and tested on 
images of roads. In the road following application, it is not 
usually necessary to find the endpoints of line segments in 
the image. It is the road edges which are important, and 
these can be assumed to extend from one side of the image 
to another. Thus neither the technique of storing pixel 
locations in the Hough accumulator array nor the method 
of dividing the image up into smaller rectangles is used. 
Road edges tend to be strong and extend over the whole 
image, so the Muff transform picks them out easily. The 
design of special purpose voting hardwarel has made the 
use of the Muff transform more practicable for real-time 
vision tasks. 

[ 11 Duda, Richard 0. and Peter E. Hart "Use of the IIoogh 
Transform to Dctcct Lines and Curves in Pictures" CACM 
vol. 15 no. 1, January, 1972. pp. 11-15. 

121 Ballard, Dana H. "Generalizing the Hough Transform 
to Detect Arbitrary Shapes," Pattern Recognition vol. 13 
no. 2, 1981. pp. 111-122. 

[3] Bowyer, Adrian and John Woodwark A Programmer's 
Geometry, Butterworths, 1982. 

141 Sher, David and Tevanian, Avidas T h e  Vote Tallying 
Chip: A Custom Integrated Circuit", Custom VLSI Con- 
ference, Rochester, May, 1984. 

P 

Ftgure 3. The set of possible values of p and 8 
for lines passing through a rectangular image 
defines an irregular shape i n  the p-9 plane. 
The irregularity makes i t  di f f icul t  t o  compact 
the useful values into a rectangular array. 

s4 I 

sl s2 s3 s4 

S l  

s2 

s3 

The set of plausible pairs of parameters i n  the 
Muff space can be easily compacted into a 
rectangular array. I n  this diagram, s 1 = xmax 
s2 = xrnax+ymax, s3 = 2xmax+ymax, s4  = s(xmax+ymax). 
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Progress in Robot Road-Following 

R. Wallace, K. Matsuzaki, Y. Goto, 
J. Crisman, J. Webb, T. Kanade 

Robotic$ Institute, Carnegie-Mellon University 

Abstract 

We report progress in visual road following by autonomous robot 
vehicles. We present results and work in progress in the areas of 
system architecture, image rectification and camera calibration. 
oriented edge tracking, color classification and road.region 
segmentation, extracting geometric structure. and the use of a 
map. In test runs of an outdoor robot vehicle, the Terrgator, under 
control of the Warp computer. we have demonstrated continuous 
motion vision.guided road4ollowiny at speeds up to 1.00 km/hour 
with image processing and steering sew0 loop times of 3 sec. 

1. Introduction 
Research in robot navigation on roads is part of the Autonomous 

Land Vehicle Project (ALV) at Carncgie-Mcllon University. Broadly. 
our work is aimed at creating autonomous mobile robots capable d 
operating in unstructured environments. To this end, our research 
prograni involves a variety of sensors, programs and experimental 
robot vehicles. This paper Is focused on recent progress in 
detection of and navigation on roads, using a TV camera as our 
sensor and a six-wheeled outdoor autonomous robot, the 
Terregator 171, as our test vehicle. We present results and work in 
progress in tho areas of system architecture, image rectificatbn 
and camera calibration, oriented edge tracking, color classification 
and road-region segmentation, extracting geometrlc structure. and 
the use ol a map. 

For robot navigation o! roads, we use a single television camera 
as our prlmary sensor. In thls appllcation, the monocular TV 
camera is considered superior to ranging sensors such as taser 
scanners or sonar for three reasons. First, roadswe are interested 
in lollowing do not necessarily have prominent 3.dimendanal 
features at their shoulders: mast often there is no depth 
discontinuity between the road surface and the surrounding 
roadside. Second, we have developed one steering strategy that 
servos the vehicle based on measurements in the image plane 
itself, rather than an measurements in a world cooldinate frame. 
Third, we have so far relied on a local ground plane assumption, 
that the ground around the vehicle Is locally planar, so that any time 
we do need to transfornr imago points to world coordinates, Ule 
transformation is trivial. 

To attain the broad gods of our project, we haw, split the 
research into two efforts. The goal of the first effort Is to develop a 

rod-follo$ing system which uses a map to navigate around a 
highly structurM and vkually simple network of sidewalks on the 
CMU ampus. The god of the socond effort is to devslop vision 
routines for road-following in a less structured and visually more 
complex environment in a nearby park. 

2. Sidewalk Navigation 
The sidewalk environment at CMU is a oetwork of mostly straight 

concrete pathways joined at intersections of various shape. The 
sidewalks have fairly uniform color and texlure and are always 
surrounded by well-groomed grass, giving them consislenl high. 
contrast edges. The goal of our research in this environment is to 
develop algorithms for geometric reasoning, shapematching and 
navigation with D map. 

2.1 Map and Blackboard 
The overall system architecture to which a vision.based road. 

following subsystem Interfaces is a blackboard [5],  a shared 
memory structure containing a local map of the robot's 
environment. Other sensing processes. such as those interpreting 
range data, and other knowlcdgc-based processes, such os those 
updating the local map, are also tied to the blackboard. 

2.1.1 Dlalogue Model 
The road-lollowing subsystem consists of four modules; Vision, 

Map, Navigator, and Motion Control. These modules communicate 
wlth each other by sending and receiving tokens through the 
Blackboard. In selecting this decomposition of our system into 
modules, we followed the principle of inlorrndon hiding. The 
Vision module contains expertise neded for extracting features 
froin images. The Map modulo knows the structure of tho robot's 
envlronment and its position. The Navigator is responsible for 
planning paths. The Motion Control module insures that the vehicle 
executes navigation commands. Thus each module has a different 
domain of expertise. For.erample the Vision module does not know 
the robot's map or route. That information is kept hidden and is 
used only by the Map module to make predictions to the Vislon 
module. 

Communlcrrtiop between tho various modules looks like a 
dialogue. Figure 1 shows the dialogue model of the road-foliowing 
subsystem. Thk model reflects the information hiding principle of 
thu clwign. In 11ae exi\laple, the Map hides lnformatlon from the 
vislon modulo, ex- for the facts which arc relevant for the 
current scene. The Map tells the Vision module only about the 
predictions it mukes for the current scene. 

fioiwis ~ \ n m v  moo). NWA on(cr~o.  3507. momred bv urn A* r- A- Udna Predicted object, Vlsion sees mid makes the tgken, Detected 
haws Hie shamq of obiects in front nl the vehicle. 



Position. Using Ciirrcnt Position and the map data, the Navigator 
sul)plius the token. htotion Corninacid, which tells how to drivc the 
vchiclc. Using' Morion CotilrtrarKt, the Fiotion Control tlrivos Il\C 

vehicle. 
I2 R2 I3 

I1 R4 I4 
Uwr:Robo1BatmadR1.3mnasfmrn 11. 
Navigate to R3.2ma(artmm tl 
Map: Vim will am atmighl md md cross-type intscssCfion. 
Thambrhthebltk ... DHacttha. 
Viaion: OL. I found (han. Thdr ahapas mu ... 
Navigator: Drive on 125 IIIetWS md lum to tight Bo dI%WOS. 
Motion Contol: Oh. I d b .  (vehkb -) 
Map: V i  will am straight md. Tha mlor On the blt k ... 
wit. 

Figure 1: Dialogue Model of Map Interface 

In the roacl.following subsystem, two kinds of coordinate systems, 
World Coordinate and Vehicle Coordinate, are used. World 
Coordinate is an absolute coordinate. The map data is writter) with 
World Coordinate. The Vehicle Coordinate frame, which is fixed on 
the vehicle, is used by Vision to represent Detected Object, 
because i t  does not know where the vehicle is. Coordinate 
transformation is done when necessary. 

2.1.2 Predictions 
The map module supplies predictions to the vision module. Tho 

map data consists of two kinds of maps, a topdogical map and a 
geometrical map. The topological map stores the topology of roads 
and intersections. The geometrical map stores the shapes of roads 
and intersections. 

With these map data, the Map predicts the kinds, the shape and 
tiic image features of objects whlch shan be seen In a camera view. 
The purpose of detecting objects is to navigate the vehicle. The 
detail of an object shape is trivial and therefore, not necessty lor 
navigation. The Map creates inferesf segments, which are the 
primary &go line segments of roads and intorsoctions. The 
interest segments are enough for Map to decide the vehicle's 
Current Position and the obiect shape necessary for navigation. 
They are likely to be the edge segments most easily detected by 
Vision, and therefore are included in the Predicted Obiect. An 
interest segment is also a key for matching. We discuss this in detail 
below. 

2.2 Extracting Geometric Structuie 
Our Autonomous Land Vehlcb has to not only foltpw single road, 

but also to detect an iotersection and turn into one of the 
intersacting roads. In this case accurale shape of roads and an 
intersection has to be extracted. This isdifficult +us0 mrlatlons 
in camera view and imaging conditions result in variations in the 
shapes detected. Furthermore thero are many factors which make 
it difficult to dctect a ropd shape, such as cracks, dust, gnps 
between concrete slabs. They are not nobe but physical 
substance, tliereloto men It region cllrrification is done perfectly, 
they possibly remain. To solve these problems, we impkmenled 
tvro procedures. First, the imaga is processed to eliminate hese 
disturbing factors and to'reprdim the road region. Aftor that, 

using knowledge from map, interest segments, which are key to 
decide an posilion of an inlersectlon, are found. 

2.2.1 Reproducing tho Ropd Region 
Jo eliminate the disturbing factors, two phase imago processing 

IS done; extracting higl\.conlidenco road regions and then 
connecting them. 

The result o( region segmentation includes fair types of 
segments: 1)nctirnlly road and classified as rcod, 2)nctii:illy not 
road and classilierl as not road, 3)actually fond hut classified RS not 
road, 4)actually not road but classified as road. At the lirst image 
processing phase, the program selects a conservative classificatiQn 
threshold so 11131 only ideal road surfaco is classified as road. This 
result includes much type 3 region but little type 4 region, and 
region classified as road is confidently road. Then, to cover type 3 
region, we did a combination of reducing resolution and 
expanslon/contraction of image. 

.The expanc,ion/conlraction method is known 85 D good method 
to eliminate gaps or small holes, but calculation time IS long when 
the size of defects are large nnd large number of 
expansion/contract&n is needed. We have to use this method In 
real time during vehicle running. So, we reduced resolution before 
expansion/contraction. This method absorbs several pixels into 
one pixel, and decides the the new pixel value by a threshold on the 
proportion of original pixels dassified as road to nonroad. We use 
a reduction ratio of 8'8 to 1 pixel followed by 1 or 2 itorations of 
expanslon/contraction. This obtained both sufficient shape 
estimates and quick calculation. 

2.2.2 Polygon Fittlng 
To recognize an Intersection from the reproduced shape, we fit a 

polygon to tho intersection contour. Shape analysis based on 
polygon is much quicker than one based on whole pixels or run- 
length data. The processing includes following steps. 

1. Extracting Stralght Line. Most  of roads Imaged are 
straight but i f  they include curves, these can be 
represanted as a set 01 segmented stralght lines. So, 
we apply a polygonal approximation lo original precise 
polygon to extract major straight components. Tho 
tolerance is set so that the lnterost segments con be 
picked up well. 

2. Labeling Lines. We have developed a program which 
labels lines. At first,this program idenlilies viowing 
frame edge lines by searching lines which are 
cantshed in the Coordinate of vbwing frame. Sccond, 
this program clayifies lines by angle and gives same 
labels for the sirniiru angle lines. Tilo Map tnodule 
produces also the description of interest w m e n t s  
which shows the segment attribute and the relationship 
between segments. Using this description, this 
program can match the classified lines to the prwlictad 
interest segmentseasily. The list showing the detected 
seginents and their correspondence to the predicted is 
returned to the Map module. Understanding of wliole 
gsomctric strucluro Is done by  tho Map in next map 
matching step. 

2.2.3 Map matching 
With the result of the Vision module and the object prediction, the 

Map module can know the names and the shapes of the detected 
objects. In order to wHmate the vehlcle current position, the Map 
module selects crossing lines In the detected objects and 
corresponding. lines in the map data, and calculates coordinates 
transformation which can match them. In this stage, when only 
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straight portion of the road is in the view frame, the measurement 
from the Vision module' can constrain the vehicle position and 
orientation only perpendicular to the road. In such case, the 
location along the rood is calculated using the vehicle motion. The. 
positional error which might accumulate along the path will be 
corrected as the vohicle approaches to the intersection and can 
see tho road edges in multiple orientations. 

Figure 2 shows a result of CMU campus sidewalk run. Along the 
vehicle approaches an intersection, the vision module detecb 
different parts of road contour which are predicted as major line 
segments by the map module. 

sinoath and featureless to cracked and pot-holed, and in color from 
Mue.gray to black. The shoulder around the path consists mostly 
of grass, but there are also some sections of dirt and rock. 
Seasonally, both road and shoulder are obscured by leaves, snow 
or Ice. Trees and their shadows are also present. Tho main goal of 
our research in the park environment is to develop vision aigorithnis 
capable of steering the vehicle reliably in this unstructured 
environment. 

3.1 Road-Edge Following 
We have developed a technlque for tracing the edges of a road 

using an oriented edge detector. Like lhe tracker discussed in (9) 
our algorithm begins with an estimate of the start position from 
which is the edge is to be traced. Unlike that tracker, ours 
integrates or smooths the edge along the edge direction. 
Integrating the signal along the direction of the edge has the effect 
of smoothlng and reducing noise content. Then, the position of the 
edge Is localized by matching an ideal step edge model with the 
one-dimensional cross-section. 

Oriented edgo detection Operators have been explored in 
computer vision, with perhaps the best results found in [2]. We 
chose on oriented operator since it is more reliable than an 
unoriented one. For exaciiple, i f  the road in the image is oriented at 
45  degrees, then a conventional edge detcclor will find gradually 
sloping intensity values, see figure 3. However, i f  the same detector 
is oriented at 45 degrees, then the oriented detector would see a 
sharp change in Intensities, and thereforo, the edge location is 
detectable. We have Implemented edge operators at a number of 
different orientations so that we can obtain a reliable response 
regardless of the orientation of the road in the Image. 

Road Image and Edge Profile 
Edge Operator 

Nondinctbnsl Operator 
1 

Oriented Operator 

Figure 3: An Oriented Edge Operator 

3.2 implementation 
The edge tracer constructs il list of road cdge points in an image 

given a position (rot c d  and orientation. 0, of a road edge. The 
oriented edge operator Integrates the signal along its columns. If 
the operator docs not align with the Image columns, then i t  selects 
pixel values nearest to the position of its columns for the 
summation. This one dimensional result of the edye operator is 
called the edge slgnafure 01 edgo prollle. 

Then a new road edoe point, (r,, CJ is predicted to lie a distance 
from (6, cd at an angle of 0. A search window is created cantered 
at ($, c,), oriented at the angle 8. The edga operator creates an 
edgo profile in the search window. The road edge, (r,, c,), is 
cltttcnined to be where Hie M Meal step d g e  and Ilia window 
pmHk have the bert correspondonce. The orientation of,the road 
b recalculated b3 b I arctml(c, . e, , ,  ri . r$. This algorithm la 
iterative if (r,, cI) -> (q l .  c~.~). This process IS repeated until the 
search window falls outside of the image bounds. 
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Figure 4 Road Edge Tracking with an eiented Operator4 
3.2.1 Results 

The edgo tracer has been tested on 480 X 512 grey level images. 
The dimensioiis used for the search window were 84 rows by 128 
columns. Figure 4 shows a typical result of the edge tracor. The 
initial position Is given near the bottom of the image and the 
oriented edge detector proceeds upward the Image. The larger 
boxes outline the search windows, and the smaller, inner boxes 
show the positions of best correlation. The edge profiles nre shown 
inside the search windows. 

We have devetoped a vehicle driver system based on orlentod 
edgo tracing. The Initial position nnd orientation of the left and 
right road edges are input to the system and u s d  for the first 
iteration of the oriented edge tracer. After finding the road edges In 
the image, they are back-projected to the ground plane. The 
vehicle motion between images is used to locate the prevloudy 
found road edges relative to the vehicle. Then the previous edges 
are projected in the new image. These edge locations are used for '. 
the position and orientation estimatlons required for the edge 
tracer. The 30 projection of the road edges also allow the right and 
left road edges to be tested for parallelism and proper separation. 

This system works well on images where there Is a'fair amount of 
contrast between the road edge and the road shoulder. We have 
been able to drive our vehicle quite reliably on gently curving roads. 
However, we have had difficulty when M edge of the r d  lies 
close to obstacles or when shadows lie on the road. The edge 
tracer can locate a road edge point In under one second. The 
system can drive the vehicle at speeds up to 0.3 meters/sec. 

We are currently working pn testing the road edges found by the 
edge tracer for geometripi consistency. If the right and left edge3 
of the road are not parallel and the proper width apart, then the 
syslem ii~ust decide whldi Mlgo should ba used to drive the vehicle. 
Measures of evaluation basc3d on the height, width. smoothness, 
nnd consislcncy are currently being tested. if  these measurn are 
roliable, tlio system should be oble lo evnluate its performance. 

3.3 Road-Region Segmentation 
fhe second major approach to road feature detection is roglon 

segmentati0n. This diffys from the &geebased procedure In that 
t ie  road itself is extrwtcd, rnthw than Hs contottn. As WO 
mentloned earlier, the 0,dge information can be used to and 
localize the rcgion hypgthesis. Region c ladHca~m is biued On 
wignment of region l+bels to all plxala In M Imago. where Ill0 
assignment depends on properties of that @ x d  such as b r lgh lm,  
texture and color around that pixel. Our work is focumscf on cd0r 
classilicatipn. 

3.4 Color 
Early in our work on visual detection of roads we recognized the 

impoflance of utilizing color vision sens~rs. We found in black- 
and-white images of our test site that the perceived intensity of the 
asphalt road differed very little from the intensity of Ihe surrounding 
grass, although the color was very different. Graylevel histograms 
of the images were either very flat, or they had peaks caused by 
shadows and hiohlights. rather than road or nonroad features. 
Histogram-based segmentation techniques and edge operators 
failed for the same reason. We considered texture energy 
measures to segment road and grass, since the grnss has more 
edges per unit area, but the noise introduced into the images by an 
Inferior N transmlsslon system confounded attempts to measure 
high-frequency texture information. Even in the presence of hlgh 
spatial frequency image noise color information is retained. 

3.4.1 Pixel Classification 
In color Images each pixel (x, y )  has an associated color vector 

(R(x, yl. G(x, yl, Bfx, y l ) .  The set of all possible (F3.G.B) values forms 
a color cube RGB. The RGB cube can be divided in various ways 
8~ that plxets having certain color vector values can be classified as 
road or n o n r d .  A simple region classification involves selecting a 
sample road region and grass region from a training image, and 
using the average values (IR,,,,+tG,,,,dpt3,0sJ and 
fpRQmpG,,,ou.p81S,Ia,J as ideal feature points in RGB space. i f  
the covariance matrices 2, and XWw are also measured then 
the colors can be model3 as trivariate normal distributions 
(TVNDs). The result of a TVNO model is to divide color space into 
regions separated by quadratic surfaces. Figure 5 shows a result of 
classifying II sequence of rectified road images from tile park site. 

3.4.2 Color variation 
Unfortunately the color of road and shoulder do not remain 

Constant from one image to the next. Variation in calor arises for a 
variety of reasons, such as Illumination changes (e.g. siiadow 
versus direct lllumlnntion) and material changes (e.g. dry asphalt 
versus wet. green grass versus yellow). Additionally, our test 
vehicle k equipped with a TV broadcast station, tlirough which 
Images are transmitted to a fixed-basecl computer. The chromatic 
component of the TV signal varies dbpending on such factors a 
tho position of the robot vehicle with respect to the TV rccelver. 

We have begun to explore the wo of adaptive color models to 
reduce the problems arising from color variation. 

3.4.3 Shadows and normafired color 
Shadows au9e many of the failures of our vision system. Edge- 

based schemes for detecting road edges aro fooled by high. 
COntra+t shadow eclgc.3, as shadow edges often have a greater 
briylitness-to-darkness ratio than material edges. Even region 
classification schemes based on color are confounded by shadows 
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Ilecause images of objects in shadow contain color values 
rlusterecl around different points in RGB space. 

Consider an ohject imaged with color C, in a sunlit part of the 
scene and color C2 in a shadowed region. To a lirst approximation, 
C, 5 kC, for sonie constant h. This is because lhe object reflects 
the same color in shadow, it is just imaged at a different intensity. 
Thus a preprocessing step Ls to normalize all the color vectors of an 
image, by transforming each point (Rh .  y). G(x, VI. Bfx, Y)) Into 6 ( X ,  

y). g(x. yl. b(x. y N  such that 

Then all the color points lie on the plane R + G + 8 = 1. 

Although the transformation from RGB to rgb is sufficient for 
erasing shadows in many cases, it is not alw3ys successful. There 
are two factors limiting its usefulness. First, the dynamic range of a 
IV camera is not very large (a inaxlmum brightness:darkness ratio 
of 73) compared with film (a maximum brig1itness:darknesa ratio of 
203) or the human eye (a maximum brightness:darkness ratio of at 
least 1ooO:l). Thus TV images containing of shadow4 reglons 
may have splotches of maximum brighl or dark, in which all spatial 
detail and color information is lost. Calor normalization will not 
work in these areas. The second factor is less important, but eMiw 
to work around. Nonshadow arcas in our outdoor road scenes are 
illuminated by direct sunlight, which has A more-or-less constant 
spectral distribution. Shadowed rqions are illuminated by skylight 
and by sunlight reflected off surrounding objects (such as tree 
leaves and trco trunks In our case). Thus the rellected color of a 
shadowed part of a region ts ngt quite Ihe same 85 the color 
reflocted from that part of the region in direct sunlight In practice 
the difference Is small enough not to matter for our classification 
tcchniques. 

Color normalization reduces the dimensionality of calor 
classification to two. in which cam a bivariate normal distribution Is 
used as a ccior faature model. 

R / ( R + G + 8 ) .  g G/(R+O+B) .  b = B / ( R + G + B ) .  

3.5 Image Rectification 
We have implcmented programs for nonlinear warping of an 

perspeclive of a road to trpnsform it into B view like what we would 
see i f  we werc flying over the road and looking down on it. This 
Iransfwmation. called imago rccfilicefion, produces n maplike 
iniayc in which the structure of Uie road is mnde explicit. Tho result 
is an imago which is in vehicle coordinates and can bo used for 
camera calibration, debugging of ground-plane oprutlons, 
detection of groundeplane featirres, and display of planned robot 
paths. 
3.5.1 Dofinition 

Figure 6 shows the proem of image rectification. It is most easily 
described by considering a rectangular grid projected onto the 
ground plane. Grid poinls a n  be considered as pixels of the 
rectified image. Rectification consists of back-proiecting the grid- 
points In the ground plane to the original image, in order to see 
what intensity value .should be placed at that point Once the back- 
proiection is computed, .it is stored as a lookup table 60 that 
subsequent images can be rectified quickly. 

Figure 7 show the process of image rectification for a wide-angle 
fish-eye lens. This lens is superior to a standard reflex lens (which 
we usually model as a pin-hole) for imaging the road,.because the 
road always remains In Jew even when the vehkle makes ahwp 
turns off the centerline. The point (-1. i4 j A )  on the ground plane 
is first projectd onto the unit aphere centered at tho origln, then 
pefpondicularly to the Imqe  plrw which b tangent to t h ~ ~  .t 
(0.0.1 ). The overall traqlormattod b 

c i & p ( - I : ~ " ) / ~ j ~ "  

This transformalion is more useful i f  it can be done quickly: we 
anticipate carrying out this transformation on the CMU Warp 
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Figure 6: Image Rectification lor Pin-Hole Lens and 
Determination of Camera Tilt 
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Figure 7: Image Rectification for Fish-Eye Lens 

3.5.2 Camera calibration 
The image rectification process (for tho pin-hole Ian3 model) a n  

be used for camera calibration. By "Camera catibration" we mean 
derlving.the necessary parameters for transforming image points to 
the local ground plane around the vehicle. By intersecting u pair of 
lines in the ground plane wound the vehicle D point on the horizon 
(vanishing line) can be detected. Note that the ecfual horizon need 
not be In view, only a pair of lines in the local ground plane. In fact, 
the lines necd only lie In any plane porallel to the ground plane, 
except the planes containing the camera axis. In practice we use a 
pair of forward-polnting straight metal poles bolted to the side of 
the Terreyator as a calibration "hood ornament". We? hand-select 
these points from a coiibrntlon Image. 

Once the horizon line Is known, the tilt of the camera is easily 
derived as in fiiure 6 GMn the tilt /? of the camera and an estimate 
of camera focal length I, the transformation from ground piane 
points la ImaQe points is obtained directly as In figure 6. 

A second aspect of camera calibration is determining the x and y 
scab factors for the image, where x indicates distance along an 
axk parallel to ne vehicle forward direction and y is distance along 
an axis parallel to the wheel rotutlon axes. To mensure these 
parameters, we place meter sucks on the ground plane in camera 
view, digitize and rectify a bat Image, and then measure the lengths 
of the meter stkks along lhe x and y dimensions. 

In tost runs of an outdoor robot vehicle. the Terregetor, under 
control of the Warp computer. we have demonstrated continuous 
motion vision-euided road-followine at speeds UD to 1.08 kmlhour 

3.6 Warp Runs 

- .  
where A is the rectified-@aOe nnd C Is the &gin& image. with image probsina and 8teering servo loop limes of 3 sec. 
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3.6.1 Wnrp Hardware Description 
The Warp machlne has three cqmponents: the Warp processor 

array, or simply Warp. the interface unit, and the host, as depicted 
in Figure 8. We describe this machine only briefly here; more detail 
is available separately [ 11. The Warp processor array performs the 
bulk of the computation:in this case, low-level vision routines [2]. 
The interface unil handles the input/output between the array and 
the host. The host has two functions: carrying out high-level 
application routines and supplying data to the Warp processor 
array. 

The Warp processor array Is a programmable, one-dimensional 
systolic array, In which all cells are replicas of each other. Data 
flow through the array on two data paths (X and Y). while addresses 
and systollc control slgnals travel on the Adr path (as shown in the 
Figure 8). The Warp cells are specialized for floating.polnt 
operations. The data path of a Warp cell is depicted in Figure 9. 
Each cell contains tvco floating-point processqcs: one multiplier and 
one ALU [a]. These are highly pipelined; they each can deliver up 
to 5 MFLOPS each. This performance translates to a peak 
proccssing rate of 10 MFLOPS per cell or 100 MFLOPS for (I 10-cell 
processor array. To ensure that data can be supplied at the rate 
they are consumcd. an operand buffer is dedicated to each of the 
arithmetic units, and a crossbar is used to support high Intra-cell 
bandwidth. Each Input path has a queue to buffer input data A 
4K-word memory is provided for resident and temporary data 
storage. 

As address patterns are typically datalndependont and common 
to all the cells. full address generation capability Is factored out 
from !lie cell architecture and provided in the interface unit. 
Addrcsscs YO gcncrattcd by the Interface unit and propagated from 
cell to cell (together wlth the control signals). In addition to 
generating addresses, the interface unit passes data and results 
between the host And the Warp army. possibly PCrfOrmIng SOme 
data convcqion in the process. 

The host is a general purpose computer. It is rosponsibk for 
high-level application routines as well as coordinating dl the 
peripherals, which might include other devices w c h  as the d?gltlzer 
and graphics displays. The host has a large memory In whlch 
images are stored. The% images are fed ttrrouoh Warp by the hat, 
and result images trom Warp are stored back into memory the 
host. This nrrangeincnt is flexible. It allow the host to do tasks nQt 
suited to Warp, including lowkvel tasks, such as initializing an 
arcay to zero, as well as higher level tasks, such as processing a 
histogram to determine a threshold. 

3.6.2 Warp Road Following Algorithm 
The Warp-implemented [oad following dgorithm is very simple, 

but proved to be remarkably robust. The algorithm Is region-based; 
i t  searches for the road asa bright region In the blue spectrum of a 
color image. A 100 x 512 band of the Image is taken about halfway 
down the image. The algorithm then works as fOnOWS: 

1. Blue Filtw. The @lor image is flltered by digitizing 
only the blue band. pue was chosen because blue is (I 
strong compqnent h the color of the roads we are 
driving on (asphalt concrete), but less strongly a 
component of the &&ground (generally gmS& 

2. Edge-preservlng 8moolhlng. Thls iS a MloOthlnQ 
operation which avoids smoothing across edges It b 
the algorithm E G P R h  the Spider subroutine libnry (41, 
lmploment6d on W w .  The rlQorithm 1.krr 5 x 6 
window around fuch pixel and chooses nine 
subwindows In the b x 5 window. The subwindow with 
smallest variance if chosen, and tire central pixel Is 

I l l -  dl 

I WARP PROCESSOR ARRAY I ,--.. 
Figure 8: Warp machine overview 

n . x t  

I I .  d l  

Flgu re 9: Warp cell datapath 

replaced’by the mean of this window. Two passes of 
this algorithm are executed. The effect Is to remove 
noise from Ute Image, especially noise from the poor 
quality of the TV reception In some cases. 

3. Hittogramming. A standard histogram Is taken on 
the Warp machine. 

4.Threrhold solectlon. The histogram is used by the 
Sun 120 to select a threshold. The threshold is 
selected by darting at the 50th percenlile level In the 
histogram and then finding a local minimum by 
comparing adjacent 3-element averages of the 
histogram. 

5. Blnarltation. A gray value table translation table Is 
constructed by the Sun using the threshoki, and the 
Image In binarlM using this table on Warp. 

&Region smoothing. The resulting binary Image Is 
once again subiected to two passes of edgeweserving 
smoothing. The Idea here is to remove smell cracks In 
the road, and to diminate small regions of ones in tho 
background. Edge-preserving smoothing was chosen 
for this step Instead d a more traditional operation, like 
hrlnklng and growing, bocause the edge-preserving 
filtering program was available while the (simpler) 
binary operator proom was not. 

7. Blob dotoctlon. At this mint the road is a region of 
sunounded by a background of zeroes. Ten scan 

llnw, ton row aput, are Wkwt from tho lmagq 
and each it examlnod to find the longest continuous 
sequence of ones. Each Scan line thus defines a left 
and rinht road edge. The left and right edges are 
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averaged together individually to find the estimated 
road edges. An earlier approach was lo find the left 
edge by finding tlie first long sequence of ones moving 
to the right from the left side of the image and the right 
edge similarly. This did not work BS well as the second 
approach, since the vehicle tended to steer into the 
center of forks in the road. 

8. Steorlng. Our servolng strategy Is to steer the vehicle 
to keep the center of the road centered In the image. 
Basically we start with a large (SI2 x 512) image. array 
and reduce It IW quickly as possible to a polnt fx. y). 
This is the point considered to be the centar of the road 
some fixed distance in front of the vehlcle. It is also the 
point to which the vehicle steers. Assuming that the 
center of the Image is the point (0, 0). the stcering 
command is to turn left or rlght at some d d d l  - yx 
where y is a gain constant related to the distance 
ahead imaged and to vehicle speed. dddf Is rate of 
tiirn of the vehicle (giving path curvature) in degrees 
per second. See [6)for dotails. 

3.6.3 Hardware Configuration 
In addition to programming M efficlent road following algorithm 

on Warp, we have made improvemenb in our video transmWon 
system and vehicle Interface that have increased the reliability of 
our system and further reducted time between image digitizations. 
Time reductions between in the imago processing cycle increase 
the servo n t o  of the vehicle steering control loop, and enable the 
vehicle to drive at higher speed. 

We chose lo digitize tho Image of tlie blue band only, in order to 
obtaln the highest possible contrast between the test road and the 
siirroundincJ grass in the image. Since grass absorbs sfmost all 
blue light and the asphalt road reflects a lot of blue light, the TV 
image in the blue band shows a very bright road surrounded by very 
dark grass. The blue filtering of the signal is tied to the particular 
road on which we are testing the vehicle. The next step in 
hardware configuration Irpprovement Is to selectivcly digltlze the 
red. green and blue band$ and to combine them using our Matrox 
frame buffers and the Warp. 

4. Conclusion 
We have presented a comprehensive view of a vision-based road- 

following system for an autonomous vehicle. Various pnrtS of tltb 
system exist and have been tested both off-line on "Canned" 
images and during real-time tests udng the Terregator. 

An overall picture of our system can be seen by considering the 
path of a single image through the entire plocesslng loop. First, the 
Map module announces a set of predictions for the current scene, 
knowing the vehicle's pasitlon. The Vision module hen 
dynamically applies color and texture segmentation technklUeS to 
extract tho predicted road region. An Oriented edge tracker uses 
tlre geometry of the extracted raed region and the predkted 
interest segments to dthy localize the position of the road or reiect 
the region and report ,hllure. If road or intersection reglOn 
detection is successful, @e Navigator b alerted and generatea a 
steering plan from the r q d  region. If not wccas~fuf, the Vision 
systcth halts and signals the blackboard w that another module (or 
parson) to tnke contrd. -The steering plan b recoived by ?e low- 
level motion control modyb, which interfaces to the vehicle's gyros 
and shaft encodera md axecutas the Qeednp 6tratOgy. 
Timestamps on data canied through the entln 8ystem enabk the 
vehicle to be controlled In real time, with old steering plans aborted 
as the Navigator creates new ones. To work for continuous motion 

road-following even at the slowest speed the Terregntor has run in 
any road-following experiment (10 cm/sec) the entire processing 
loop must complete every 10 seconds. 

Warp has proved to be a useful high-speed processor for vision 
tasks. An important advantage of Warp over other image 
processing computers is its floating-point capability. Many of the 
processes we have discussed, such as Image rectification, color 
segmentirtion, and oriented edge tracklng, are Implemented as 
floating-point algorithms and can run officiently on Warp. Using the 
Warp, we have already demonstrated one efficient and robust road- 
following algorithm. 
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Pulsewidth Modulation Control of Brushless DC Motors 
for Robotic Applications 

PATRICK F. MUIR, m m  MPMBER, IBBE, AND CHARLES P. N E W ,  SENIOR MEMBER, IEEE 

1. INTRODUCTION 

HE DESIGN and implementation of digital servo control- Tiers for brushless dc motors, utilizing pulsewidth modula- 
tion 0, has become a significant control engi- 
neering task because of the desirable characteristics of these 
motors for robotic applications. Brushless dc motors (using 
samariumuhlt permanent magnets) are appropriate for 
robotic applications because of their high torque-to-weight 

hianwxipt received April 25,1984. Thirprpcrwu aqpntcd by ao R. K. 
Mellm Fellowship gruucd to P. F. Muir by -Mellm UniVenity, the 
office 0 f N ~ d  ReKvch unda NOOO14-81.oUn, d t h e  Deprt- 
ment of Ektricd .rd computu E a g h d u g ,  CuncgiaMellm Ullivwaity. 

n b e ~ ~ W i r h t l l e ~ 0 f ~ d ~ ~ -  
hg. Cunegie-Mellm U n i d t y .  Rimkuph. PA 15213. 

ratio [l], ease of computer control, efficiency, and simple 
drive circuitry. Semiconductor power transistors can drive the 
motor directly from a microprocessor. Power transistors 
operate most efficiently in a switching mode. Velocity control 
of a brushless dc motor is accomplished (in the switching 
mode of operation) by the PWM of the stator coil voltages. 

If the motor position is measured by a digital shaft encoder, 
the feedback control system, with the exception of the motor, 
is digital. The brushless dc steering motors on the CMU Rover 
[2] (described in Section III) exemplify such a system. The 
Rover is a mobile robot which rolls on three wheels that are 
actuated by brushless dc motors. In this paper, digital servo 
controllers are designed using PWM to provide mobility. The 
steering motors are modeled, position controllers are de- 
signed, and the control system is simulated and implemented 
in hardwam. Simulation and experimental results demonstrate 
that the design goals of zero overshoot and a 100-ms settling 
time are achieved. 
The PWM control of a linear analog system is assessed. 

Under the asamption that the pulse period is much smaller 
than the timeanstants of the system, the system can be 
modeled by a linear disc*-time transfer function, with the 
pulsewidth playing the role of the control signal. This model 
enablw the application of classical control engineering [3]-[6] 
to the design of pulsewidth-modulated systems for the control 

0278-0046/85/0soo-Cn22$01.00 0 1985 IEEE 
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of brushless and conventional brushed dc motors, and electro- 
magnetic solenoids. 

This paper is orgaoized as follows. The operation of 
brushless dc motors is reviewed in Section 11, and their 
application on the CMU Rover is described in Section III. 
PWM control of linear analog systems is highlighted (in 
Section IV) and applied to model the steering motor on the 
Rover using experimental data (in Section V). This modeling 
process and the ensuing controller design arc accomplished 
entirely in the discrete-time domain. An algorithm is then 

equivalent model at a sampling period which is different than 

sampling period of the controller is not specified at tbe 
identification stage. consequently, when a  low^ transfer 
fuaction is identified from tbe original data, the modeling 
experiments need not be repeated at the CoIltroUer sampling 
period to reidenti@ the model. 

Controller design (including the cboicc of sampling period) 
is autlined in Section VI. The controller sampling period is 

velocity resolution, and timer operational limieations. Because 
the servo execution time excecds one-half of the sampling 
period, theprooessingtimis incorporated (asacmpwtional 

order of the system. Nonlinearities in the control system 
(caused by friction, mator saturation, and position guaatiza- 
tion) arc neglected in tbe controller design. controller gains 
me calculated to satisfy the design gads ofzero ovetshoot and 
a 100-ms settling time. The srep-respanse of the closed-loop 
control system, using thcse gains, is simulated in tbe presence 
of the rfommntioned nontineartia. The controller gains 
which mcp the performance specifications (in the presewx of 
the nonlintarities) are selected for the hardware evaluation. 

The W w a r e  implementation of the controller is evaluated 
in Sectioq W. Motorola 6805 mi- execute the 
control alporithms, which are stored in nonvolatile rcaddy- 
memory. An interrupt driven routine and a programmable 
timer enable the proctssor to caIculatc cancurrently the 
rchlating signal and time sampling periods, and to provide 
pulsewidth modulation. The performance of the position servo 

ptwented for transforming the disc!uc motor model into an 

the sampling period of the experimental data, simx the 

rpecified in terms of processing tim, motor nsponse time, 

&lay) in the closed-loop system model, thereby iacreasing the 

isevaluated fromexperimental *-data. The d t s  
'ed and umcluding remarks arc dvanccd in are 

W o n  WI. 

II. BRUSHLESS DC MOTORS 
A~CSSdcmotorhastheSNDCtorquegpeedchruaderis- 

tic as a conventional dc motor even thougb the principle of 
operation is morc complex [71. There is mesectrical comcc- 
tion to the rotor of a brushless dc motor because the rotor 

megaets, which provide higher torque tban conventional 

commutation o f a  bnrshless dc motor is.amnuplishcd by 

collsists of permanent magnets. S a m a r i u m 4 t  permenent 

duico magnets, arc oommonly used in brushless dc motors. 

elearonically rwitchingtbccurrensinthe rcatorwhdiqp. The 
properrtruor WiDding polarities (at esch inehnt) uc derived 
Ibmtherhrftporitia, Urtrdfromrrhitsruvulcr, d t h e  
desireddirectionof mation. V e l o c i t y c x m t d i s ~  
eithcr by adjusting the stator cumnb, (using D/A ca~vcrtcrs 

and CuMIlt amplifiers), or, more simply, by adjusting the 
current duty cycle (using power transistors and PWM). To 
reverse the direction of rotation, the stator windings are 
aequeaced in reverse order, rather than reversing the current 
Polarity. 

Even though the operation of a brushless dc motor is more 
complex than tbat of a conventional brushed dc motor, 
practical advantaga accrue. The removal of heat produd in 
the windings of brushless dc motors is more easily acmm- 
plishcd because the pnth to the environment is shorter. 
Problems with brushes, such as wear and brush noise, are 
eliminated. B d e s s  dc motors require minimal interface 
circuitry for mi-r c o m l .  Power transistors are 
operated in a switching mode, as coil drivers are more 
efficient than the d o g  power unplifiers used with mven- 
t i d  motors. Minimizing weight and power consumption is 
essential for mobile robots because the capacity of self- 

less & omtors are tbe D C ~  for electronic commutation, its 
high cost, and low availability. As the demand for brushless dc 
motors grow, these motors will become more available and 
leas expensive. 

COMaiaed 8ou~ces is limited. Disadvantagts Of brush- 

m. THE CMU ROVER 
The CMU Rover [2] is a mobile robot currently being 

designed and CoIIStNcted in the Robotics Institute of Carnegie- 
Mellon University, Pittsburgh, PA. The CMU Rover is 
cylindrical in shape, I-m tall, and 55 cm in diameter. Mobiity 
is provided by three wheels upon which the robot is supportad. 
Three brushless dc Stariag motors [SI control the orientation 
of the wheels and thr# u t iona l  brushless dc drive m o r s  
control the ratation of the wheels. The motors  an^ diractly 
coupled to the wheels. A Motorola 6805 microprocessor [9] is 
dedicated to the control of each mom. Servo reference 
positionS are CommUILicated to the individual motor processors 
via a COmmoIl serial line from high-level processes [2] 
executing 011 irdependent onboard processors. Power MOS- 
€ET &vices drive the motor coils from the microprocessor 
output ports through optoisolators which protect the processor 
from electrid mise generated in the motor. The motor shaft 
position is fed back to the processor via a digital shaft encoder 
r 101. 

IV. PWM OFA LINEAR SYSTEM 
There are practical reasons why the dynamic models of dc 

mocor~ cannot be applied directly to model the motors on the 
CMU Rover. Although many of the characteristc parameters 
mepraridcd by the motormrmufacauer, them are parameters 
(e.g., the moment of inertia of the load, frictional torque, and 
dunping umstant) tbat must be obtained experimentally after 
the motor is built into tbe robot. Furthermore, the input to a 
convdonal dc motor is the voltage applied to the motor 
wiadings; whereas, the voltage pllsewidth plays the role of the 

Tbc PWM d ofmotors is analyzed for the state-spacc 
for8 ~ W l d d d  e m. 

modeloftheMholdcr~tims-inwipnt~ystem 
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order systems, this assumption ensures that the scalar expo- 
nential exp{ TIT} can be adequately approximated by 1 + T/ 
7, where T is the system timeconstant. By applying a 

whercthe(N x 1)statevcctorisxandthe~ariaputisu. x[(n+l)rl={(I+AT)x(nT)+K~s(nT) (6) 
The(Nx N)motormatrixisAandthe(Nx 1)inputvector 
is b. The solution of (1) is [5] where I is the (N x N) identity matrix. The discrete state- 

space PWM model in (6) is linear in the pulsewidth s(nT) 

(2) 

where exp {At} is the matrix expomntial 13, 51. 
The scalar pulsewidth modulated signal u(t) is shown in 

Fig. 1. The input u(t) is the constant K (volts) for the fraction 
s/T of each period, and zero for the remainder of each 
period. The pulsewidth is the magnihrde of the control signal 
and is, therefore, positive. Negative control signals rcversc the 
commutation sequence of the motor (as discussed in W o n  
VI). The goal is to find conditions under which (2) is finear in 
the pulsewidth s. The digital controller samples the states at 
discrete-time instants. Instead of the mtinuous state vector 
x(?), attention focuses on the state vector x(nT) at the 
sampling instant nT, where Tis the constant sampling period 
and n is the iteration index. In (2), the sampling period, 6rom t 
= nTtot  = (n + 1)T,isdividcdintotwosubperiods.~ 
f i r s t r u n s f r o m t ~ =  n T t o t =  nT+s(nT);wherethe 
pulsewidth dnT) can vary from snapling period to anpling 
period, and the pulse height is constant. In the second, from to 
= n T +  s(nT)tot = (n + l)T,theinputu(?)iszero.Thus 

x[n T+ s(n 731 = exP{As(nT))x(nT) 

(3) 

To continue the developmnt, the matrix exponcntials in (5) 
are approximated by tbeir fht-ordcr d e s  expnnsion~ [41; 
i.e., exp {At} = I + At, under the uulumpCioll that the 

depend-karly on the pulsewidth s(nT). The only assumption 
made in leading to (6) is that the sampling period is much 
smaller than the timc-constants of the system. This assumption 
is practical because conventional digital control systems 
cprate on a sampling period which is much smaller than the 
response time of the system under control. This engineering 
assumpiOn and intcrpmtion of the linear model in (6) lay the 
foundation for the design (in Section VI) of control systems for 
the motors on the CMU Rover. 

V. MODELING THE STEERING MOTOR 
A. Introduction 

The framework of Section IV is applied to the practical 
problem of modeling the brushless dc steering motors on the 
CMU Rover. The analog transfer function, from input voltage 
to output velocity of a dc motor is linear [7]. Consequently, the 
motor under PWM control can be characterized by the linear 
discrete-time state-space model in (6), and a corresponding 
linear transfer function, from pulsewidth to velocity, if the 
sampling period is small compared to the time-constants of the 
motor. Since the motor parameters are unknown, experimental 
data are racquirad (in this Saction) to identify the discrete-time 
model. The order of the model is chosen to ensure acceptable 
llccuracy, without increasing the complexity of the servo 
controller. 

B. Experimental &?a 
The velocity stepmpome of a steering motor is easily 

Masured and sufficient to identify the transfer function (from 
pulsewidth to velocity). Velocity measurements are acquired 
every 2 ms, since this is a convenient sampling period to 
implement. Data ae taken until the stepresponse settles (160 
data points are stored for model identification). The dominant 
timeconStant of the motor is found to be 58 ms. The motor 
exhibits nonlinear Saturation at the maximum velocity (6.25 
revolutions per second) and a frictional dead zone at small 
commaad inputs. The data used to identify the model are taken 
et a commaad value that is within the active linear range of 
motor operation. The transfer function selected to model the 
motor has the simplest structure which closely approximates 
tbe experimentally obcainecl stcp-mponse of the motor. 
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E. Sampling Period of the Model 
The sampling period of the motor controllers is not 

specified when experimental data are collected to model the 
motors. The CoDtroUer sampling period may differ from the 
sampling period of the experiments. Since a discrete transfer 
function model of an analog system is an explicit function of 
the sampling period 1111, the dismte motor model used in the 
controuer design must cornpond to the controller sampling 
period. 
To change the sampling period of the motor model, the 

discrete transfer function Gl(z-') in (7) is assumed to be the 
step-invariant transformation [ll] of the first-order analog 
transfer function 

V I 1  oc 1 t y  
(couatrlt u) h l s o  Uldth  

Fig.2. StttringmotOrmOdcl. 

C. Model Order 
The input-output transfer function of a conventional or 

bxushless dc motor, from voltage input to velocity output is 
r e c o n d d r  [71. The discrde model (6) of the motor under 
PWM control is also second-order. One mode of the motor 
dynamic fesponse is characterized by its mechanical time- 
umstant and the second mode by its electrical time-constant. 
Since the electrical timeconstant of the motor is much smaller 
than the mechanical timeconstant, a first-order model should 
be sufficiently accwatc for conttouer &sign. 
First- and second-order discrete-tim transfer functions are 

introduced to model the steering motor (€tom pulsewidtb input 
to velocity output). The firstorder transfer MOD is 

and the secondorder model is 

A Computer program was written to simulate the stepresponse 
of these models using user-specified model parameters (i.e., 
KI, andp; and K2, &,pI andM. The program calculates the 
accumulated squaredcrror between the simulated output of 
each model and the experimentally obtained step-response. 
The user systematidly adjusts tbe model parameters to 
reduce the accumulated squaredcrror for both the first- and 
d - o r d e r  models. Finally, the minimum squarederor of 
thefirst-order model is cornparad with theminimum squared- 
erro~ of the secondorder model to decide whether the second- 
order model is significantly more Bccurate to warrant the 
additional implementatiod complexity. 

The second-order model of the steering motor produces a 
squaredcrror which is only 4.7 percent less than that of the 
firstorder model. This small improvement, in our opinion, 
does not waxrant its cornponding iamased complexity. 

D. Identified Steering Motor Model 
The transfer function model Gl(z") of the steering motor, 

which is used in the oontrouer design (in Sedion Vl), is 
depicted in Fig. 2. The motor velocity is mmsurcd in units of 
shaft encoder COULL~S (there are 212 = 4096 counts/revolution) 
per sampling period (2 ms). The model has a dc gain of 0.187 
and a pole at z = 0.966 corrcqmdhg to a timeconstant of 58 
ms. The scc43ndorder model has the same dc gain, poles atz 
= 0.965 and z = 0.436 (co- to timcanStan ts of 
56 ms and 2 ms, mpcctively), and a zero at z = 0.397. Simx 
thepoleatz = 0.436respondsmuchfasterthanthedominent 
pole at f = 0.965, which matches the pole of the f i r s t d r  
model, the response of the f i r s t d r  model closely resembles 
that of the d & f  model. 

K 
m + 1 -  

G(s) =- (9) 

and 

K1 = Kl( T) = K [  1 -p(T)]. (1 1) 

When tbe sampling period is changed from Tto TI, the 
digital transfer function in (9) becomes 

where 

and 

VI. CONTROL SYSTEM DESIGN 
A. Introduction 

The objective of this section is to design a position servo for 
the steering motor. Tbe linear dismte-time transfer function 
model identified in Section V enables the application of 
classical linear control engineering to PWM controller design. 
The design goals are zero overshoot and a 10o-m~ d i n g  
time. 

B. Sampling Period 
MOW- * 'cs and processor capabilities lead to the 

selection of the controller sampling period. The controller 
must operate with a sampling period that is much smaller 
(e+, 10 times d e r )  ttian the motor timeamstants, so that 
the pulsewidth-modulated motor can be modeled by the 
diaaetc transfer function in Fig. 2. Since the timeanstant of 
the Steering motor is 58 ms, the controller sampling period 
sbould not exceed 5.8 ms. Execution of a prototype servo 
p~ogram is timed and found to sd a lower limit on the 
sampling period at 1.27 ms, because the program must be able 

The minimum to execUtC within eacb sampling period. 
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Signal Dlglt.1 
Diffarrncar 

Fig. 3. Steering motor position servo COlltfoUer. 

sampling period is also limited by the precision of velocity 
calculations. Velocity measurement precision is low if the 
sampling period is small, because velocities are calculated as 
the difference between position readings at successive sam- 
pling periods. By experimentation with the prototype servo 
program, the lower limit (1.85 ms) on the sampling period is 
found to provide sufficient velocity precision and thereby 
avoid undesirable nonlinear quantization effects which result 
in jerky motor operation. The controller sampling period of 2 
ms is chosen because it satisfies the aforementioned con- 
straints and because it is convenient to implement sampling 
periods that are multiples of 0.25 ms with the programmable 
timer. Since the pulse period of the PWM is one sampling 
period, the choice of 2 ms as the sampling period guarantees 
that the linear modeling assumption of Section IV (Le., the 
pulsewidth is much smaller than the t& constant 58 ms of the 
motor) is satisfied. 

C. Control System Structure 
The position servo (in Fig. 3) is implemented by incorporat- 

ing position and velocity feedback. The control signal is the 
pulsewidth modulated voltage applied to the motor coils. The 
pulsewidth in the mh sampling period is the magnitude of sfn), 
where 

(1 5) s(n) = Kp{Rp(n - 1) - P(n - 1)) - K,, P ( n  - 1) 

and where 

RJn - 1) 
P(n - 1) 

Ep(n - 1) 
P ( n  - 1) 

KP 
K" 
The position and velocity gains Kp and K,, control the 

transient response of the servo. The height of each pulse is 
constant (24 V) and the pulsewidth is calculated as the 
magnitude of (15). The sign of (15) specifies (in Section Wl) 
the motor coil commutation sequence. This is analogous to 
reversing the polarity of the voltage applied to a brushed dc 
motor. The delay z-l is introduced in the fonvard path to 
model the execution time of the controller program. The 
calculation of the control signal is not completed until 1.27 ms 
after the inputs are received, ctue to the program execution 

current reference motor position, 
current shaft position as mad from the shaft 
encoder, 
current position error, 
current velocitycalculatedas [ e n  - 1) - 
P(n - 211, 
position gain (in Section VI-D), 
velocity gain (in Section VI-D). 

time (as explained in Section VI-B). To ensure that the 
actuating signal is synchronized with the sampling period, the 
calculated control signal is stored until the beginning of the 
next sampling period, when the magnitude of the control 
signal is used as the pulsewidth and the sign specifies the 
commutation sequence. The motor parameters KI and p are 
calculated at the controller sampling period of 2 ms using the 
formulae in Section V-E. In this design, the controller 
sampling period and sampling period of the modeling experi- 
ments coincide and the transfer function in Fig. 2 is applied for 
the controller design. 

D. Gain Calculation 

Fig. 3)  is third-order 
The closed-loop transfer function of the position servo (in 

P(z-9 K ~ K ~ z - ~  
RJz- I) 
-= 

1 - ( p  + 1 )z- + @ + Kl(K,, + K,>]z -~  - K1Kzd3 ' 

(16) 
The controller gains Kp and K,, are calculated to meet the 
design specifications of zero overshoot and a 100-ms settling 
time. The transkr function in (16) is factored into the cascade 
of a semnd-oder component and a first-order component 

P(z-9 Kg-I Z-I -- 
Rp(z-I)--(l - a z - ' ) 2  (1 -pg- ' )  ' 

where O<fi<a<l. (17) 

The objective is to force the critically damped second-order 
component (with two equal real poles at z = a) to dominate 
the closed-loop response. The closed-loop system is thus 
designed to respond as fast as possible without overshoot. By 
equating (16) and (17), the third system pole p3, feedback 
gains K,, and Kp, and gain K3 are computed in terms of a and 
the motor constants K I  and p according to 

rn=(P+ 11-20 (18) 
ma2 K,=- 
Kl 
a2 + -3 - p  - K1Ku 

4 
Kp = 

and 
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The satling time of the closed-loop system is then calculated 
from (1 7) for different values of a. The =NO gains Kp and K. 
arc calculated from (19) and (20) for values of a which 
produce satling times less than 100 ms. The choice of gains is 
finalilad by simulating the control system, with the calculated 
gain combinations, on a computer in the prwence of nonlinear 
motor saturation and quantized position feedback values. The 
feedback gain values 

K,=32 and Kp=3 (22) 

provide rrcceptable simulated response charamnsb * 'cs and 
satis& the design constraints in computer simulation. The 
value of a = 0.838 (e * gtoatimbconstantof 11.3 
ms)issubstitutedinto(18)tocalc~thelocatiOnofthethird 
pole p3 = 0.290 (corresponding to a timecanscant of 1.6 ms). 
The third pole thus responds much faster than the two equal 

E. Control System Simulation Result3 
The simulation program implements the block diagram of 

Fig. 3 to calculate (at dkrctc time instants) the stqGrespomc 
of the steering motor =NO. The simulated step-response of 
the steering motor position servo controller, using the gains in 
(22), is shown in Fig. 4. The step-response does not overshoot 
and displays a 100-ms settling time, and thus satisfies the 
design specifications (with zero steady-state e m ) .  

W. HARDWARE IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

dominant poles, as desired. 

A. Hardware Overview 

The steering motor colltrouer is implemented as an assem- 
bly language program running in real time on aMatomIa6805 
microprocessor. Reference positions arc communicrted (over 
a serial communication link) to the processor fnrm high-level 

modulated control signal to the motor via an aatput port to the 
mator coil drivers. The motor shaft position is fed bock to the 
input port of the processor from an optical shaft arcoder. In 
each sampling period, the program calculates the pulsewidth 
and the motor coil excitation pattern, and produces a pulse- 
width-modulated signal to control the motor. 

B. Controller Program 

Two independent programs arc shown in the flowchart of 
tbc servo program in Fig. 5. The main routine implements the 
calculations and logic which produce the motor coil excitation 
pattern (i.e., commutation) and sctuatiag signal (i.e., pulse- 

processors. Tbe processor cxnnmmiw, the pulsewidth- 

width), and requires approXimately 1.27 m~ Of each 2-m~ 
sampling period to execute. The interrupt routine handles only 
those M o n s  that require accurate timing, such as reading 
the shaft encoder, sending signals to the motors, and control- 
ling the timer. The software is structured so that the most 
urgent tasks (those serviced in the interrupt routine) are 
processed when necessary, and the tasks for which timing is 
not critical (those serviced in the main routine) use the 

The programmable timer is used to time the pulsewidth and 
sampling period, and syachronize the control signals in the 
followhg manner. The timer is loaded with the pulsewidth 
(which was calculated by the main routine in the previous 
sampling period); and the proper motor coils are energized by 
loading the microprocessor outpt port with the excitation 
pattern (the excitation pattern was also determined by the main 
mutine in the previous sampling period); and the position of 
the motor shaft is stored. The timer counts down the 
pulsewidth, while the main routine calculates the pulsewidth 
and coil excitation pattern for the next sampling period. When 
the pulsewidth has elapsed, the timer generates a hardware 

the present state of exccutioIl of the main routine and begins 
executing the intcnupt ropltiae. The interrupt routine calcu- 

value in the timer, and turns off all of the motor coils by 
storing a 0  in the output port. Control is then returned to the 
main routine, which resumes execution at the point at which it 
was interrupted. After the programmable timer has counted 
down the remaining time in the sampling period, a second 
interrupt is gamatad. By this time, the main routine has 
annplctcd its calculations, and the cycle repeats each succeed- 

Impl- 'on of the multiplication operation in assembly 

tions. Addition and subtraction of 12-bit quantities on the 8-bit 
processor is achieved by double-pision calculations. Calcu- 
latiom involving cyclical shaft position readings must be 
checked and corrected for wreparouad errors. Position read- 
ings must lie within the range M 0 9 5 .  If the calculated 
position error is outside this range, a multiple of 4096 must be 
dded to or sybtraaed from the value (as appropriate), to bring 
the resuh within the allowable range. A similar correction 
procedure must be executed if the calculated velocity value is 
auEside Of the rangt -2048 to 2M8. 
Tbe main program implements electronic commutation of 

the motor coil voltages by a table look-up to determine the 

desired direction for the present shaft position. The table is a 
list of ranges of shaft positions; each with two associated 
motorail excitation patterns. The first excitation pattern 
produces maximum motor torque in the clockwise direction if 
the mator position is within the range. The second produces 
meximum torque in the counterclockwise direction. The 
range in which a shaft position occurs is identified by 
comparing the shaft position with the range boundary posi- 
tions. Ifthe ShaAposition is greaterthan or equal to the lower 
boundary of a range &less thau the upper bouadary, then 

remaining processing time. 

intemrpt to the processor. The piocessor immdate lymres 

lates tbe time remaining in the sampling period, loads this 

ing sampling period. 

language code is rrccomplished Using shift and add instruc- 

excicstian psttern which products the maximum torque in the 
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T l Y F R  INTERRUPT 
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l n l t l a l l z e  var iables  
I n i t i a l i z *  110 p o r t  end 
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& 
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p a t t e r n  t o  - t o r  
(Turn c o i l s  on) 

d0 

Read the s h a l t  encqder 

1 
set s f a l p  1 
set c f l e g  0 

R E T I M I  FRO* XIttRRUPT 

Intermpt Routine 
Fig. 5. Flowchut of .clsembly lrasurge m o  prognm. 

the shaft position is in that range. The excitation value far the 
desinsd direction of rotation is read Eram the table under the 
entry for that range. 

C. &penmental Results 
A typical experimentally ob ta id  step-response of tbe 

steering motor servo amtroller (with the Rover statiomy and 
only one motor operating) is platted in Fig. 6. The plot shows 
that the servo response satisfies the design specifications of 
zero overshoot and a 10o-m~ setding time. Tbe shape of the 
response is similar to the simulated step-- plot in Fig. 
4. Neither plot exhiits third- dmmemh 'cs, which 

verifies that, by design, the third system pole p3 in (17) 
responds significantly faster than the two dominant equal poles 
a. 

VIII. CONCLUSION 
The modeling, design, and implementation of a controller 

utilizing a pulsewidth-modulated actuating signal is high- 
lighted in this paper. A brushless dc motor (actuated by a 
pulsewidth-modulated signal) is modeled (uiing experimental 
data) as a discrete linear system whose control signal is the 
pulsewidth, under the assumption that the pulse period is much 
d e r  than the timecoastants of the motor.. The controller 

implementation. This model enables the application of classi- 
cal linear control engineering to the design of a digital 
amtroller far the motor. 

A position servo controller designed for the steering motors 
on the CMU Rover meets the specified performance objec- 
tives. The controller is implemented on a microprocessor 
which uses a programmable timer and an interrupt driven 
&, and calculates the pulsewidth, provides commutation, 
and times concumntly the sampling period and pulsewidth. 

sampling period and PWM pulse period 8re equal in this 
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Simulated and experimental stepresponse data demonstme 
that the desired =NO operation is rralizad. 
The servo can be enhanced by marmring the shaft encoder 

pulse period to provide a more precise velocity uuasummnt 
[12]. The position sen0 on the CMU Rover steering motors 
bas recently been modified to servo simultancoudy to a 
desired position and velocity [13]. The framework of this 
paper can be applied to the PWM cuntrol of brushless dc 

motors, md el- ‘c solenoids. 
motors for robotic manipulators, amvdonal  brushed dc 
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Abstract 

We summarize our methodology for formulating the kinemutic equotiona-of-motion of a wheeled 
mobile robot. The complete paper[l], which is currently being prepared for publication, is over 
one-hundred pages in length. Wheeled mobile robots having conoentiond, omnidirectional, and 
ball wheels are modeled. While our approach parallels the kinematic modeling of stationary ma- 
nipulators, we extend the methodology to accommodate such special characteristics of wheeled 
mobile robots as muftiple cloacd-link choina, highcr-pair contuct points between a wheel and a 
surface, and unoctuoted and unaensed degrees-of-freedom. We apply the Sheth- Uicker convention 
to assign coordinate axes and develop a mot& coordinote transjormotion dgebro to derive the 
equations-of-motion. We calculate the forword and inuerae solutions and interpret the conditions 
which guarantee their existence. Applications of the kinematic model are also described. 

Graduate student, Department of Electrical and Computer Engineering; and Member, Autonomous Mobile 
Robotr Laboratory, The Robotics Inatitute. 

Professor of Electrical and Computcr Engineering. 
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1. Introduction 

The wheeled mobile robot literature shows that the documented investigations have concen- 
trated on the application of mobile platforms to perform intelligent tasks rather than on the develop- 
ment of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved 
mechanical designs and mobility control systems will enable the application of WMRs to tasks were 
there are no marked paths and for autonomous mobile robot operation. A kinematic methodology 
ie the first step towards achieving these goals. 

Even though the methodologies for modeling and controlling stationary manipulators are appli- 
cable to WMRs, there are inherent differences which cannot be addressed with these methodologies, 
such as: 
1.) WMRs contain multiple closed-fink c h i n s ;  whereas, manipulators form closed-link chains 

only when in contact with stationary objects. 

2.) The contact between a wheel and a planar surface is a highcr-puir; whereas, manipulators 
contain only lower-pair joints. 

3.) Some degrees-of-freedom of a wheel on a WMR are not actuated or sensed; whereas, all 
degrees-of-freedom of each joint of a manipulator are actuated and eeneed. 

Wheeled mobile robot control requires a methodology for modeling, analysis and design which 
extends the principles applied to stationary manipulators. In this paper, we advance the kinematic 
modeling of W M R s ,  from the motivation of the kinematic methodology, to its development and 
applications. In Section 2, we present the three wheels (conventional, omnidirectional and ball 
wheels) utilized in all existing and foreseeable WMRs. We present a definition of a wheel mobile 
robot and enumerate our assumptions in Section 3. Coordinate systems are assigned to prescribed 
positions on the the robot (Section 4). We develop transformation matrices to characterize the 
translations and rotations between coordinate systems (Section 5). Matrix coordinate transforma- 
tion algebra is developed as a means of calculating position, velocity, and acceleration relationships 
between coordinate systems in Section 6. We apply the axioms and corollaries of this algebra to 

model the kinematics of WMRe. 

The equations-of-motion relating robot positions are developed in Section 7, and we develop 
the velocity and acceleration relationships in Section 8. We relate the motion of a wheel to the 
motion of the robot body by calculating a wheel Jacobian matrix. From the simultaneous motions 
of the wheels, we obtain the motion of the robot in Section 9. Specifically, we obtain the inverse 
eolution, and the forward solution. We discuss the application of the kinematic methodology in 
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Section 10 and summarize the hemat i c  modeling procedure in Section 11. We outline our plans 
for continued research in Section 12. 

Many sections and details of the original paper had to be omitted fkom this summary for 
brevity. The full paper contains: a survey of documented WMRs, detailed derivations of the 
inverse and forward solutions, detailed applications, the development of the kinematic model of 
several example WMRs, and a nomenclature and symbolic representation for WMRs. Further 
details on the topics presented in this summary are also included. 

2. Wheel -pee 

Three basic types of wheels are used in WMRa: conventional, omnidirectional, and ball wheels. 
In addition, conventional wheels often are mounted on a steering link to provide an additional 
degree-of-freedom. The degrees-of-freedom of each wheel are indicated by the arrows in Figure 1. 
The kinematic equations relating the angular velocity of the wheel to its linear velocity along the 
surface of travel are also compiled in the figure. 

The nonstecred conocnfiond wheel is the simplest to construct having two degrees-of-freedom. 
It gllows travel along a surface in the direction of the wheel orientation, and rotation about the 
point-of-contact between the wheel and the floor. We note that the rotational degree-of-freedom is 
slippage, mnce the point-of-contact ia not stationary with respect to the floor surface. Even though 
we define the rotational dip as a degreeof-freedom, we do not consider slip transverse to the wheel 
orientation a degree-of-freedom, because the magnitude of force required for the transverse motion 
is much larger than that for rotational slip. 

The omnidirectional wheel has three degrees-of-freedom. One degree-of-freedom is in the di- 
rection of the wheel orientation. The second degreesf-freedom is provided by motion of rollers 
mounted around the periphery of the main wheel. In principle, the roller axles can be mounted 
at any nonzero angle with respect to the wheel orientation. The third degree-of-freedom is rota- 
tional slip about the point-of-contact. It ie possible, but not common, to actuate the rollers of an 
omnidirectional wheel, with a complex driving arrangement. 

The most maneuverable wheel is a Ml which is actuated to posses three degrees-of-freedom 
without slip. Schemes have been devised for actuating and sensing of ball wheels, but we are 
unaware of any existing implementations. An omnidirectional wheel which is steered about its point- 
of-contact is kinematically equivalent to a ball wheel, and may be a practical design alternative. 
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Figure 1 

Wheel Equations of Motion 
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3. Definitions And Assumptions 

We introduce an operational definition of a WMR to specify thc range of robots to which the 
kinematic methodology presented in this paper applies. 

Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the 
actuation of wheel assemblies mounted on the robot and in rolling contact with the surface. A wheel 
assembly is a device which provides or allows relative motion between its mount and a surface on 
which it is intended to have a single point of rolling contact. 

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body 
and the wheel constitute a wheel assembly. We introduce the following practical assumptions to 
make the modcling problem tractable. 

Assumptions 
1.) The WMR does not contain flexible parts. 
2.) The WMR moves on a planar mrface. 
3.) There is zero or one steering link per wheel. 
4.) AU steering axes are perpendicular to the surface. 
5.) The translational friction at the point of contact between a wheel and the surface is large 

6.) The rotational fiction at the point of contact between a wheel and the surface is small 
enough 80 that no translational dip may occur. 

enough 80 that rotational dip may occur. 

4. Coordinate System Assignments 

Coordinate system assignment is the h t  step in the kinematic modeling of a mechanism. 
Lower-pair mechanisms' (such as revolute and prismatic joints) function with two surfaces in 

relative motion. In contrast, the wheels of a WMR are higher-pairs; they function ideally by point 
contact. Because the A-Matrices which model manipulators depend upon the relative position 
and orientation of two euccessive joints, the Denavit-Hartenberg convention leads to ambiguous 
assignments of coordinate transformation matrices in multiple closed-link chains which are present 

Lower-pair mechanisms are pairs of components whose relative motions are constrained by a 
common surface contact; whereas, higher-pairs are constrained by point or line contact. 
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in WMRs. We apply the Sheth-Uicker convention to assign coordinate systems and model each 
wheel as a planar pair at the point of rolling contact. This convention allows the modeling of the 
highcr-pair wheel motion and eliminates ambiguitics in coordinate transformation matrices. The 
planar pair allows three degrees of relative motion: x and y translation, and rotation about the 
point-of-contact as shown in Figure 2. 

P1 anar Ps i  r Conventional Wheel 

Figure 2 

Planar Pair Model of a Wheel 

This modeling of a WMR leads to the coordinate system assignments defined in Table 1 . The 
froor coordinate aystem is a reference frame for robot motions. The robot coordinate system is 
assigned to the robot body BO that the position of the WMR is the relative translation from the 
floor coordinate system to the robot coordinate system. The hip coordinate system is assigned at  
a point on the robot body which intermxts the steering axis. The steering coordinate system is 
assigned at the same point dong the ateering a i s ,  but is fixed relative to the steering link. We 
assign a contact point coordinate system at the point-of-contact between each wheel and the floor. 

We d e h e  an instantaneously coincident ro&ot coordinate aystem for describing motions (ix., 
velocities and accelerations) of the robot relative to its own position and orientation. We also 

define a function x(t*) which returns a coordinate system that is stationary relative to the floor 
coordinate system and coincident with the robot coordinate system at the time t = t': 
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Table 1: Coordinate System Aeeignmente 

N Number of wheels on the robot. 
F Floor : Stationary reference coordinate system with the z-axis orthogonal to the surface of 

travel. 

R Robot : Coordinate system which moves with the WMR body, with the z-axis orthogonal to 
the surface of travel. 

H, Hip (for i = 1, ..., N) : Coordinate system which moves with the WMR body, with the z-axis 

coincident with the axis of steering joint i if there is one; coincident with the contact point 
of coordinate system i if there is no steering joint. 

Si Steering (for i = 1, ..., N) : Coordinate system which moves with steering link i ,  with the 
z-axis coincident with the z-axis of Hi, and the origin coincident with the origin of Hi. 

Ci Contact Point (for i = 1, ..., N) : Coordinate system which moves with the steering link 
i, with the origin at the point-of-contact between the wheel and the surface; the y-axis is 
parallel to the wheel (if the wheel has a preferred orientation; if not, the y-axis is arbitrarily 
assigned) and the x-y plane tangent to the surface. 

- 
R Instantaneously Coincident Robot : Coordinate system instantaneously coincident with the 

R coordinate system at the time t* and stationary relative to the F coordinate system (i.e., 
R is the value of R at the time t': x = R Itst*). 
- 

- 
C, Instantaneously Coincident Contact Point (for i = 1, ..., N) : Coordinate system instanta- 

neously coincident with the Ci coordinate system at the time t' and stationary relative to 
the F coordinate system (Le., = Ci It=t*). 

The instantaneously coincident robot coordinate system is thus a discrete sample of the con- 
tinuous robot coordinate system at the time t'. Similarly, the instantaneously coincident contact 
point coordinate system is coincident with the contact point coordinate system at the time t = t* ,  
and stationary relative to the floor coordinate system. 

Placement of the coordinate systems is illustrated in Figure 3, where we show a pictorial view 
of a WMR. For a WMR with N wheels, we assign 4N+2 coordinate systems to the robot and one 
stationary reference frame. 
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Figure 3 

WMR Model Showing Placement of Coordinate Axes 

6. Transformation Matricea 

Homogeneous (4 x 4) transformation matrices are conventionally defined to express the position 

in coordinate frame B to the corresponding coordinates Ar 

and orientation of one coordinate rrystem relative to another. The transformation matrix 
transforms the coordinates of point 
in the second coordinate frame A. 

W e  adopt the following notation. Scalar quantities are denoted by lower case type (e.g., w ) .  

Vectors are denoted by lower case boldface type (e.g., r). Matrices are denoted by upper case 
boldface (e.g., n). Pre-superscripts denote reference coordinate systems. The pre-superscript may 
be omitted if the defining coordinate frame is transparent from the discussion. Post-subscripts may 
bc used to denote coordinate systems or specific components of a vector or matrix. 

Before we define the transformation matrices between the coordinate systems of our WMR 
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model, we d e h e  in Table 2 nomenclature for rotational and translational displacements, velocities 
and accelerations. 

Table 2 

Scalar Rotational and Translational Variables 

"88 : The rotational displacement (counterclockwise by convention) between the x-axis of the A 
coordinate system and the x-axis of the B coordinate system about the z-axis of the A 
coordinate system. A 9 ~  = A~~ and A 8 ~  = AaB. 

"dBj  : (for j E [z, y, 2)) : The translational displacement between the origin of the A coordinate 
system and the origin of the B coordinate system along the j-axis of the A coordinate 
system. "dBj = "WB and "dBj = A a ~ .  

A transformation matrix in our WMR model embodies a rotation A8B about the z-axis of 
dong the respective coordinate axes coordinate system A and translations Adg,, AdB, and 

as shown in (5.1). 

The assignment of coordinate systems results in two types of transformation matrices between 
coordinate systems: constant and oariabfc. The transformation matrix between coordinate systems 
fixed at two differed positions on the same link is constant. Thneformation matrices relating 
the position and orientation of coordinate systems on different links include joint variables and 
thus arc variable. Constant and variable transformation matrices are denoted by "TB and AQrg, 

respectively. 

6. Matrix Coordinate Tkanaformation Algebra 

The kinematics of stationary manipulators are conventionally modeled by exploiting the prop- 
erties of transformation matrices. We formalitc the manipulation of transformation matrices in 
the prescnsc of instant ,anmusly coincident coordinate systems by defining motriz coordinate trans- 

formation algebra. An algebra consists of a set of operands and a set of operations which may be 
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applied to the operands. The operands of matrix coordinate transformation algebra arc transforma- 
tion matrices and the operations are matrix addition, multiplication, differentiation and inversion. 
Matrix coordixiatc transformation algcbra allows the calculation of the relative positions, velocities 
and accelerations of robot coordinate systems (including instantaneously coincident coordinate sys- 

tems) without physical insight. Tlie following axioms define the special properties of transformation 
matrices (i.e, those properties which arbitrary matrices do not posses). 

Axioms 

Cascade : = AnB BnC 

Inversion : = Bnil 
Identity : A n A  = I - 

Instantaneous Coincidence : ( A n A ) [ t = t *  = I 

,The matrix coordinate transformation axioms lead to the following corollaries which we apply 
to the kinematic modeling of WMRs. 

Corollaries 

We make extensive use of the axioms and corollaries of matrix coordinate transformation 
dgebra for deriving the wheel equations-of-motion. 

7. Position Kinematics 

We apply the transformation matrices and matrix coordinate transformation algebra to calcu- 
late the following positional kinematic relations: 
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1.) the position of a point r relative to one coordinate system A in terms of the position of 
the point relative to another Coordinate system 2, and 

2.) the position and orientation of a coordinate system 2 relative to another coordinate system 
A. 

Problem 1 is solved in (7.1) by applying the property of matrix transformation. 

When the transformation matrix AIIz is not known directly, we apply the cascade position corollary 
to calculate it from known transformation matrices in (7.2). 

We must determine whether there is a complete set of known transformation matrices which can be 
cascaded to create the desired transformation matrix. We apply transformation graphs to resolve 
this problem. In Figure 3, we display a transformation graph ofa WMR with one steering link per 
wheel. 

The origin of each coordinate system is represented by a dot, and transformations between 
coordinate systems are depicted by directed arrows. The transformation in the direction opposing 
an arrow is calculated by applying the inversion axiom. Finding a cascade of transformations to 
calculate a desired trt&sformation is thus equivalent to Snding a path from the reference coordinate 
system of the desired transformation A to the destination coordinate system 2. The matrices to 
be cascaded are listed by traversing the path in order. Each transformation in the path which is 
traversed from the tail to the head of an arrow is listed as the matrix itself, while transformations 
traversed from the head to the tail are listed as the inverse of the matrix. 

We solve problem 2 by equating components of the matricee on both d e s  of matrix equation 
and Adzs and the orientation %z, of coordinate (7.2), and solving for the position 

system 2 relative to coordinate system A. 
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Figure 3 

Transformation Graph of a W M R  

8. Velocity and Acceleration Kinematics 

We relate the velocities of the WMR by differentiating the position equations in Section 7. 
The whcel Jacobian matrix is developed by applying the cascade velocity corollary. The wheel 
Jacobian matrix, analogous to a manipulator Jacobian matrix, relates the component velocities of 

the robot R u ~ z ,  R ~ ~ v ,  and R~~ to the velocities of the steering link and the wheel contact 
- - - 

- - - point ciuciz, C. *uti,,, and ciwci,. Some wheels do not have steering links and twme do not allow 

motion pcrpcllclicular to the wheel oricntation; thus, the number of degecs-of-freedom for wheel i 
is mi 5 4. The Jacobian matrix for wheel i M of dimensions (3 x mi). 
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We begin development of the Jacobian matrix by applying the cascade position corollary to 
write a matrix equation with the unknown dependent variables (i.e., robot coordinates, R @ ~ )  on 
the left-hand side, and the independent variables (i.e., wheel i coordinates, H*Os, and zf;@c,) on 
the right-hand side: 

- 

To introduce the velocities, we apply the cascade velocity corollary. We apply the axioms and 
corollaries of matrix coordinate transformation algebra to solve for the robot velocities in term of 
the wheel Velocities: 

- 
where i = 1.. . N ie the wheel index, Rp is the vector of robot velocities in the %bot frame, ji is 
thepseudo-Jacobian matrix of wheel i, and qi ie the pseudo-velocity vector for wheel i. The actual 
velocity vector for typical wheels does not contain the four component velocities in (8.2). Typical 
wheels posses fewer than four degrees-of-freedom and thus fewer than four elements in the velocity 
vector. M e r ,  since all actual wheel motions are rotations about physical wheel axes, the wheel 
velocity vector contains the angular velocities of the wheels rather than the linear velocities of the 
point-of-contact along the d a c e  of travel. We relate the (4 x 1) pseudo-velocity vector to the 
(m; x 1) actual velocity vector qi by a (4 x m;) wheel matrix Wi: 

We substitute (8.3) into (8.2) to calculate the robot velocities in terms of the wheel velocity vector 
in (8.4). - 

R$ = j i W i &  (8.4) 

The kinematic wheel equation-of-motion (8.4) is of the form: 

where Ji = j iWi ie.the (3 x m;) wheel Jacobian matrix for wheel i. 

The accelerations of the WMR are d c d a t e d  by applying the cascade acceleration corollary 
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to write the second derivative of the position equations in Section 7. 

The robot accelerations in (8.6) are composed of three acceleration components: the wheel acceler- 
ations (zucsz, Kuc,,, and caci); the centtipetul accelerations (cdw& and " ' ~ w ~ , )  having squared 
velocties; and the Coriolis accelerations (awe, Hiwsi) having products of Werent velocities. 

- 

9. The Composite Robot Equation-of-Motion 

We combine the equations-of-motion of each wheel on a WMR to form the composite robot 
equation. Two solutions of the composite robot equation have practical applications. The inverse 
solution computes the actuated wheel velocities in terms of the robot velocity vector. The forward 
eolution is the least-squarea solution of the robot velocity vector in terms of the sensed wheel 
veloci ties. 

The inverse solution is calculated independently for each wheel on a W M R  by applying the 
inverse Jacobian matrix. The actuated velocities are extracted from the solution for application to 
robot control. 

The least-squares forward solution provides the optimal solution of the robot velocities in the 
presense of sensor noise and wheel slippage in the sense that the sum of the squared errors in the 
velocity components is minimired. We may i n m e  that the solution can be calculated by proper 
WMR design. We 6nd that the forward solution may be simplified by eliminating the equations- 
of-motion of any wheel having three non-sensed degrees-of-freedom (e.g., a castor) because they do 
not change the solution. 

A study of the nature of the solutions of the composite robot equation illuminates robot 
motion, actuation and sensing characteristics. Of particular importance are the conditions under 
which actuation of a sct of the wheel degrees-of-frcedom causes undesirable overdetermined and 
undetermined solutions. We prefer determined actuation structures because they allow control over 
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all robot degrees-of-freedom and do. not cause undesirable actuator conflict. We also propose that 
overdetermined sensing structures arc preferable because the least-squares forward solution tends 
to reduce the effects of sensor noise with redundant mwurcments. 

We calculate the inverse and forward solutions by applying the kinematic equations-of-motion 
of each wheel in three dimensions z, y, and 8. If a WMR is constrained by the wheel arrangement 
to move in only two dimensions, we may calculate the inverse and forward solutions in an analogous 
manner by eliminating the third dimension from the wheel Jacobian matrices. 

10. Applications 

The kinematics of W M R s  play important roles in modeling, design and control. We introduce 
five practical applications of our kinematic methodology in this section. We apply the results of our 
etudy of the composite robot equation-of-motion to the design of WMRs. WMRs can be designed 
to satisfy desirable mobility characteristics such as two and three degrees-of-freedom and the ability 
to actuate and sense the degrees-of-freedom. Dead reckoning is the real time integration of the robot 
velocity calculated from wheel scnsor measurements. Kinematics-based WMR control systems are 
implemented by applying t,he inverse solution in the feedforward path and dead reckoning in the 
feedback path such that the error between the actual robot position and desired robot position 
is continually reduced. An improved controller is possible by applying knowledge of the robot 
dynamics. Our kinematic methodology is the foundation of dynumic modeling of WMRs. Accurate 
robot control systems rely on both kinematic and dynamic models. We also apply the kinematic 
equations-of-motion to the detection of wheel slip. When a WMR detects the onset of wheel slip the 
current robot position is corrected by utilizing slower absolute locating methods such as computer 
vision before continuing motion. The control system is thus able to track desired trajectories more 
accurately by continually insuring an accurate measure of robot position. 

11. Summary of Kinematic Modeling Procedure 

We have formulated a systematic procedure for modeling the kinematics of a WMR. In this 
section we summarize the modeling procedure to outline a step-by-step enumeration of thc mcthod- 
ology to facilitate engiueering applications. 

1.) Make  a sketch of t h e  WMR. Show the relative positioning of the wheels and the 
steering links. The sketch need not be to scale. A top and a side view are typically sufficient. 

2.) Aedgn the coordinate s y s t e m .  The robot, hip, steering, contact point and floor 
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coordinate systems are assigned according to the conventions introduced in Table 1. 

3.) Assign the (4 x 4) coordinate transformation matrices. The robot-hip, hip-steering, 
and steering-contact transformation matrices are assigned as described in Section 5. 

4.) Formulate the wheel equatione-of-motion. The position, velocity and acceleration 
wheel equations-of-motion are developed by applying transformation graphs and matrix coordinate 
transformation algebra. The specific equations required will depend upon the application. 

5.) Formulate the composite robot equation-of-motion. The individual wheel equations 
are combine to model the motion of the robot. 

6.) Solve the  composite robot equation. The inverse solution and the forward solution 
may be calculated depending on the application. 

The reader is refered to the full paper for further details. 

12. Continuing Research 

Our study of wheeled mobile robots is motivated by the need for designing robust feedback 
control algorithms for their accurate motion control. We are proceeding by paralleling the de- 
velopment of robust dynamic manipulator control systems. The &st step, that of developing a 
kinematic model, is documented in this paper[l]. We are applying the kinematic model to develop 
dynamic models of WMRs. The composite kinematic-dynamic W M R  model will lay the foundation 
for WMR control. We will apply the robot models in simulation to facilitate the design of control 
systems. The performance of candidate WMR control systems will be evaluated in simulation prior 
to time-consuming hardware implementation. In parallel with our engineering activities, we are 
implementing a practical control system for the newly constructed WMFt Urunus. The theoretical 
and practical studies are proceeding concurrently, each reinforcing the the results of the other. 

111 P. F. Muir and C. P. Neuman, "Kinematic Modeling of Wheeled Mobile Robots," Technical 
Report, The Robotics Institute, Carnegie-Mellon University, Schenley Park, Pittsburgh, PA. 15213, 
January 1986. 
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Feasibility of Dynamic Trajectories 
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DongHun Shin 

Department of Mechanical Engineering 
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Pittsburgh, PA 15213 
November 1985 

Abstract 

Constraints for the feasible dynamic trajectories of the mobile robot are considered and conditions 

on the slippage between wheels and terrain are presented for testing the feasibility of dynamic 

trajectories. Slippage constraints are devided into two cases, the translational slippage and the loss 

of the traction and each case is investigated using newtonian mechanics and coulomb’s friction law. 
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1 Introduction 

This paper concerns the feasibility of the dynamic trajectories used for the supervisory steering 

control of the wheeled mobile robots. The steering control objective is to navigate the robot among 

obstacles to reach the specified destination. A usual steering control problem of a mobile robot 

consists of three hierachical structures [4] [5] [l] which are illustrated in Fig 1. 

c o l l i s i o n  f r e e  p a t h  

r e fe rence  inpu t ;  func t ion  of t i m e  

Fig.  1. Hie ra rch ica l  s t r u c t u r e  of t h e  superv isory  
s t e e r i n g  c o n t r o l  

The first level of the control hierachy is to plan a collision free path which is usually a sequence of 

nodes from the current positin to the destination. A dynamic trajectory is then generated which takes 

into consideration system dynamics and limits on control inputs. This trajectory is converted into 

reference control trajectories for the servo-controlled actuator inputs. 

The issues addressed in this paper is the feasibility condition of the dynamic trajectories of the 

mobile robot. Since the feasibility of the trajectories depend on the constraints of the control system, 

constraints of the mobile robot are discussed and especially, slippage constraints which are the 

crucial and characteristic constraints for the feasible trajectories of the mobile robot are investigated. 

The remainder of this paper is organized as follows. The feasibility problem of the trajectory is 

formulated in sedtion 2. The potential sources of infeasibility are discussed in section 3. Section 4 

presents the feasibility condition due to slippage constraints. The concluding section identifies 

several directions for future research. 

2 Problem Formulation 

The dynamics of a mobile robot with n degrees of freedom can be represented by n coupled second 

order differential equation (1). 
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where 

i = l , .  . . ,n 
q=[q,, . . . ,qJ - n generalized coordinates 
d=[Q,, . . . ,tJ - n generalized velocities 
ij=[ql, . . . ,@A - n generalized acceleration 
7 = [ T ~ ,  . . . ,T,) - n generalized forces 

If we let Q be the 2n dimensional set of feasible generalized coordinates and velocities, physical 

operating region of system is expressed as 

Since the generalized forces are combination of components of control input forces/torques, they 

are also limited as 

(3) 
- 

7, d 7 s 7: 

where, i=l,  . . . ,n 

The task of the mobile robot is normally specified in the global coordinate frame where the 

destination and the obstacles can be most easily represented. Thus computation of the steering 

control in terms of the generlaized coordinates requires mapping the destination and the obstacles 

into the generalized coordinate frame and solving a nonlinear control problem with state variable 

constraints. But it is not easy. A tractable approach to steering control is to plan the collision free 

path in the global coordinate frame independently of the dynamic constraints. A dynamic trajectory is 

then generated in global coordinates as a function of time with respect to the specific point of the 

robot. 

X=X(r) (4) 

where, X=[X', . . . .XJ : trajectory in global frame 

These dynamic trajectory are then converted into the generalized coordinates as reference input for 

the lower level servo controller. 

d = do> (5 )  

where 

i=l, ..., n 
q' : trajectory in generalized frame 

These dynamic trajectories must satisfy the equation of motion under the constraints (2) and (3). 
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As an example, we consider a simplified model of a tricycle which moves on a planar surface and is 

configured in Fig 2. It goes only forward and has one steered and driven front wheel and two rear idle 

wheels with same radius. 

6 

/7 

1 

Fig. 2. Simple model~of a t r i c y c l e  

where, 
X ,  Ylz are the inertial global coordinates 
x,y,z are the body coordinates which is fixed to the mass center of the robot 

and translates with velocity Vg and yaws with angular velocity 8, 
with respect to the inertial coordinate frame. 

9, : steering angle of the driven wheel 

3 : torque to steer the wheel 
r' : torque to turn the wheel 

: rolling angle of the driven wheel 

v 

If we consider the degrees of freedom for the tricycle model, the three coordinates XIY and 8, 
constitute a complete set to express the position and the orientation of the robot. The variation dX,dY 
and de, are not, however, independent, since the requinnent that any translation must be in the 

heading direction implies the constraining relation . 

In other words, there is one nonholonomic constraint. Thus the degrees of freedom of the tricycle 

model for the planar motion is two, which is known as the minimum degree of freedom for the two 
dimensional planar motiojn [6], as the conventional steered vehicle has two degrees of freedom. 
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Then, two generalized coordinates and forces for the tricycle model can be taken as 

The simple operating region of the tricycle can be represented as 
0 'p, ' I d  9- 
'p, 9,,max ' I'p,I 9&= 

And the limit on contrd inputs can be specified as 
O s T , s T  %- 

lTzl 5 T&- 

The dynamic trajectory with respect to the mass center of the tricycle can be generated in the 

inertial coordinate frame as 
x = fX(0 
y = f . 4  

and these trajectories can be converted into the generalized coordinates as 
v,, = r,co 
'p, = f,<') 

3 Potential Sources of Infeasibility 

This section gives a brief discussions of each major potential source of the infeasibility of the 

dynamic trajectory. Major potential sources are as follows. 

1. Kinematic constraints 

2. Vehicle stability 

3. Limits on control input force/torque 

4. Slippage of wheels 

The first, kinematic constraints, can be thought as equation (2) or (6), feasible generalized 
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coordinates and velocities. This is one of the major constraints problem for the steering control of 

manipulator because it limits the working space and velocities in terms of the generalized coordinates 

and constraints are coupled with each generalized coordinates and velocities. But, generally there is 

no significant problem to deal with these constraints of the mobile robot because they are not 

coupled seriously like the constraints of the tricycle model (6). The overturn of the mobile robot 

during turning around or acceleration would be thought as another constraint from the view point of 

the vehicle stability. This constraint depends on the height of mass center, geometric composition of 

wheels, angular velocity and acceleration, etc. 

The control input forces/torques are limited by the servo motor which is specified in the local 

generalized coordinate frame as equation (3). If the input forcedtoques required by the trajectory 

(4) or (5) exceed the limit on control input, the trajectory will not be feasible. Control input constraint 

problem is very important to enable the robotic manipulators to perform their maximum capability and 

efficiency, which lead to high productivity. So the industrial manipulator control problem against 

these constraints has been the issue and trajectories even optimized with respect to time and energy 

was reported [2] [3]. 

Last, slippage constraints are the characteristics of the mobile robot problem. A wheel rolls due to 

the driven torque and frictional force between the wheel and terrain. If the actual frictional force is 

not sufficient, the wheel will slip. Thus the slippage constraint of a wheel is expressed as (using 

Coulomb’s friction law) 

F s f l  
where, F : frictional force 

g(m) : friction coefficient 
N : normalforce 

(7) 

If the wheels of the mobile robot slip, the robot will slip and leave the given dynamic trajectory, that 

is, the trajectory will not be feasible. Thus the dynamic trajectory must be constrained to guarantee 

no slip of the wheel of the robot. Slippage constraint problem is thought as the most important for the 

feasible dynamic trajectories of the mobile robots because of the following reasons. 

1. Kinematic constraints are the most. crucial for the feasible trajectories but generally can 
be represented easily because they are not coupled seriously in the mobile robot 
problem. Also it can be easily checked. 

2. Vehicle stability constraints, Le. the overturn of the robot, would not be serious, if it is 
taken care of at the design of the robot. Then, slippage of wheels will occur before a 
overturn as the conventional vehicle does. 
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Next section will present a approach to deal with the slippage constraints. 

4 Slippage Constraints 

It is difficult to solve the general slippage constraint problem and to obtain the required frictional 

force of each wheel for the feasible dynamic trajectory. If the trajectory is feasible, there is no slip at 

the point of contact between any wheel and terrain. In other words, the point of contact is 

momentarily at rest. Then, since no work is done by the frictional forces, there is no explicit term of 

the frictional forces in the equation of the motion (1). Hence, the frictional forces can not be 

computed with the equation of the motion (1) and the given trajectory (4) or (5). Those forces would 

be obtained complicatedly with the geometric constraints of the robot and the equations of the motion 

of the subsystems. To make the problem tractable, slippage constraints are divided into two cases 

under the following assumptions. 

1. The robot does not have any flexible part. 

2. The robot moves on a planar surface with no irregulities. 

3. The frictional coefficient, p, is constant. 

4.1 Translational Slippage 

We first consider the translational slippage of the wheel when there is no slip due to the loss of 

traction. A general m wheeled mobile robot with the frictional forces required by the trajectory are 

simply configured in Fig 3. 

F 1 * * * F 5  f r i c t i o n a l  fo rce  

Fig. 3 .  m wheeled mobile robot  and f r i c t i o n  

Since all the wheels are fixed to the robot, it can be thought as a rigid body under external force 

F, j=1, . . . ,m , and driven torques. Thus any part of a rigid body can not slip unless the whole body, 

or mass center, slips. So, we make assumption 4 as 
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4. Any wheel do not slip translationally unless the mass center of the robot slips. 

In other words, the required frictional force of any wheel, FJ , will not exceed pN,unless the total 

sum of F/  exceeds the total sum of pN,- If there is no translation slip, the next equation should be 

satisfied . 
m m 

j= 1 j =  1 

Since the positions and orientations of the mass center of the robot in the body coordinate frame 

can be computed from by the dynamic trajectory, we obtain velocities of tfb Inhis center 

And we can obtain relations from the equations of the motion of the m wheeled mobile robot 

m 
F’= M( Py- Vxi> 

j =  1 
m 

j=1  
where M is the mass of the robot. 

g is the gravitational constant. 

Then, the equation (8) becomes 
1 

As examples, we consider simple circular motia.., ,I the tricycle model in 

circular motion with constant angular velocity, jZ=o, is considered as in Fig 4 

Then, 

section 2. 

(9) 

if a 

Fig. 4 .  S i m p l e  c i r c u l a r  motion of t r i c y c l e  
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V = w R  Vy=O 
* x  
VX'O v = o  

Y 

We obtain th relation from equation (9) 

o'R I p g  

which agrees with the physical understanding. 

Second, if a circular motion with constant angular acceleration, 8,= at, is considered, then 
V =atR Vy=O 
* x  
V = a R  3=0 

X Y 

And we obtain the relation from equation (9) 
1 

a4R2 a 

4.2 Loss of Traction 

Next, we consider the slippage of one driven wheel due to the loss of traction. A simplified driven 

wheel under torque Tis figured. 

Fig. 5 .  Driven wheel and ex te rna l  forces 

The frictional force required by the trajectory can be decomposed into the longitudinal and the 

traverse force with repect to a wheel; Ft,F7 and from equation (7), the wheel slips if next equation is 

not satisfied. 
1 - 

F=[F;+F," s p~ 
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As the driven torque is increased for the ecceleration, the frictional force F will be increased and 

eventually become the maximum feasible frictional force p N .  Then the torque is increased more and 

the wheel, however, does not slip until FI alone exceeds the p N  i f  the assumption 4 bolds: there is no 
movement of the wheel due to slippage without the slippage of the whole robot. Physically,as F is 

increased, F,, will be decreased while F is p N .  Thus if there is no translational slippage.of the robot, 

any wheel does not slip provided 

I 

Fr I pN (1.1) 

From the Fig 5, the equation of the motion is 
I 8  = T-Ftr 
V r l  

Then, equation (1 1) becomes 
T- IqBr 

. S  pN 
I 

So, the mobile robot will not slip as long as equation (9) and (12) hold. 

5 Conclusion and Future Research 
In this paper, we have discussed the constraints for the feasible dynamic trajectory and presented 

an approach for a slippage constraints which are the most important and characteristic contraints to 

the mobile robot dynamic trajectory. Directions for future research include 

0 Derivation of constraints on vehicle stability. 

0 Methods for the generation of the feasible dynamic trajectory considering constraints 
discussed in section 3. 

0 Implementation of feasibility constraints to the dynamic steering control of the mobile 
robot. 

0 Modification of the dynamic steering algorithm so that it may be applied to the navigation 
of the current mobile robot. 

0 Integration of the dynamic steering algorithm with higher level planning or previous 
information. 

0 Navigation of the mobile robot using the dynamic steering control. 
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The NEPTUNE Mobile Robot 

Gregg W. Podnar 
Robotics Institute 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

Neptune is a functional vehicle for autonomous mobile robot research. As a reliable mobile base, it supports 
experiments in perception, real-world modeling, navigation, planning and high-level control. It is self-propelled, 
with computer control of direction and motivation. 

One of the prime design goals was the minimization of the number of subsystems. By doing so, reliability was 
enhanced. 

Structure 

Neptune’s basic structure is best likened to a child’s tricycle. The three 10-inch (25cm) pneumatic tires are used to 
provide spring, compliance, and traction on soft ground. 

Steering of the fork is accomplished by one motor. The fork-mounted wheel is driven by a second motor. This 
allows sharp turning which facilitates navigation in cluttered environments. The other two wheels are parallel and 
rotate freely. The fork can turn at least 90’ left and right, and the wheel can be driven forward or back. Together, 
these two features enable the vehicle to rotate about a vertical axis through a point located directly between the two 
passive wheels. The overall width is 22.5 inches (57cm), and the length is 32.5 inches (83cm). The turning length 
‘curb-to-curb’ is only 42 inches (107cm). 

Power 

To eliminate on-board power storage and recharging, mains power is supplied through an umbilical. This 12Ov~c is 
distributed for all on-board electrical equipment via outlets mounted in the vehicle frame. Each piece of equipment 
provides its own power conversiorUprotection. 

Motors 

Using 1 2 O v ~ C  motors eliminates the need for massive power conversion equipment. Synchronous motors were 
chosen for drive and steering as this replaces a feed-back and servoing system (Run a motor for a length of time, and 
calculate the revolutions.). The elimination of optical encoders or resolvers enhances reliability. 
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Control 

An on-board processor accepts commands from a serial data link through the umbilical. This processor controls the 
motor relays and monitors fork position. It also provides control and monitoring for other vehicle-mounted 
equipment (such as switching between two television cameras). 

Communication 

Together with the Power, the umbilical carries cables for digital and video signals to and from off-board computers. 

Construction 

Neptune is made from two basic assemblies, the Fork and the Frame. Both parts were designed to have an excess 
of structural fortitude to withstand abuse and provide secure mounting points for auxiliary experimental equipment. 

The frame is made of four pieces of four inch square aluminum tubing which are are welded together. Likewise, the 
four major fork pieces are aluminum and are welded. This was done mainly for strength but it also reduced the 
required machining. Once all the pieces were made, assembly of the mechanical parts took less than a week. 

Prefabricated Components 

For mounting the rotating shafts (two axles and the fork neck), off-the-shelf, housed bearings are used. In the same 
way, the chains and sprockets for driving and steering are standard components. The wheels and tires are units 
manufactured for handtrucks. Delivery time on these items is short, on the order of one to three weeks. By 
employing pre-fabricated components, shop time was minimized. It took one machinist about one full week to make 
all the other parts. 

Performance 

The Drive motor provides 1800 oz.in. of torque. With the 4:l reduction gearing, about 90 pounds of pull is 
developed at the drive wheel. Fully loaded with cameras and a ring of 24 sonar sensors, Nepfune weighs about 200 
pounds and easily manages a 10' slope. It travels at about nine inches per second; about 1/2 MPH. 

Neptune has had different configurations of sensor systems mounted on it to perform a variety of experiments. It 
has navigated in hallways, cluttered labs and sidewalks. It was even used in the rain with the addition of an 
umbrella to protect the electronics. It hris reliably served our research purposes since early in 1984. 
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The URANUS Mobile Robot 

Gregg W. Podnar 
Robotics Institute 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

Uranus is a sophisticated vehicle for autonomous mobile robot research. As an omni-directional mobile base, it 
makes possible experiments in perception, real-world modeling, navigation, planning and high-level control. It is 
self-propelled and can support a wide variety of sensor and manipulator packages. True autonomy is possible as 
electrical and computing power are carried on-board. 

The most unique feature of Uranus is its four wheels. Developed by a Swedish company, MECANUM, for 
omni-directional movement of factory floor pallets and wheel chairs, we have adapted them for use in mobile robots. 
With respect to the wheels' Swedish origin, we pronounce Uranus: Oo-ron'-00s. 

Wheels 

Each wheel has twelve free-spinning rubber rollers around its circumference. The axle of each roller is at a 45' 
angle to a line parallel to the wheel's axle. When viewed from the side, the end of each roller overlaps the 
beginning of the next, and due to the barrel shape of each roller, the wheel presents a circular silhouette. As a wheel 
rolls, its contact with the ground changes from one roller to the next smoothly. 

There are right-handed and left-handed wheels which can be thought of as working in pairs, with each pair on a 
common axis. When both wheels are rotated in the same direction, the sideways components generated by the 
rollers cancels and the wheels move forward or back. However, when the wheels are rotated in opposite directions, 
the sideways components add and the wheels move sideways. 

Structure 

Uranus describes a rectangular envelope which is 3 0  (76cm) long by 24" (61cm) wide by 12(3Ocm) high, with 
additional height of 0.5"-2.5" (1.3-6.3cm) due to ground clearance. The primary frame components are 3"x6 
(7 .6~  15.2cm) rectangular aluminum tubing. The suspension components are all stainless steel. 

The vehicle has three layers. The fist six inches (15cm) includes the wheels, drivetrain, motors, batteries and power 
control. As this is the majority of the weight, the center of gravity is very low. 

The second six inches (15cm) includes computers and control electronics along with their associated power supplies. 
The four comers of this level are for springs and dampers of the suspension. 

The third level consists of the top plate or deck. It is 23" (58cm) by 27" (69cm); slightly smaller than the vehicle 
envelope. This allows the wheels to contact a vertical obstacle first. The deck provides structural support for up to 
250 pounds (1 13kg) of additional equipment. It is full of 1/4"-20 holes on a grid of one inch (2.5cm) centers. 
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Motors 

Each of the four wheels is driven by a samarium-cobalt brushless D.C. motor. An on-board computer controls 
motor position, speed and rotation by monitoring shaft position with an optical encoder. The motors are mounted in 
the side frame pieces of the first layer between the wheels. The shaft end of the motor protrudes into the frame and 
connects with the drivetrain. The power electronics for switching a motor’s coils is housed in a heat sink mounted 
directly to the outboard side of the motor housing. This is to minimize EM1 and allow convection cooling. 

Suspension 

Each wheel is mounted on what can most easily be described as a trailing-arm. Vertical movement of two inches 
(5cm) maximum is possible, Initially, the vehicle is suspended on stiff coil springs which allow just enough 
compliance to ensure that all four wheels have adequate contact with the ground. Space is available for the option of 
an active suspension. By computer control of pneumatic or hydraulic actuators, the vehicle can be leveled, raised 
and lowered to facilitate certain environments. 

Power 

Power is supplied by an on-board sealed lead-acid battery. The motors operate directly from the 24VDC battery 
power, whereas the computers and other equipment convert and condition power through dedicated switching power 
supplies. 

An umbillical provides 2 4 ~ ~  from an off-board supply. This supply is capable of powering the entire vehicle and 
simultaneously charging the batteries. In this way, experimentation which does not require full wireless operation 
and indefinite operating times are facilitated. 

Performance 

Four motors, developing peak torque of 3.5 ft.lbs. (4.7nm) drive the wheels through a 4:l reduction. With a 9 
(23cm) wheel diameter, about 150 lbs. (660nt) of thrust is developed. This is the theoretical maximum; about half 
this number is a practical value. 

With these motors the maximum speed is about three feet (lm) per second or 2MPH (3.2KPH) which is adequately 
fast for a cluttered environment. This can be increased if need be. 

With on-board batteries, about four hours of wireless operation is possible. This estimate must be reduced if the 
vehicle requires more power for rough teriain or interaction with objects in the environment. Similarly, more time is 
available for a single experiment if the nlovements are more sedate. 
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Robots That Rove 

Hans P. Moravec 
Robotics Institute 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

August, 1985 

The most consistently interesting stories are those about journeys, and the most fascinating organisms 
are those that move from place to place. I think these observations are more than idiosyncrasies of 
human psychology, but illustrate a fundamental principle. The world at large has great diversity, and a 
traveller constantly encounters novel circumstances, and is consequently challenged to respond in new 
ways. Organisms and mechanisms do not exist in isolation, but are systems with their environments, and 
those on the prowl in general have a richer environment than those rooted to one place. 

Mobility supplies danger along with excitement. Inappropriate actions or lack of well-timed appropriate 
ones can result in the demise of a free roamer, say over the edge of a cliff, far more easily than of a 
stationary entity for whom particular actions are more likely to have fixed effects. 

Challenge combines with opportunity in a strong selection pressure that drives an evolving species that 
happens to find itself in a mobile way of life in certain directions, directions quite different from those of 
stationary organisms. The last billion years on the surface of the earth has seen a grand experiment 
exploring these pressures. Besides the fortunate consequence of our own existence, some universals are 
apparent from the results to date and from the record. In particular, intelligence seems to follow from 
mobility. 

I believe the same pressures are at work in the technological evolution of robots, and that, by analogy, 
mobile robots are the most likely route to solutions to some of the most vexing unsolved problems on the 
way to true artificial intelligence - problems such as how to program common sense reasoning and 
learning from sensory experience. This opportunity carries a price - programs to control mobile robots are 
more difficult to get right than most - the robot is free to search the diverse world looking for just the 
combination that will mess up your plan. There’s still a long way to go, but perhaps my experiences thus 
far pursuing this line of thought will convince you as they have me. Among the conclusions that surprised 
me is that future intelligent robots will of necessity be more like animals and humans that I used to 
believe, for instance they will exhibit recognizable emotions and human irrationalities. On to cases. 

Mobility and Intelligence in Nature 

Two billion years ago our unicelled ancestors parted genetic company with the plants. By accident of 
energetics and heritage, large plants now live their lives fixed in place. Awesomely effective in their own 
right, the plants have no apparent inclinations towards intelligence; a piece of negative evidence that 
supports my thesis that mobility is a parent of this trait. 
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Animals bolster the argument on the positive side, except for the immobile minority like sponges and 
clams that support it on the negative. 

A billion years ago, before brains or eyes were invented, when the most complicated animals were 
something like hydras, double layers of cells with a primitive nerve net, our progenitors split with the 
invertebrates. Now both clans have intelligent members. Cephalopods are the most intellectual 
invertebrates. Most mollusks are sessile shellfish, but octopus and squid are highly mobile, with big brains 
and excellent eyes. Evolved independently of us, they are different. The optic nerve connects to the back 
of the retina, so there is no blind spot. The brain is annular, a ring around the esophagus. The green 
blood is circulated by a systemic heart oxygenating the tissues and two gill hearts moving depleted blood. 
Hemocyanin, a copper doped protein related to hemoglobin and chlorophyll, carries the oxygen. 

Octopus and their relatives are swimming light shows, their surfaces covered by a million individually 
controlled color changing cells. A cuttlefish placed on a checkerboard can imitate the pattern, a fleeing 
octopus can make deceiving seaweed shapes coruscate backward along its body. Photophores of deep 
sea squid, some with irises and lenses, generate bright multicolored light. Since they also have good 
vision, there is a potential for high bandwidth communication. 

Their behavior is mammal like. Octopus are reclusive and shy, squid are occasionally very aggressive. 
Small octopus can learn to solve problems like how to open a container of food. Giant squid, with large 
nervous systems, have hardly ever been observed except as corpses. They might be as clever as 
whales. 

Birds are vertebrates, related to us through a 300 million year old, probably not very bright, early reptile. 
Size-limited by the dynamics of flying, some are intellectually comparable to the highest mammals. 

The intuitive number sense of crows and ravens extends to seven, compared to three or four for us. Birds 
outperform all mammals except higher primates and the whales in "learning set" tasks, where the idea is 
to generalize from specific instances. In mammals generalization depends on cerebral cortex size. In 
birds forebrain regions called the Wulst and the hyperstriatum are critical, while the cortex is small and 
unimportant. 

Our last common ancestor with the whales was a primitive rat-like mammal alive 100 million years ago. 
Some dolphin species have body and brain masses identical to ours, and have had them for more 
generations. They are as good as us at many kinds of problem solving, and can grasp and communicate 
complex ideas. Killer whales have brains five times human size, and their ability to formulate plans is 
better than the dolphins', who they occasionally eat. Sperm whales, though not the largest animals, have 
the world's largest brains. Intelligence may be an important part of their struggle with large squid, their 
main food. Elephant brains are three times human size. Elephants form matriarchal tribal societies and 
exhibit complex behavior. Indian domestic elephants learn over 500 commands, and form voluntary 
mutual benefit relationships with their trainers, exchanging labor for baths. They can solve problems such 
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as how to sneak into a plantation at night to steal bananas, after having been belled (answer: stuff mud 
into the bells). And they do have long memories. 

Apes are our 10 million year cousins. Chimps and gorillas can learn to use tools and to communicate in 
human sign languages at a retarded level. Chimps have one third, and gorillas one half, human brainsize. 

Animals exhibiting near-human behavior have hundred billion neuron nervous systems. Imaging vision 
alone requires a billion. The smartest insects have a million brain cells, while slugs and worms make do 
with a thousand, and sessile animals with a hundred. The portions of nervous systems for which tentative 
wiring diagrams have been obtained, including nearly all of the large neuroned sea slug, Aplysia, the flight 
controller of the locust and the early stages of vertebrate vision, reveal neurons configured into efficient, 
clever, assemblies. 

Mobility and Intelligence around the Lab 

The twenty year old modem robotics effort can hardly hope to rival the billion year history of large life on 
earth in richness of example or profundity of result. Nevertheless the evolutionary pressures that shaped 
life are already palpable in the robotics labs. I’m lucky enough to have participated in some of this activity 
and to have watched more of it at first hand, and so will presume to interpret the experience. 

The first serious attempts to link computers to robots involved hand-eye systems, wherein a computer- 
interfaced camera looked down at a table where a mechanical manipulator operated. The earliest of these 
(ca. 1965) were built while the small community of artificial intelligence researchers was still flushed with 
the success of the original AI programs - programs that almost on the first try played games, proved 
mathematical theorems and solved problems in narrow domains nearly as well as humans. The robot 
systems were seen as providing a richer medium for these thought processors. Of course, a few minor 
new problems did come up. 

A picture from a camera can be represented in a computer as a rectangular array of numbers, each 
representing the shade of gray or the color of a point in the image. A good quality picture requires a 
million such numbers. Identifying people, trees, doors, screwdrivers and teacups in such an 
undifferentiated mass of numbers is a formidable problem - the first programs did not attempt it. Instead 
they were restricted to working with bright cubical blocks on a dark tabletop; a caricature of a toddler 
learning hand-eye co-ordination. In this simplified environment computers more powerful than those that 
had earlier aced chess, geometry and calculus problems, combined with larger, more developed, 
programs were able to sometimes, with luck, correctly locate and grab a block. 

The general hand-eye systems have now mostly evolved into experiments to study smaller parts of the 
problem, for example dynamics or force feedback, or into specialized systems aimed at industrial 
applications. Most arm systems have special grippers, special sensors, and vision systems and 
controllers that work only in limited domains. Economics favors this, since a fixed arm, say on an 
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assembly line, repetitively encounters nearly identical conditions. Methods that handle the frequent 
situations with maximum efficiency beat more expensive general methods that deal with a wide range of 
circumstances that rarely arise, while performing less well on the common cases. 

Shortly after cameras and arms were attached to computers, a few experiments with computer controlled 
mobile robots were begun. The practical problems of instrumenting and keeping operational a remote 
controlled, battery powered, camera and video transmitter toting vehicle compounded the already severe 
practical problems with hand-eye systems, and conspired to keep many potential players out of the game. 

The earliest successful result was SRl’s Shakey (ca. 1970). Although it existed as a sometimes functional 
physical robot, Shakey’s primary impact was as a thought experiment. Its creators were of the first wave 
“reasoning machine” branch of AI, and were interested primarily in applying logic based problem solving 
methods to a real world task. Control and seeing were treated as system functions of the robot and 
relegated mostly to staff engineers and undergraduates. Shakey physically ran very rarely, and its blocks 
world based vision system, which reqired that its environment contain only clean walls and a few large 
smooth prismatic objects, was coded inefficiently and ran very slowly, taking about an hour to find a block 
and a ramp in a simple scene. Shakey’s most impressive performance, physically executed only 
piecemeal, was to “push the block” in a situation where it found the block on a platform. The sequence of 
actions included finding a wedge that could serve as a ramp, pushing it against the platform, then driving 
up the ramp onto the platform to push the block off. 

The problems of a mobile robot, even in this constrained an environment inspired and required the 
development of a powerful, effective, still unmatched, system STRIPS that constructed plans for robot 
tasks. STRIPS’ plans were constructed out of primitive robot actions, each having preconditions for 
applicability and consequences on completion. It could recover from unexpected glitches by incremental 
replanning. The unexpected is a major distinguishing feature of the world of a mobile entity, and is one of 
the evolutionary pressures that channels the mobile towards intelligence. 

Mobile robots have other requirements that guide the evolution of their minds away from solutions 
seemingly suitable for fixed manipulators. Simple visual shape recognition methods are of little use to a 
machine that travels through a cluttered three dimensional world. Precision mechanical control of position 
can’t be achieved by a vehicle that traverses rough ground. Special grippers don’t pay off when many 
different and unexpected objects must be handled. Linear algorithmic control systems are not adequate 
for a rover that often encounters surprises in its wanderings. 

The Stanford Cart was a mobile robot built about the same time as Shakey, on a lower budget. From the 
start the emphasis of the Cart project was on low level perception and control rather than planning, and 
the Cart was actively used as a physical experimental testbed to guide the research. Until its retirement in 
1980 it (actually the large mainframe computer that remote controlled it) was programmed to: 

Follow a white line in real time using a TV camera mounted at about eye level on the robot. 
The program had to find the line in a scene that contained a lot of extraneous imagery, and 
could afford to digitize only a selected portion of the images it processed. 
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e Travel down a road in straight lines using points on the horizon as references for its compass 
heading (the cart carried no instrumentation of any kind other than the TV camera). The 
program drove it in bursts of one to ten meters, punctuated by 15 second pauses to think 
about the images and plan the next move. 

0 Go to desired destinations about 20 meters away (specified as so many meters forward and 
so many to the left) through messy obstacle courses of arbitrary objects, using the images 
from the camera to servo the motion and to detect (and avoid) obstacles in three dimensions. 
With this program the robot moved in meter long steps, thinking about 15 minutes before 
each one. Crossing a large room or a loading dock took about five hours, the lifetime of a 
charge on the Cart's batteries. 

The vision, world representation and planning methods that ultimately worked for the Cart (a number were 
tried and rejected) were quite different than the "blocks world and specialized industrial vision methods 
that grew out of the hand-eye efforts. Blocks world vision was completely inappropriate for the natural 
indoor and outdoor scenes encountered by the robot. Much experimentation with the Cart eliminated 
several other initially promising approaches that were insufficiently reliable when fed voluminous and 
variable data from the robot. The product was a vision system with a different flavor than most. It was "low 
level" in that it did no object modelling, but by exploiting overlapping redundancies it could map its 
surroundings in 3D reliably from noisy and uncertain data. The reliability was necessary because Cart 
journeys consisted of typically twenty moves each a meter long punctuated by vision steps, and each step 
had to be accurate for the journey to succeed. 

At Carnegie-Mellon University we are building on the Cart work with (so far) four different robots 
optimized for different parts of the research. 

Pluto was designed for maximum generality - its wheel system is omnidirectional, allowing motion in any 
direction while simultaneously permitting the robot to spin like a skater. It was planned that Pluto would 
continue the line of vision research of the Cart and also support work in close-up navigation with a 
manipulator (we would like a fully visually guided procedure that permits the robot to find, open and pass 
through a door). The real world has changed our plans. To our surprise, the problem of controlling the 
three independently steerable and driveable wheel assemblies of Pluto is an example of a difficult, so far 
unsolved, problem in control of overconstrained systems. We are working on it, but in the meantime Pluto 
is nearly immobile. 

When the difficulty with Pluto became apparent, we built a simple robot, Neptune, to carry on the long 
range vision work. I'm happy to announce that Neptune is now able to cross a room in under an hour, five 
times more quickly than the Cart. 

Uranus is the third robot in the CMU line, designed to do well the things that Pluto has so far failed to do. 
It will achieve omnidirectionality through curious wheels, tired with rollers at 45 degrees, that, mounted 
like four wagon wheels, can travel forward and backward normally, but that screw themselves sideways 
when wheels on opposite sides of the robot are turned in opposite directions. 
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Our fourth mobile robot is called the Terragator, for terrestrial navigator, and is designed to travel 
outdoors for long distances. It is much bigger than the others, almost as large as a small car, and is 
powered by a gasoline generator rather than batteries. We expect to program it to travel on roads, avoid 
and recognize outdoor obstacles and landmarks. Our earlier work makes clear that in order to run at the 
speeds we have in mind (a few km/hr) we will need processing speeds about 100 times faster than our 
medium size mainframes now provide. We plan to augment our regular machines with a specialized 
computer called an array processor to achieve these rates. 

Our ambitions for the new robots (go down the hall to the third door, go in, look for a cup and bring it 
back) has created another pressing need - a computer language in which to concisely specify complex 
tasks for the rover, and a hardware and software system to embody it. We considered something similar 
to Stanford's AL arm controlling language from which the commercial languages VAL at Unimation and 
the more sophisticated AML at IBM were derived. 

Paper attempts at defining the structures and primitives required for the mobile application revealed that 
the linear control structure of these state-of-the-art arm languages was inadequate for a rover. The 
essential difference is that a rover, in its wanderings, is regularly "surprised" by events it cannot 
anticipate, but with which it must deal. This requires that contingency routines be activated in arbitrary 
order, and run concurrently. We are experimenting with a structure where a number of specialist 
programs communicating via a common data structure called a blackboard are active at the same time, 
some operating sensors, some controlling effectors, some integrating the results of other modules, and 
some providing overall direction. As conditions change the priority of the various modules changes, and 
control may be passed from one to another. 

The Psychology of Mobile Robots 

Suppose we ask Uranus, equipped with a controller based on the blackboard system mentioned in the 
last section to, in fact, go down the hall to the third door, go in, look for a cup and bring it back. This will 
be implemented as a process that looks very much like a program written for the arm control languages 
(that in turn look very much like Algol, or even Basic), except that the door recognizer routine would 
probably be activated separately. Consider the following caricature of such a program. 

MODULE Go-Fetch-Cup 
Wake up Door-Recognizer with instructions 

Record Door-Location ) 
Record Start-Location 
Set Door-Number to 0 
While Door-Number < 3 Wall-Follow 
Face-Door 
IF Door-Open THEN Go-Through-Opening 

ELSE Open-Door-and-Go-Through 
Set Cup-Location to result of Look-for-Cup 
Travel to Cup-Location 
Pickup-Cup at Cup-Location 
Travel to Door-Location 

( On Finding-Door Add 1 to Door-Number 
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Face-Door 
IF Door-Open THEN Go-Through-Opening 

ELSE Open-Door-and-Go-Through 
Travel to Start-Location 
End 

So far so good. We activate our program and Uranus obediently begins to trundle down the hall counting 
doors. It correctly recognizes the first one. The second door, unfortunately is decorated with some garish 
posters, and the lighting in that part of the corridor is poor, and our experimental door recognizer fails to 
detect it. The wall follower, however, continues to operate properly and Uranus continues on down the 
hall, its door count short by one. It recognizes door 3, the one we had asked it to go through, but thinks it 
is only the second, so continues. The next door is recognized correctly, and is open. The program, 
thinking it is the third one, faces it and proceeds to go through. This fourth door, sadly, leads to the 
stairwell, and poor Uranus, unequipped to travel on stairs, is in mortal danger. 

Fortunately there is a process in our concurrent programming system called Detect-Cliff that is always 
running and that checks ground position data posted on the blackboard by the vision processes and also 
requests sonar and infrared proximity checks on the ground. It combines these, perhaps with an a-priori 
expectation of finding a cliff set high when operating in dangerous areas, to produce a number that 
indicates the likelyhood there is a drop-off in the neighborhood. 

A companion process Deal-with-Cliff also running continuously, but with low priority, regularly checks this 
number, and adjusts its own priority on the basis of it. When the cliff probability variable becomes high 
enough the priority of Deal-with-Cliff will exceed the priority of the current process in control, Go-Fetch- 
Cup in our example, and Deal-with-Cliff takes over control of the robot. A properly written Deal-with-Cliff 
will then proceed to stop or greatly slow down the movement of Uranus, to increase the frequency of 
sensor measurements of the cliff, and to slowly back away from it when it has been reliably identified and 
located. 

Now there's a curious thing about this sequence of actions. A person seeing them, not knowing about the 
internal mechanisms of the robot might offer the interpretation "First the robot was determined to go 
through the door, but then it noticed the stairs and became so frightened and preoccupied it forgot all 
about what it had been doing". Knowing what we do about what really happened in the robot we might be 
tempted to berate this poor person for using such sloppy anthropomorphic concepts as determinination, 
fear, preoccupation and forgetfulness in describing the actions of a machine. We could berate the person, 
but it would be wrong. 

I think the robot came by the emotions and foibles indicated as honestly as any living animal. An octopus 
in pursuit of a meal can be diverted by hints of danger in just the way Uranus was. An octopus also 
happens to have a nervous system that evolved entirely independently of our own vertebrate version. Yet 
most of us feel no qualms about ascribing concepts like passion, pleasure, fear and pain to the actions of 
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the animal. 

We have in the behavior of the vertebrate, the mollusc and the robot a case of convergent evolution. The 
needs of the mobile way of life have conspired in all three instances to create an entity that has modes of 
operation for different circumstances, and that changes quickly from mode to mode on the basis of 
uncertain and noisy data prone to misinterpretation. As the complexity of the mobile robots increases I 
expect their similarity to animals and humans will become even greater. 

Among the natural traits I see in the immediate roving robot horizon is parameter adjustment learning. A 
precision mechanical arm in a rigid environment can usually have its kinematic self-model and its dynamic 
control parameters adjusted once permanently. A mobile robot bouncing around in the muddy world is 
likely to continuously suffer insults like dirt buildup, tire wear, frame bends and small mounting bracket 
slips that mess up accurate a-priori models. Our present visual obstacle course software, for instance, 
has a camera calibration phase where the robot is parked precisely in front of an exact grid of spots so 
that a program can determine a function that corrects for distortions in the camera optics. This allows 
other programs to make precise visual angle measurements in spite of distortions in the cameras. We 
have noticed that our present code is very sensitive to mis-calibrations, and are working on a method that 
will continuously calibrate the cameras just from the images perceived on normal trips through clutter. 
With such a procedure in place, a bump that slightly shifts one of the robot's cameras will no longer cause 
systematic errors in its navigation. Animals seem to tune most of their nervous systems with processes of 
this kind, and such accomodation may be a precursor to more general kinds of learning. 

Perhaps more controversially, I see the begininnings of self awareness in the robots. All of our control 
programs have internal representations, at varying levels of abstraction and precision, of the world around 
the robot, and of the robot's position within that world. The motion planners work with these world models 
in considering alternative future actions for the robot. If our programs had verbal interfaces we could ask 
questions that receive answers such as "I turned right because I didn't think I could fit through the 
opening on the left ". As it is we get the same information in the form of pictures drawn by the programs. 

So What's Missing? 

There may seem to be a contradiction in the various figures on the speed of computers. Once billed as 
"Giant Brains" computers can do some things, like arithmetic, millions of times faster than human beings. 
"Expert systems" doing qualitative reasoning in narrow problem solving areas run on these computers 
approximately at human speed. Yet it took such a computer five hours to simply drive the Cart across a 
room, down to an hour for Neptune. How can such numbers be reconciled? 

The human evolutionary record provides the clue. While our sensory and muscle control systems have 
been in development for a billion years, and common sense reasoning has been honed for probably 
about a million, really high level, deep, thinking is little more than a parlor trick, culturally developed over a 
few thousand years, which a few humans, operating largely against their natures, can learn. As with 
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Samuel Johnson’s dancing dog, what is amazing is not how well it is done, but that it is done at all. 

Computers can challenge humans in intellectual areas, where humans perform inefficiently, because they 
can be programmed to carry on much less wastefully. An extreme example is arithmetic, a function 
learned by humans with great difficulty, which is instinctive to computers. These days an average 
computer can add a million large numbers in a second, which is more than a million times faster than a 
person, and with no errors. Yet one hundred millionth of the neurons in a human brain, if reorganized into 
an adder using switching logic design principles, could sum a thousand numbers per second. If the whole 
brain were organized this way it could do sums one hundred thousand times faster than the computer. 

Computers do not challenge humans in perceptual and control areas because these billion year old 
functions are carried out by large fractions of the nervous system operating as efficiently as the 
hypothetical neuron adder above. Present day computers, however efficiently programmed, are simply 
too puny to keep up. Evidence comes from the most extensive piece of reverse engineering yet done on 
the vertebrate brain, the functional decoding of some of the visual system by D. H. Hubel, T. N. Weisel 
and colleagues. 

The vertebrate retina’s 20 million neurons take signals from a million light sensors and combine them in a 
series of simple operations to detect things like edges, curvature and motion. Then image thus processed 
goes on to the much bigger visual cortex in the brain. 

Assuming the visual cortex does as much computing for its size as the retina, we can estimate the total 
capability of the system. The optic nerve has a million signal carrying fibers and the optical cortex is a 
thousand times deeper than the neurons which do a basic retinal operation. The eye can process ten 
images a second, so the cortex handles the equivalent of 10,000 simple retinal operations a second, or 3 
million an hour. 

An efficient program running on a typical computer can do the equivalent work of a retinal operation in 
about two minutes, for a rate of 30 per hour. Thus seeing programs on present day computers seem to be 
100,000 times slower than vertebrate vision. The whole brain is about ten times larger than the visual 
system, so it should be possible to write real-time human equivalent programs for a machine one million 
times more powerful than todays medium sized computer. Even todays largest supercomputers are about 
1000 times slower than this desiratum. How long before our research medium is rich enough for full 
intelligence? 

Since the 1950s computers have gained a factor of 1000 in speed per constant dollar every decade. 
There are enough developments in the technological pipeline, and certainly enough will, to continue this 
pace for the forseeable future. 

The processing power available to AI programs has not increased proportionately. Hardware speedups 
and budget increases have been dissipated on convenience features; operating systems, time sharing, 
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high level languages, compilers, graphics, editors, mail systems, networking, personal machines, etc. and 
have been spread more thinly over ever greater numbers of users. I believe this hiatus in the growth of 
processing power explains the disappointing pace of AI in the past 15 years, but nevertheless represents 
a good investment. Now that basic computing facilities are widely available, and thanks largely to the 
initiative of the instigators of the Japanese Supercomputer and Fifth Generation Computer projects, 
attention worldwide is focusing on the problem of processing power for AI. 

The new interest in crunch power should insure that AI programs share in the thousandfold per decade 
increase from now on. This puts the time for human equivalence at twenty years. The smallest 
vertebrates, shrews and hummingbirds, derive interesting behavior from nervous systems one ten 
thousandth the size of a human's, so we can expect fair motor and perceptual competence in less than a 
decade. By my calculations and impressions present robot programs are similar in power to the control 
systems of insects. 

Some principals in the Fifth Generation Project have been quoted as planning "man capable" systems in 
ten years. I believe this more optimistic projection is unlikely, but not impossible. The fastest present and 
nascent computers, notably the Cray X-MP and the Cray 2, compute at 109 operations/second, only 1000 
times too slowly. 

As the computers become more powerful and as research in this area becomes more widespread the rate 
of visible progress should accelerate. I think artificial intelligence via the "bottom up" approach of 
technological recapitulation of the evolution of mobile animals is the surest bet because the existence of 
independently evolved intelligent nervous systems indicates that there is an incremental route to 
intelligence. It is also possible, of course, that the more traditional "top down" approach will achieve its 
goals, growing from the narrow problem solvers of today into the much harder areas of learning, common- 
sense reasoning and perceptual acquisition of knowledge as computers become large and powerful 
enough, and the techniques are mastered. Most likely both approaches will make enough progress that 
they can effectively meet somewhere in the middle, for a grand synthesis into a true artificial sentience. 

This artificial person will have some interesting properties. Its high level reasoning abilities should be 
astonishingly better than a human's - even today's puny systems are much better in some areas - but its 
low level perceptual and motor abilities will be comparable to ours. Most interestingly it will be highly 
changeable, both on an individual basis and from one of its generations to the next. And it will quickly 
become cheap. 

The Future 

What happens when increasingly cheap machines can replace humans in any situation? What will I do 
when a computer can write this article, and do research, better than me? These questions face some 
occupations now. They will affect everybody in a few decades. 
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By design, machines are our obedient and able slaves. But intelligent machines, however benevolent, 
threaten our existence because they are alternative inhabitants of our ecological niche. Machines merely 
as clever as human beings will have enormous advantages in competitive situations. Their production 
and upkeep costs less, so more of them can be put to work with given resources. They can be optimized 
for their jobs, and programmed to work tirelessly. 

Intelligent robots will have even greater advantages away from our usual haunts. Very little of the known 
universe is suitable for unaided humans. Only by massive machinery can we survive in outer space, on 
the surfaces of the planets or on the sea floor. Smaller, intelligent but unpeopled, devices will be able to 
do what needs to be done there more cheaply. The Apollo project put people on the moon for forty billion 
dollars. Viking landed machines on Mars for one billion. If the Viking landers had been as capable as 
humans, their multi-year stay would have told us much more about Mars than we found out about the 
moon from Apollo. 

As if this weren’t bad enough, the very pace of technology presents an even more serious challenge. We 
evolved with a leisurely 100 million years between significant changes. The machines are making similar 
strides in decades. The rate will quicken further as multitudes of cheap machines are put to work as 
programmers and engineers, with the task of optimizing the software and hardware which makes them 
what they are. The successive generations of machines produced this way will be increasingly smarter 
and cheaper. There is no reason to believe that human equivalence represents any sort of upper bound. 
When pocket calculators can out-think humans, what will a big computer be like? We will simply be 
outclassed. 

Then why rush headlong into the intelligent machine era? Wouldn’t any sane human try to delay things as 
long as possible? The answer is obvious, if unpalatable on the surface. Societies and economies are as 
surely subject to evolutionary pressures as biological organisms. Failing social systems wither and die, to 
be replaced by more successful competitors. Those that can sustain the most rapid expansion dominate 
sooner or later. 

We compete with each other for the resources of the accessible universe. If automation is more efficient 
than hand labor, organizations and societies which embrace it will be wealthier and better able to survive 
in difficult times, and expand in favorable ones. If the U.S. were to unilaterally halt technological 
development, an occasionally fashionable idea, it would soon succumb either to the military might of the 
Soviets, or the economic success of its trading partners. Either way the social ideals that led to the 
decision would become unimportant on a world scale. 

If, by some evil and unlikely miracle, the whole human race decided to eschew progress, the long term 
result would be almost certain extinction. The universe is one random event after another. Sooner or later 
an unstoppable virus deadly to humans will evolve, or a major asteroid will collide with the earth, or the 
sun will go nova, or we will be invaded from the stars, or a black hole will swallow the galaxy. 
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The bigger, more diverse and competent a culture is, the better it can detect and deal with external 
dangers. The bigger events happen less frequently. By growing sufficiently rapidly it has a finite chance of 
surviving forever. Even the eventual collapse or heat death of the universe might be evaded or survived if 
an entity can restructure itself properly. 

The human race will expand into the solar system soon, and human occupied space colonies will be part 
of it. But the economics of automation will become very persuasive in space even before machines 
achieve human competence. 

I visualize immensely lucrative self-reproducing robot factories in the asteroids. Solar powered machines 
would prospect and deliver raw materials to huge, unenclosed, automatic processing plants. Metals, 
semiconductors and plastics produced there would be converted by robots into components which would 
be assembled into other robots and structural parts for more plants. Machines would be recycled as they 
broke. If the reproduction rate is higher than the wear out rate, the system will grow exponentially. A small 
fraction of the output of materials, components, and whole robots could make someone very, very rich. 

The first space industries will be more conventional. Raw materials purchased from Earth or from human 
space settlements will be processed by human supervised machines and sold at a profit. The high cost of 
maintaining humans in space insures that that there will always be more machinery per person there than 
on Earth. As machines become more capable, the economics will favor an ever higher machine/people 
ratio. Humans will not necessarily become fewer, but the machines will multiply faster. 

When humans become unnecessary in space industry, the machines’ physical growth rate will climb. 
When machines reach and surpass humans in intelligence, the intellectual growth rate will rise similarly. 
The scientific and technical discoveries of super-intelligent mechanisms will be applied to making 
themselves smarter still. The machines, looking quite unlike the machines we know, will explode into the 
universe, leaving us behind in a figurative cloud of dust. Our intellectual, but not genetic, progeny will 
inherit the universe. Barring prior claims. 

This may not be as bad as it sounds, since the machine civilization will certainly take along everything we 
consider important, including the information in our minds and genes. Real live human beings, and a 
whole human community, could be reconstituted if an appropriate circumstance ever arose. Since we are 
biologically committed to personal death, immortal only through our children and our culture, shouldn’t we 
rejoice to see that culture become as robust as possible? 

An Alternative 

Some of us have very egocentric world views. We anticipate the discovery, within our lifetimes, of 
methods to extend human lifespans, and look forward to a few eons of exploring the universe. We don’t 
take kindly to being upstaged by our creations. 
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The machines’ major advantage is their progress rate. Our evolution is largely cultural, but is tightly 
constrained by our Darwinianly evolving biological substrate. Machinery evolves 100% culturally, culture 
itself being a rapidly evolving process that feeds on and accelerates itself. How can we, personally, 
become full, unhandicapped, players in this new game? 

Genetic engineering is an option. Successive generations of human beings could be designed by 
mathematics, computer simulations, and experimentation, like airplanes and computers are now. But this 
is just building robots out of protein. Away from Earth, protein is not an ideal material. It’s stable only in a 
narrow temperature and pressure range, is sensitive to high energy disturbances, and rules out many 
construction techniques and components. Anyway, second rate superhuman beings are just as 
threatening as first rate ones, of whatever they’re made. 

What’s really needed is a process that gives an individual all the advantages of the machines, at small 
personal cost. Transplantation of human brains into manufactured bodies has some merit, because the 
body can be matched to the environment. It does nothing about the limited and fixed intelligence of the 
brain, which the artificial intellects will surpass. 

Transmigration 

You are in an operating room. A robot brain surgeon is in attendance. By your side is a potentially human 
equivalent computer, dormant for lack of a program to run. Your skull, but not your brain, is anesthetized. 
You are fully conscious. The surgeon opens your brain case and peers inside. Its attention is directed at a 
small clump of about 100 neurons somewhere near the surface. It determines the three dimensional 
structure and chemical makeup of that clump non-destructively with high resolution 3D NMR holography, 
phased array radio encephalography, and ultrasonic radar. It writes a program that models the behavior 
of the clump, and starts it running on a small portion of the computer next to you. Fine connections are 
run from the edges of the neuron assembly to the computer, providing the simulation with the same inputs 
as the neurons. You and the surgeon check the accuracy of the simulation. After you are satisfied, tiny 
relays are inserted between the edges of the clump and the rest of the brain. Initially these leave brain 
unchanged, but on command they can connect the simulation in place of the clump. A button which 
activates the relays when pressed is placed in your hand. You press it, release it and press it again. 
There should be no difference. As soon as you are satisfied, the simulation connection is established 
firmly, and the now unconnected clump of neurons is removed. The process is repeated over and over for 
adjoining clumps, until the entire brain has been dealt with. Occasionally several clump simulations are 
combined into a single equivalent but more efficient program. Though you have not lost consciousness, or 
even your train of thought, your mind (some would say soul) has been removed from the brain and 
transferred to a machine. 

In a final step your old body is disconnected. The computer is installed in a shiny new one, in the style, 
color and material of your choice. You are no longer a cyborg halfbreed, your metamorphosis is complete. 
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For the squeamish there are other ways to work the transfer. The high resolution brain scan could be 
done in one fell swoop, without surgery, and a new you made, "While-U-Wait". Some will object that the 
instant process makes only a copy, the real you is still trapped in the old body (please dispose of 
properly). This is an understandable misconception growing from the intimate assocation of a person's 
identity with a particular, unique, irreplaceable piece of meat. Once the possibility of mind transfer is 
accepted, however, a more mature notion of life and identity becomes possible. You are not dead until 
the last copy is erased; a faithful copy is exactly as good as the original. 

If even the last technique is too invasive for you, imagine a more psychological approach. A kind of 
pocket computer (perhaps shaped and worn like glasses) is programm.ed with the universals of human 
mentality, with your genetic makeup and with whatever details of your life are conveniently available. It 
carries a program that makes it an excellent mimic. You carry this computer with you through the prime of 
your life, and it diligently listens and watches, and perhaps monitors your brainwaves, and learns to 
anticipate your every move and response. Soon it is able to fool your friends on the phone with its 
convincing imitation of you. When you die it is installed in a mechanical body and smoothly and 
seamlessly takes over your life and responsibilities. 

What? Still not satisfied? If you happen to be a vertebrate there is another option that combines some of 
the sales features of the methods above. The vertebrate brain is split into two hemispheres connected by 
a very large bundle of nerve fibers called the corpus callosum. When brain surgery was new it was 
discovered that severing this connection between the brain halves cured some forms of epilepsy. An 
amazing aspect of the procedure was the apparent lack of side effects on the patient. The corpus 
callosum is a bundle far thicker than the optic nerve or even the spinal cord. Cut the optic nerve and the 
victim is utterly blind; sever the spinal cord and the body goes limp. Slice the huge cable between the 
hemispheres and nobody notices a thing. Well, not quite. In subtle experiments it was noted that patients 
who had this surgery were unable, when presented with the written word "brush", for instance, to identify 
the object in a collection of others using their left hand. The hand wanders uncertainly from object to 
object, seemingly unable to decide which is "brush". When asked to do the same task with the right hand, 
the choice is quick and unhesitating. Sometimes in the left handed version of the task the right hand, 
apparently in exasperation, reaches over to guide the left to the proper location. Other such quirks 
involving spatial reasoning and motor co-ordination were observed. 

The explanation offered is that the callosum indeed is the main communications channel between the 
brain hemispheres. It has fibers running to every part of the cortex on each side. The brain halves, 
however, are fully able to function separately, and call on this channel only when a task involving co- 
ordination becomes necessary. We can postulate that each hemisphere has its own priorities, and that 
the other can request, but not demand, information or action from it, and must be able to operate 
effectively if the other chooses not to respond, even when the callosum is intact. The left hemisphere 
handles language and controls the right side of the body. The right hemisphere controls the left half of the 
body, and without the callosum the correct interpretation of the letters "b r u s h" could not be conveyed to 
the controller of the left hand. 
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But what an opportunity. Suppose we sever your callosum but then connect a cable to both severed ends 
leading into an external computer. If the human brain is understood well enough this external computer 
can be programmed to pass, but also monitor the traffic between the two. Like the personal mimic it can 
teach itself to think like them. After a while it can insert its own messages into the stream, becoming an 
integral part of your thought processes. In time, as your original brain fades away from natural causes, it 
can smoothly take over the lost functions, and ultimately your mind finds itself in the computer. With 
advances in high resolution scanning it may even be possible to have this effect without messy surgery - 
you would just wear some kind of helmet or headband. 

Whatever style you choose, when the process is complete advantages become apparent. Your computer 
has a control labelled speed. It had been set to slow, to keep the simulations synchronized with the old 
brain, but now you change it to fast. You can communicate, react and think a thousand times faster. But 
wait, there’s more! 

The program in your machine can be read out and altered, letting you conveniently examine, modify, 
improve and extend yourself. The entire program may be copied into similar machines, giving two or more 
thinking, feeling versions of you. You may choose to move your mind from one computer to another more 
technically advanced, or more suited to a new environment. The program can also be copied to some 
future equivalent of magnetic tape. If the machine you inhabit is fatally clobbered, the tape can be read 
into an blank computer, resulting in another you, minus the experiences since the copy. With enough 
copies, permanent death would be very unlikely. 

As a computer program, your mind can travel over information channels. A laser can send it from one 
computer to another across great distances and other barriers. If you found life on a neutron star, and 
wished to make a field trip, you might devise a way to build a neutron computer and robot body on the 
surface, then transmit your mind to it. Nuclear reactions are a million times quicker than chemistry, so the 
neutron you can probably think that much faster. It can act, acquire new experiences and memories, then 
beam its mind back home. The original body could be kept dormant during the trip to be reactivated with 
the new memories when the return message arrived. Alternatively, the original might remain active. There 
would then be two separate versions of you, with different memories for the trip interval. 

Two sets of memories can be merged, if mind programs are adequately understood. To prevent 
confusion, memories of events would indicate in which body they happened. Merging should be possible 
not only between two versions of the same individual but also between different persons. Selective 
mergings, involving some of the other person’s memories, and not others would be a very superior form 
of communication, in which recollections, skills, attitudes and personalities can be rapidly and effectively 
shared. 

Your new body will be able to carry more memories than your original biological one, but the accelerated 
information explosion will insure the impossibility of lugging around all of civilization’s knowledge. You will 
have to pick and choose what your mind contains at any one time. There will often be knowledge and 
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skills available from others superior to your own, and the incentive to substitute those talents for yours will 
be overwhelming. In the long run you will remember mostly other people’s experiences, while memories 
you originated will be floating around the population at large. The very concept of you will become fuzzy, 
replaced by larger, communal egos. 

Mind transferral need not be limited to human beings. Earth has other species with brains as large, from 
dolphins, our cephalic equals, to elephants, whales, and giant squid, with brains up to twenty times as 
big. Translation between their mental representation and ours is a technical problem comparable to 
converting our minds into a computer program. Our culture could be fused with theirs, we could 
incorporate each other’s memories, and the species boundaries would fade. Non-intelligent creatures 
could also be popped into the data banks. The simplest organisms might contribute little more than the 
information in their DNA. In this way our future selves will benefit from all the lessons learned by terrestrial 
biological and cultural evolution. This is a far more secure form of storage than the present one, where 
genes and ideas are lost when the conditions that gave rise to them change. 

Our speculation ends in a super-civilization, the synthesis of all solar system life, constantly improving 
and extending itself, spreading outwards from the sun, converting non-life into mind. There may be other 
such bubbles expanding from elsewhere. What happens when we meet? Fusion of us with them is a 
possibility, requiring only a translation scheme between the memory representations. This process, 
possibly occuring now elsewhere, might convert the entire universe into an extended thinking entity, a 
probable prelude to greater things. 
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