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Abstract.  The emergence of complex work systems has yielded new challenges 
for efficient and reliable collaboration between humans and machines.  Robots are 
now working autonomously beside human counterparts to accomplish critical 
tasks; however fully autonomous robot action is still considered unreliable.  This 
paper examines an approach to increasing the robustness, reliability, and 
efficiency of human-machine work systems by dynamically establishing dynamic 
control relationships between humans and robots as well as altering the effective 
autonomy manifested by each robot. The process involves workload estimation 
to determine the parameters of the system, workload optimization to analyze and 
modify system parameters, and workload mitigation to enact these modifications 
in a non-intrusive manner. Furthermore, heuristic approaches to approximating an 
optimal system configuration for real-time environments are also addressed and 
simulated. 
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1 Introduction 
 
Unstructured and hostile environments impose risk to exposed humans and present 
ideal domains for robotic applications; however, the conditions of these 
environments present significant challenges (i.e. complex obstacles, lack of 
sufficient prior knowledge, etc.) for autonomous robot operation and can impede a 
robot from achieving a desired goal.  The emerging use of multiple robots has 
compounded these problems since the success of one robot may depend upon the 
performance of other robots within the collective. 
 
To mitigate these challenges, an approach that integrates human cognition into the 
robot control structure is proposed.  As first discussed in [1], researchers from a 
spectrum of fields have developed technologies aligned with this theme. Some 
recent examples of this research include human-computer interfaces [2], 
distributed software agents [3], human factors modeling [4], and adjustable 
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autonomy [5].   Even components of human thought have been modeled [6] [7] in 
order to create a more seamless connection between human and computer.   

 
This paper discusses the enabling merger of computational cognitive estimation 
with robot control theory to produce a system enabling a small group of humans to 
manage a larger group of semi-autonomous robots. The bulk of the work outlined 
herein examines the mathematical model used to create this linkage between 
human cognition and robot control.  This work is presented as a three-part process 
(workload estimation, workload optimization, and workload mitigation) 
detailing the system representation.  Finally, an analysis of simulations is 
presented that portends improvements in human-machine control.   

2 The Human-Machine Work System 

A human-machine work system is a collaboration of multiple heterogeneous 
“natural and artificial cognitive systems” [2] engaged in the execution of shared 
tasks.  The corresponding notation for representing this system is  
for M humans, R  for N robots, and  for P tasks.  
Robots are also decomposed into two sub-layers identified as subsystems and 
functions.  A subsystem describes a particular interface, behavior, or capability of 
a robot and is denoted as r  where s
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i is a subsystem (i.e. 
navigation, target recognition, manipulation, etc) within the set of all subsystems 
S. A function represents a particular action composing the robotic subsystem and 
is denoted as s  where f

i j is a particular function (i.e. sensor 
feedback, path planning, and steering) within the set of all functions F. 
Furthermore, T, H, R, S, and F create a system that operates by estimating 
workload parameters, optimizing these parameters through analysis of system 
configuration, and enacting an optimized configuration through alteration of robot 
autonomy and human-function paring  (Figure 1). 

 

 
Fig. 1.  Architecture of the human-machine work system. 



From these baseline definitions, human-machine work systems can be evolved 
into complex structures that consist of multiple tasks distributed over multiple 
robots and managed by multiple operators. To formalize and constrain system 
organization, the following axioms will be used. 

 
(1) A function can be controlled by only one operator 
(2) An operator can control multiple functions 
(3) Tasks can occupy multiple subsystems 
(4) A single subsystem can concurrently execute multiple tasks 

3 Workload Estimation 

The human’s role as an administrator requires the injection of control signals at 
the robot functional level.  Human cognition, however, is an exhaustible resource 
that restricts the number of functions they can manage.  Additional activities 
beyond a given threshold will sacrifice the performance of some (or all) 
concurrent activities [4]. To quantitatively monitor this threshold, the ACT-R 
(Adaptive Character of Thought – Rational) cognitive architecture [6] is utilized. 
According to ACT-R, human cognition can be separated into six distinct, 
quantifiable areas consisting of working memory, long-term memory, vision, 
speech, motor, and audition. With this representation, human cognitive capacity 
can be modeled in a vector form, T
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capacity within each area of the human brain.  

 
In a similar manner, a formal means of representing the induced cognitive load of 
human interaction with functional components is derived.  The cognitive loading 
r sulting from human interaction with robotic functions is defined as 
r

 corresponding to the cognitive load induced 
upon a particular region of the human brain as measured by ACT-R. 
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It is important to note that the level of autonomy governing the behavior of a robot 
function will have a profound impact upon the induced cognitive load [7].  For 
example, robot functions operating under full autonomy may require little or no 
attention from the operator and consequentially, the induced cognitive load will be 
relatively small.  The approach to modeling this effect is discussed in the 
following section. 

4 Adjustable Autonomy and Workload Mitigation 

To enable environmental adaptation, this system requires that robot autonomy 
dynamically vary as the robot encounters uncertainties.  Adjustable autonomy ([8] 
and [5]) allows robot functions to be controlled at various levels of human 



interaction so that the shared workload of humans and robots may be mitigated to 
the constraints of the work system. For example, a robot may require only 
minimal supervision during a navigation task until complex terrain obstructs its 
path.  A lower level of autonomy may then be invoked so that human control 
assists the robot in avoiding obstacles.  Adapted from [3], we define four general 
autonomy levels for robot functions: 
 
1. Fully autonomous: the highest level of autonomy where control is 

determined by intrinsic functional capabilities.  Operators may periodically 
monitor and asynchronously alter the progress of a unit, but the robot is 
otherwise independent. 

2. Semi-Autonomous: the autonomy level that maintains the independence of 
robot functions with minimal intervention from the human operator.  
Interaction between operator and function is infrequent, yet sometimes 
critical, causing small or moderate cognitive loadings. 

3. Indirect Manual Control: the level of autonomy that requires human 
intervention for discrete yet frequent time intervals.  The cognitive demand 
resulting from function control can vary from moderate to relatively high.   

4. Direct Manual Control: the lowest level of autonomy that requires 
continuous and direct functional control. The cognitive demand under this 
level of autonomy is consistently high (and perhaps maximal). 

   
Any of these four levels of autonomy may be invoked during functional execution 
of a task.  Both robot functions and human operators have the capacity to request 
an autonomy adjustment. Adjustment can impact the cognitive load applied to the 
human operator: either amplifying or attenuating the load depending upon the 
direction of transition.  To represent adjustable autonomy 

 
Γ
r

 must be to vary as 
the level of autonomy varies.  By this definition, an autonomy alteration can be 
represented as  
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autonomy)(T  where T is a linear transform. 

 
To compute T, the four autonomy levels are assumed to be qualitatively consistent 
across the entire set of functions. This assumption is reasonable since the same 
joystick and monitor set-up used to control a steering function for the navigation 
subsystem will also control a guidance function for the manipulation subsystem.  
Thus, for a given function under a base autonomy level, the resulting cognitive 
load under an alternative autonomy level can be modeled as a scaled multiple of 
the base level or iikii ϕδϕϕϕ =′⇒∝′  where each i  is a 
cognitive component at a default autonomy level and δ
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Furthermore, by selecting  to be isomorphic, a transform from level k with  

to level k’ with ∆  can be expressed as .  Hence, the transform from any 
autonomy level to another is determined by multiplying the cognitive loading 
vector by .  The existence of an inverse matrix ∆  to perform level 
jumping is a key benefit for modeling autonomy adjustment in the form of a linear 
transformation.  In addition, the use of linear transformations (based upon the 
properties of these transformations to act on the basis of a vector space [10]) also 
minimizes: 
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1. Prior knowledge of the system 
2. The data representation of the system 
3. The computational time required obtaining a new level of autonomy. 

 
In fact, the construction of each  would require prior knowledge of cognitive 
loading values for only one function across all autonomy levels.  The subsequent 
scaling components can then be acquired by taking ratios of components from 
these known cognitive loading vectors.   

k∆

5 Workload Representation 

Given  for each operator within the human population and the Λ
r

Γ
r

 for each 
robotic function within the set F, the relationship binding humans to robot 
functions can be stated as: for each hi ∈  H → 

r
 where i = 1 to M, a 
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 is created.  This 6×M matrix represents 
the entire human cognitive capacity for a human-machine work system.  In 
addition, the previous representation can be ext nded to functions, subsystems, 
and robots by stating for each f
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is created.  This 6×J matrix represents the 
functional cognitive loading for the all system functions. Additionally, using the 
definition for robots, subsystems, and functions, the following is derived:  
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Each robot r in the population of N robots is composed in this manner. No explicit 
association among functions, subsystems, and robots is enforced since axioms (1) 
and (2) state the existence of a direct relationship between humans and functions; 
however, system designers are free to enforce any required constraints. In this 



manner, an operator constrained to control a particular robot can equivalently be 
constrained to control only those functions associated with that robot. This 
6×(J⋅K⋅N) matrix (denoted Rc) can be used to calculate the cognitive loading of a 
work system (denoted H ) with the equation R .  M is a (J⋅K⋅N)×M 

Boolean configuration matrix that has the effect of summing all 
L LC HM =

Γ
v

s in Rc that are 
controlled by a particular operator.   

5.1 Workload Optimization 

The next objective of human-machine work systems is to maximize the number of 
functions under human supervision while concurrently minimizing the cognitive 
load induced on each operator.  These constraints act in opposition to each other: 
maximization seeks to consume human cognition while minimization tends to 
withhold it. To resolve the conflicting constraints, an optimization procedure must 
create a reasonable balance based upon the current state of the system.   

 
Minimization: Recall that every column in HC is a cognition capacity vector Λ

r
 

and every column in HL is cognitive loading vector defined as 
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This definition implies that the jth operator having a cognitive capacity of jΛ
r

 must 

command a set of functions inducing a cognitive load of jΓ
r

. Thus, the 

minimizing constraint requires ijij ϕλ ≥  for each element ijλ  in jΛ
r

 and ijϕ  in 

jΓ
r

 for all  ensuring that operators do not become cognitively 
overloaded. 

},...,{ altmwmi ∈

 
Maximization: Let Z be number of all-zero rows in the matrix M (i.e. functions 
assigned to no operator).  Recall M is the number of columns in M and  (J⋅K⋅N) is 
the number of rows in M. The maximizing constraint desires that the number of 
managed functions be greater than the number operators in the system or 

 ensuring the maximum number of functions is controlled.  MZNKJ >−⋅⋅ )(
 

Ideally, all functions should be operator supervised; however, complete functional 
coverage for a relatively large system may not be achievable, especially during 
periods of heavy system activity.  This complication creates a trade-off between 
the number of functions obtaining operator attention and the number of functions 
each operator can adequately manage. Therefore, a cost metric must be established 
in order to determine the optimal functional assignment given the cognitive 
capacity of each operator and the optimal level of autonomy governing each 
function. 



5.2 Cost Metric 

The cost metric encodes a number of systemic parameters that reflect the 
situational significance of a function. These parameters assist in determining an 
optimal configuration of humans, functions, and autonomy levels. 

 
• Functional Priority: encodes the relative priority of a function. It provides 

precedence to critical functions when cognitive loading becomes excessive.    
• Initial Configuration: is the initial configuration matrix M0 allowing the 

system to preserve the default grouping structure whenever possible.  
• Pairing Authorization: encodes the permission granting or forbidding the 

existence of a pairing so that certain robot functions (i.e. those functions 
controlling weaponry or sensitive sensory equipment) are available to only 
authorized operators. 

• Request Wait Time: represents the elapsed time of a function’s or operator’s 
request to adjust autonomy in an attempt to prevent starvation:  the act 
denying functions from receiving operator attention. 

• Control Inertia: records the time elapsed between a linked operator and 
function (provided the function is not fully autonomous) to prevent 
unnecessary context switching between operator-to-function assignments  

 
By quantifying these parameters, the cost function can be tailored to suit the 
requirements of any work system and allow efficiency to be determined by 
comparing relative system cost.  For example, the minimum system cost can be 
cast as the goal for searching the configuration space. The resulting configuration 
defined at the goal will be the system’s M.     

5.3 The Workload Optimization Algorithm 

The Transportation Algorithm is a well-documented problem of optimization that 
parallels the intentions of workload optimization. In summary, the Transportation 
Algorithm involves the determination of an optimal shipping network for groups 
of suppliers and consumers. Similarly, workload optimization involves the 
determination of an optimal configuration of operators (suppliers of cognitive 
capacity) and functions (consumers of cognitive capacity). Despite the similarities, 
the baseline Transportation Algorithm cannot be directly applied to workload 
optimization due to the following complications:  

 
1. The Transportation Algorithm optimizes scalar quantities whereas scalable 

command and control relies upon vector quantities 
2. The Transportation Algorithm produces a shipment matrix consisting of real-

number values with multiple suppliers connected to a single consumer 
whereas scalable command and control produces a configuration matrix of 
Boolean values with a single operator per function  



 
Complication (1). This situation requires modification to the vector components. 
As such, the cognitive capacity and loading vectors are collapsed into scalar 
components by selecting the smallest component from each Λ

r
 for operator 

representation and the largest component from each Γ
r

 for function representation.  
This reduction of dimensionality does affect the optimality of the configuration; 
however, the approximation drastically reduces the configuration space to improve 
the speed of computation. 
     
Complication (2). This situation requires manipulation of continuous flow into 
discrete containers. To approximate an optimal configuration, the maximal flow 
component from each column of the configuration matrix is selected as the 
human-function match. Occasionally, selecting the maximal component can lead 
to cognitive overloading; however, if this case occurs, the work system varies the 
level of autonomy for any overloading functions and reprocesses the 
configuration.  
 
Finally, these solutions are only reasonable when the cognitive loading vectors are 
small relative to cognitive capacity vectors. When these vectors are on the same 
order of magnitude, the accuracy of approximation algorithm will degrade 
resulting in a systemic tendency to unnecessarily increase levels of functional 
autonomy. 

6 Simulation Results and Conclusions 

To demonstrate the capabilities of scalable command and control in human-
machine work systems, a simulation of the system described in sections 3, 4, and 5 
was implemented. The cost function used during the simulation was of the form 

 where C is cost; M)1(),,( ),,(
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configuration; p is functional priority; q is request wait time; Z is task inertia; and 
A is the authority.  The function f(*) returns a constant that reflects the grouping 
assignment while g(*) returns a composition of the priority, request time, and 
control inertia.  This composition is placed into an exponential operator to give 
numerical importance to the mentioned parameters.  Finally, α is selected to be 
significantly large such that when operator-robot parings are prohibited, Cij 
becomes extremely costly thereby effectively prohibiting the potential pairing.  
  
To obtain the results in Table 1, 10 trials were simulated at each human-robot 
configuration.  Each simulation lasted 100 iterations; each robot had between one 
and two subsystems (randomly selected); and each subsystem was allowed to have 
between one and three functions (randomly selected).  To serve as a comparison, a 
second system was created using a fixed-assignment configuration where 
operators were only permitted to control pre-assigned functions up to their 
cognitive capacity.   Autonomy alterations were requested on a Gaussian 



distribution (Figure 3). Finally, 10% noise was added to simulate random 
disturbance in workload estimation and communication errors. The results include 
the average number of functions (AF), the unassigned function per iteration (UF), 
the unassigned functions with high priority per iteration (UFHP), total autonomy 
switches (TAS), and total context switches (TCS).   
 

 
Fig. 3.   Autonomy-transition intensity characteristic of our simulation runs.  
 

Table 1.                                            Simulation Results 
H:R* AF Method UF UFHP TAS TCS 

Optimized 0.00 0.00 54.00 0 3:1 2.5 Static 0.00 0.00 54.00 NA 
Optimized 0.15 0.05 145.10 10.8 3:3 6.9 Static 0.34 0.11 145.10 NA 
Optimized 9.90 0.95 240.20 4.8 3:9 20.8 Static 12.46 2.90 240.20 NA 
Optimized 23.66 1.06 232.00 54 8:2 47.0 Static 27.06 4.72 232.00 NA 

*H:R is the number of humans to robots used for a given run. 
 
The results reflect the intentions of scalable command and control.  Both the fixed 
and optimized procedures produced identical results when ample cognitive 
capacity was available to meet all cognitive loading conditions (resulting in no 
unnecessary assignment switches). When system complexity was increased, the 
system still performed quite well by consistently maintaining a lower number of 
unmanaged functions than static control.   The last set of trials (those using 8 
humans and 18 robots) demonstrates the true strength of the optimization 
procedure.  The average number of unassigned functions per iteration is nearly 
half of what the fixed procedure generated.  Furthermore, of those unassigned 
functions, an average of 1.06 of the top priority functions were left unassigned 
while the fixed method missed an average of 4.72.  Clearly, if these top-priority 
functions were absolutely critical to the successful completion of a task, then the 
optimizing procedure would be the preferred implementation.    

 
Scalable Command and Control demonstrates potential as a multi-human, multi-
robot control mechanism. The simulations estimate that optimization consistently 
out-performs static control structures as system complexity increases.  This fact is 
most apparent when the static control paradigm left 300% to 470% more top-



priority functions unassigned. The use of optimization also maintains a ratio of 
approximately 3.33 functions per operator for complex systems (i.e. the 
simulations with more than one function per operator) whereas static assignment 
produced only 2.7.  This 21% difference, when accumulated across the operator 
population, results in a marked loss of efficiency. The time complexity of the 
approximation algorithm can be estimated as Κnα where K is the number of 
autonomy levels and nα represents polynomial time complexity of the standard 
Transportation Algorithm. By pruning the shipment matrix, the problem becomes 
analogous to the “bin packing” problem understood to be NP-hard [12].  The 
polynomial time approximation used herein is more amenable to the real-time 
requirements of unstructured operations, at the expense of optimality. 
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