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Abstract 

It is well known that the single machine weighted tardiness problem (n/ 1 //Cw,Ti) 

is NP-complete. Hence, it is unlikely that there exist polynomially bounded algorithms 

to solve this problem. Further, the problem is of great practical significance. We 

develop myopic heuristics for this problem; these heuristics have been tested against 

competing heuristics, against a tight lower bound, and where practical, against the 

optimum, with uniformly good results. Also, these heuristics can be used as 

dispatching rules in practical situations. In our efforts to seek optimum solutions we 

develop a hybrid dynamic programming procedure (a modified version of Baker's 

procedure) which provides lower and upper bounds when it becomes impractical to 

find the optimum solution. Further, stopping rules are developed for identifying optimal 

first job/jobs. 
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MYOPIC HEURISTICS FOR THE 
SINGLE MACHINE WEIGHTED TARDINESS PROBLEM 

1. Introduction 

The problem of minimizing weighted tardiness o f  a given set of jobs to be  

processed on a single machine has attracted the attention of several researchers. 

Lenstra C93 has shown that the problem is NP-complete. In view of this, it is not 

surprising that earlier attempts in solving the problem resorted to both enumerative 

techniques and heuristics. Panwalkar, Dudek and Smith [7J repor t  that  in a survey 

conducted by  them, the proportion of respondents who ranked meeting due dates or 

minimizing penalty costs as the most important criterion was larger than fo r  any other 

criterion. In view of the practical importance o f  this problem,there a exists need for 

developing 'good' heuristics which are useful for the single machine case and may be  

extended and generalized to multiprocessors, flow shops and job shops. 

Surprisingly, there are very f e w  heuristics f o r  the weighted tardiness problem. 

The problem may be  defined as fol lows: w e  have n jobs J,, J,, J,, ..... Jn that arrive 

simultaneously to b e  processed on the machine. Each job J, has associated with it a 

triple(p,,dl,w,) which represents the processing time, the due date and the weight of the 

jobs. Each job has associated with it the penalty function Cl(tl) where t, is the 

completion time of the job. Cl(tl) is given b y '  

W e  wish to find a scheduie such that z:I!Ci(ti) is a minimum. Without loss of 

generality, w e  further assume that d, < Zi:? p.. Any job(s) not satisfying this condition 

can b e  deleted f r o m  the problem since there always exist optimal solutions in which 
J 

+ 
' w e  use the notat1on.X = rnax(0.X) 
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such a job(s) occupy the last posit ion in the sequence. 

be  applied on the problem until the condition is satisfied. 

This condition can recursively 

2. Review of earlier heuristics 

It is well  known that if no  job can b e  completed earlier than its due date, then 

the weighted shortest processing time rule(WSPT1 minimizes weighted tardiness 1 1. 

This is likely to be  approximately the case when the machine or the shop is 'heavily 

loaded'. 

Another heuristic which may be  used is the earliest due date rule(EDD1. Arrange 

the jobs according to the EDD rule. If it is possible under any rule to schedule all 

jobs on time, then the rule is optimal. This rule is likely to pe r fo rm well when the 

shop or the machine is 'lightly loaded' [ 133. 

Taking into consideration the fact  that these simple heuristics pe r fo rm well  under 

these extreme situations, Schild and Fredman [ 133 developed a procedure that they 

claimed to give an optimal schedule. However, Eastman 163 showed that the 

procedure is not an exact one by  constructing a counterexample. No computational 

studies have been reported to determine how g o o d  a solution is generated by  their 

procedure. 

In a paper on the experimental comparison of solution algorithms for the 

averagebnweighted) tardiness problems, Baker and Martin C 1 I refer  to Montagne's 

method 101. They claim it to be  very effective for the weighted version of the 

tardiness problem. The heuristic is as fol lows: sequence the jobs in nondecreasing 

order of  p,/w,(Z'="p I = 1  I - d  1 1 [31. 

Yet another heuristic proposed by Baker [41 for the average or unweighted 

tardiness problem, called 'modif ied due date method', is as fol lows: i f  it is impossible 

to complete a job  be fo re  i ts due date revise its due date to be  the earliest possible 

completion time. It appears that Schedule next the job that has the earliest due date. 
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j 
1 Ji I J 

the procedure has done well  in experimental studies [4] .  It can easily be  seen that 

Baker's rule indeed provides optimal solution in two extreme cases f o r  the unweighted 

or average tardiness problems- when all jobs in an optimal sequence are either early 

or late. 

I 1 
I I 

I 

3. Description of our  heuristic 

Prior to the description of our heuristic, consider the fol lowing property which 

characterizes an optimal solution to the single machine weighted tardiness problem. 

PROPOSITION I: Let Ji and Jj be any two adjacent jobs (Ji precedes J,) in an 

The sequence satisfies the fol lowing optimal sequence fo r  the single machine problem. 

property- 

+ t 

where t is the start time for J, 

PROOF: W e  have to consider six subcases. These are as fol lows: 

Case I: Both jobs are early in either position(Figure 1). In this case w e  are 

indif ferent as to which sequence(Ji immediately precedes J or J. immediately precedes 

J,) is used. I f  J, does not precede J. in a given optimal sequence, w e  can create 

another optimal sequence satisfying the property b y  merely interchanging jobs .I, and J.. 
J 

I I 

1 

I I 

t 

Figure 1 

d 
di j 

Case 11: Both jobs are late in either position(Figure 2). 
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1 
I I 

I 
I 

1 
I 

1 

J. 
Ji rJ 

I I 

I I 

J " I  Ji 
di t 

Fiqure 2 

Since both jobs are late in either position, it is necessary that the the job with higher 

ratio of  the weight to the processing time must be scheduled first for the sequence 

to be optimal. Since d,<t+p, and d.<t+p., 
J J  

Case 111: One job is late in either position and the other is early in the earlier 

position and late in the later position(Figure 3) 
I 

Figure 3 

dl < t 
1 dJ > t + P, dJ < t + PI + P 

Cost if JI precedes J, = wl(t+pI-dl) +wJ(t+pl+pJ-dJ) 

Cost if J precedes JI = wl(t+pl+pJ-dJ) 

JI should precede J if 

wl(t+pI+p,-dl) 2 wl(t+pI-dl) + wJ(t+p,+p -d ) 

J 

1 

1 1  
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Ji I 
I 

Since d, < t and d .  < t + p, + p the above expression may be rewritten as 
J J' 

I 
J 1 
j I 

Case IV: 

position(Figure 4). 

One job is late in either position and the other is early in either 

I I 

J 

Fiqure 4 

d, < t d j  >t+p,+p. J 

It is obvious that J, should precede J. 
J 

Since d, < t, 

Case V: One job is early in either position and the other is early in the earlier 

position and late in the later position(Figure 5). 
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I 
I I 

I 
I I 

I 
I 

I I 1 
1 

i d ;  t d 
J 

Figure 5 

d. > t+p;+p. J J d, > t+P, d, < t+p,+p. J 

It is clear that in this case J, should precede J .  
1 

Case VI: Both jobs are early in the earlier position and late in the later 

position(Figure 6). 

Fiqure 6 

dl > t+p, and dl < t+p +p 
1 1  
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dJ > t+pJ and d J < t+p,+p. J 

J, should precede J .  if 
J 

+ -t 

Thus, in all cases the property is satisfied by at least one optimal solution. rn 

This proposit ion can be used direct!y to find a schedule which cannot be  

improved by adjacent pairwise interchange. \Ne exploit this property in the fol lowing 

manner in developing our heuristic: for ever)' job, w e  'determine an 'apparent priori ty 

index'(APi) as defined below: 
A 

APi = ".fl - (di - t - p i )  '[ 
P i  X 

where t is the current time. Since at any instance, w e  do not know what the optimal 

f i rst  two jobs on the machine would be, w e  approximate the value o f  p by  X. In the 

absence o f  any estimate, w e  approximate the value of p by  the mean processing time 

of the jobs. However, it may be  noted that in assigning X value equal to the mean 

processing time of the jobs, w e  are in fact trying to strive towards local optimality. It 

is clear that since local optimality does not necessarily ensure global optimality in this 

problem, w e  may attempt to assign X a value which is more  than one multiple of the 

average processing t ime of the jobs, '.hus helping us look beyond the next job and 

achieve better results. 

1 

J 

Our heuristic is as follows: at any instance, w e  determine the apparent priori ty 

for all unscheduled jobs. In 

case o f  ties, w e  assign next the j ob  that has the earliest due date(the secondary 

W e  assign next the job with the highest apparent priority. 
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criterion is based on our study of a relaxation of the problem where all jobs have 

equal processing times and equal weights. It is also interesting to note the existence 

of a property similar to the one w e  discussed for the relaxed problem with jobs 

having equal processing times. In this case, the result holds good not only in the case 

of adjacent pairwise interchange, but also when comparing jobs not necessarily 

adjacent to each other in an optimal solution. These details are presented in the 

appendix). 

It is interesting to note the change in apparent priori ty assigned by  our heuristic 

over time. It is clear that if a job is too early, then it 

need not be scheduled immediately. Also, if the job is late, it is given full 

priority(w,/p,) as in WSPT rule. In the intermidiate range, the apparent priori ty is 

smoothly increased. Also, w e  note that as X + 00, our heuristic is same as WSPT 

rule. 

This is shown in Figure 7. 

However, as X + 0, it assignec priori ty as follows: 

AP. = 0 i f  slack is positive 

= Wi/Pi i f  slack is zero or negative 

When w e  impose the secondary priori ty rule also, it may be  noted that as X + 
0, our heuristic behaves somewhat like EDD rule, but not quite the same. However, 

even when jobs are rather slack, oiir heuristic appears to have per fo rmed better than 

the EDD rulebee the section on ccmputational experiments). 

An appropriate choice of X is necessary for the good performance o f  our 

heuristic. Intuitively, as explained before, one would expect it to be  related to the 

average processng time of the jobs. So the apparent priori ty may be  writ ten as 

f oil0 ws: 
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where k is a parameter to be  determined and 6 is the average processing time 

of unscheduled jobs. It is possible for us to develop di f ferent rules fo r  assigning 

apparent priori ty for the jobs. However, w e  would expect these alternate schemes to 

have features similar to H 1  such as assigning the job full priori ty once(wl/pl) it is late 

and zero or near zero priori ty if it is too early. In the intermediate range, w e  may 

follow alternate schemes which gradually increase the priori ty of the job. T w o  

alternate scemes, where the rate of change in the priori ty of the job in the 

intermediate range itself increases over time are envisaged below: 

H 2  and H 3  are similar to H 1 .  Their characteristics are shown in Figures 8 and 9 

respectively. It may be  noted that in these cases, as in H I ,  jobs are assigned full 

priority(w,/p,) i f  tho slack is zero or negative. However, as is evident from Figures 8 

and 9, rate o f  change in the priori ty assigned to a job increases as t is increased until 

there is no more slack. In our pilot studies, w e  found that H3 per fo rmed better than 

H 1  and a parameter value of k in the range .of 0.5 to 2 yielded good  results over 

wide range 0:. problems. 

It is also interesting to note the asymptotic fo rms o f  the heursistics. 

in table 1.  

These are shown 
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H e u r i s t i c  

H 1  

r 

Apparent  P r i o r i t y  

k = O  k - 0 0  

Same a s  
WSPT Rule 

0 i f  e a r l y  

o/w i W 
_. 

P i  

Table 1 

4. Review of prior computational studies 

In testing out various enumerative algorithms fo r  the weighted tardiness problem 

land also unweighted or average tardiness problem), various authors fo l lowed dif ferent 

procedures f o r  generating test problems. [ 2 I 

T w o  important factors over which control was exercised in generating test 

problems are the tardiness factor and the due date range. In most prior studies, it 

was assumed that the job  weights were  independent of other factors. The tardiness 

factor is a rough measure of the number of jobs which might be  expected to be  

tardy in a random sequence E 161. Let be  the mean processing time and a b e  the 

average due date. Then, in an average sense, the number of jobs completed in time in 

a random sequence is given by d/p. The tardiness factor, 7,  is given by  

7 = l-Proport ion of jobs on time 

= 1 -WF)/n) 

The typical procedure fo l lowed by various authors in generating the test 
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problems is as follows: generate the pi as per some distribution and generate the due 

dates using the tardiness factor and population mean or the sample mean of the 

processing times. The range for the due dates was controlled by specifying the 

variance of the distribution generating the due dates, 

Srinivasan C 163, in testing his hybrid algorithm for the average or unweighted 

tardiness problem used a bivariate normal distribution for generating processing times 

and the due dates. Srinivasan generated test problems controlling for the following 

factors: the coefficient of variation for the processing times, the coefficient of 

variation for the due dates, the correlation coefficient between the processing times 

and the due dates. His 

results indicated that the problems with tardiness factor of 0.6 were most difficult to 

solve. 

The number of jobs in a problem was varied from 8 to 50. 

In a study comparing the effectiveness of various algorithms for unweighted or 

average tardiness problem, Baker and Martin [ l l  followed a similar procedure, but 

used a normal distribution to generate processing times and uniform distribution to 

generate due dates. The range of  the due dates was varied from 20% to 95% of the 

total processing times of  the jobs. The number of jobs in a problem was varied from 

8 to 15. 

Fisher [a],  in testing a dual based procedure for solving average or unweighted 

tardiness problem, used a uniform distribution to generate both the processing times 

and the due dates. He tested his procedure on problems with the number of jobs 

varying upto 50, tardiness factor varied from 0.5 to 0.8 and the range of  the due 

dates varied from 20 to 100% of the total processing time of the jobs. His 

conclusions regarding the problem difficulty are similar to those of Srinivasan [ 161. 

Schweimer 1153, in testing his branch and bound procedure for the weighted 

tzrdiness problem, generated processing times from a uniform distribution[ 1 , l O  3 and 

the due dates were. generated from a uniform distribution[pi,5.5nJ. Job weights were 
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generated from a uniform distribution [ 1,51. Number of jobs in a problem were 

chosen to be 10 or 20. It may be noted that the weights were generated independent 

of the processing times and the due dates. It may also be noted that no control was 

exercised over the tardiness factor. In fact, it can be shown that tardiness factor was 

implicitly set a t  approximately 0.5. 

In a study conducted by RinnooyKan et a/  [ 121 to test their branch and bound 

algorithm for the weighted tardiness problem, weights were generated from a uniform 

distribution[ 4.5.15.51, Problem sizes of 10,15 and 20 were tried. Tardiness factor 

was set at  0.2,0.4,0.6 and 0.8. Processing times were generated using the Normal 

distribution and the due dates were generated from a uniform distribution. As in 

Schwetmer's study, job weights were generated independent of  the processing times 

and the due dates. RinnoyKan et a/  study indicated no relation between computational 

time and the correlation coefficient between processing times and the due dates. 

Problems with large range for due dates were relatively easier to solve compared to 

problems with short range for the due dates. RinnooyKan et a/ study indicated that 

the problems with tardiness factor of 0.8 were difficult to solve(compared with 0.6 in 

Srinivasan's study [ 161). However, any such comparison must take into consideration 

the fact that RinnooyKan et a/  study was on the weighted tardiness problem whereas 

Srinivasan's study was on the average or unweighted tardiness problems. 

Picard and Queyrenne 1 11 tested their adaptation of time dependent travelling 

salesman algorlthm to the weighted tardiness problem on the same set of problems 

used by RinnooyKan et a/ .  Schrage and Baker [ 141 used the same set of problems 

generated by RinnooyKan et a/  to test  their procedure. 

5. Measure of  performance 

Prior computational studies on the weighted tardiness problem were largely 

confined to validating enumerative methods. This being the case, it is not surprising 

that the emphasis in these studies was on the use of computational time and/or 

memory requirements. However, in our study, we wish to find how 'good' our 
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heuristic is when compared to the optimum value. Since this implies that the study is 

to be conducted across wide range of values of number of  jobs in a 

problem,processing times of jobs, weights etc., the performance measure should take 

these aspects into consideration. Absolute deviation from the optimum value is likely 

to suffer from scaling effects. Any averaging of the percentage deviation from the 

optimum is likely to  mislead us since such deviations are likely to be very large in the 

case of  problems with low tardiness factor(For a more detailed discussion of the 

choice of appropriate measure of performance, see [SI). The metric that we will be 

using in our study is as follows: 

Weighted tardiness for Optimum 
heuristic sequence value 

-1 - Performance of  the heuristic: - 
W * n * p  W * n * p  

W,n and p are, respectively, the mean weight of the jobs, number of jobs and 

the mean processing time of the jobs in a problem. We normalize the performance 

measure by dividing the deviation from the optimum by the number of jobs. This 

normalizes the measure with respect to the number of jobs in a problem and thus 

permits comparison among problems with different number of jobs. Further division 

with the average weight normalizes the measure for the differences in the average 

weights of the job sets in different problems. Finally, divi'sion with the average 

processing time expresses the measure in terms of the number of average processing 

times tardy. 

In case of problems where the optimum value could not be found due to 

computational limitations such as time and/or memory requirements, we used a tight 

lower bound and the best feasible solution. 
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6. Method f o r  obtaining optimum or 'high bench mark' solution 

In order to test our heuristic, it is necessary that we compare the performance 

of our heuristic against the optimum, if possible. Based on the reported performance 

results, three enumerative methods [ 14, 1 1, 121 seem most promising. Of all the 

enumerative methods, we choose the dynamic programming procedure suggested by 

Schrage and Baker [. 141. Among the various enumerative methods, this procedure has 

the best computational time performance for the set of  tested problems. Furthermore, 

the labelling procedure used in this method leads to compact memory requirements, 

particularly in case of  the problems with high tardiness value. These are the very 

problems that have been found by other researchers most difficult to solve. Also, the 

stopping rule that we develop for identifying first job/jobs in an optimal solution is 

based on the dynamic programming procedure. 

It is however possible that, though the dynamic programming approach suggested 

by Baker and Schrage [ 141 requires the least computational time. labelling space 

requirement may be too large, particularly in case of the problems with low tardiness 

factor. These are the problems for which no computational results have been reported 

by Baker and Schrage. Also, none of the earlier studies have reported results for 

problems having more than 20 jobs in case of weighted tardiness problems. Since we 

planned to test problems having more than 20 jobs, it seemed likely that we might be 

constrained by limitations of excessive memory requirements and/or excessive 

computational time. In such cases, we compared the performance of our heuristic 

against a 'high bench-mark', such as a tight lower bound. Unfortunately, Schrage and 

Baker 1143 procedure does not compute lower and upper bounds for the problem. 

Since it is most likely that in case of large problems(prob1ems with more than 

20 jobs) we might be constrained by the limitations of computational time and/or 

memory requirements, we modified the Baker and Schrage procedure [ 14 1 to 

determine the lower and upper bounds. The procedure was further modified to 

arrange the jobs in stages, which was necessary to determine the lower bounds and 
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also for the use of  a stopping rule developed by us. The bounds become sharper and 

sharper as we progressively move from one stage to the next. The details of the 

hybrid dynamic programming procedure developed b y  us are shown in the next section. 

6.1 Hybrid dynamic programming procedure 

This procedure is a modification of the dynamic programming procedure for the 

sequencing problems with precedence constraints developed by Schrage and Baker 

C 141. We modified this procedure in order to determine the lower and upper 

bounds at every application of  the recursive relationship. We also developed a 

stopping rule for identification of first job in an optimal sequence. We follow notation 

similar to  Baker and Schrage 141 with appropriate additions as needed for our 

modification of  the procedure. 

Notation 

Ji 
S :  

N :  

t(S) : 

S :  

f(S) : 

R(S) : 

g(k,t(S)) : 

WSPT6 : 

B(S) : 

F(S) : 

LBW : 

: Job i 

set of  feasible jobs. 

all the predecessors of Ji are also included in S. 

Set of  all jobs. 

S is feasible if, for every job Ji E S, 

‘jcs Pj 
N \ S  
Value of the optimal schedule for set S 

Set of  jobs in S that have no successors in S 

Penalty for completing J, at t(S), kcS 

Value of minimum weighted lateness schedule for 

the jobs in 5 with the release date being t(S) 

Lower bound for the weighted tardiness problem given that 

feasible set S is scheduled optimally at  the beginning 

Index of the job scheduled to be in the first position in 

the sequence generated for f(S) 

Lower bound for the problem given that all feasible 

subsets of cardinality I have been enumerated. 
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Initial condition is f(O)=O 

Optimal value is given b y  f(N). 

Schrage and Baker C 143 provided the detailed procedure for enumerating all 

feasible subset S in such a way that S\k is enumerted be fore  S and a procedure for 

assigning an address to the subset S\k so that f(S\k) can b e  accessed quickly. 

A t  every enumeration, we determine B(S) as follows: 

I f  B(S) 2 current best feasible solution, then f(S) can be  set at infinity and 

need not b e  further considered. Further, a lower  bound for the problem is 

given by 

LB(I) = min B(S) v IS 1 = I and S C, N 

An upper bound for the solution is given by 

UB(S) = f(S) + weighted tardiness of WSPT sequence for jobs in s 

W e  terminate if UB(S) = LB(I S I - 1) 

6.2 Stopping rule for the optimal first job 

In order to guarantee the optimal f irst job, w e  can use the follovling procedure: 

Stop further computation suppose F(S) is same f o r  all S such that IS I = I ,  I=2,3, ... n. 

after the condition is satisfied f o r  the smallest value of 1. 

For identifying the optimal f i rst job  and/or determinig the lower  bounds, it is 

necessary to know when all feasible subsets o f  jobs o f  given cardinality have been 

enumerated. This may be  done by numbering the jobs and arranging the jobs in stages 

as shown below: 

1. Jobs are assigned to stages such that no job is ascigned to a stage less 
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than or equal to i ts predecessors. 

2. Jobs at any stage have indices greater than jobs at  earlier stages. 

3. Every job is assigned to the earliest possible stage, subject to (1) and (2). 

These details are shown for a hypothetical example in Figure 10. It may be  

noted that, when the above mentioned job indexing procedure is used in conjunction 

with the enumeration scheme proposed b y  Baker and Schrage C 141, all feasible 

subsets o f  cardinality k-1 would have been enumerated be fo re  the job  wi th the lowest 

index in stage k can be  considered for inclusion in a feasible subset o f  tasks. Thus, 

the updating of LB(I) and checking f o r  the optimal f i rst  j ob  can be carried out when 

the job  with the lowest index at any stage is being considered for the f i rst  t ime for 

inclusion in the feasible set S. 

Another independent stopping rule for identifying the optima f i rst  job  fo l lows 

from the next proposition- 

PROPOSITION It: If the job with the highest wi /p i  is tardy even i f  scheduled 

first, then there is an optimal sequence in which it must be  sequenced first. 

PROOF: Without loss o f  generality. assume that wl/p, > w2/ p, ....... . Also, 

since J, is tardy even if scheduled first, p, > d,. Suppose there exists an optimal 

schedule such that J, occupies jth posit ion and let Ji occupy j-  I th position(Figure 1 1). 

Pairwise interchange of Ji and J, does not a f fec t  the completion times of other 

Decrease in the value of the objective function due tc pairwise interchange of jobs. 

JI and J, equals 
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S t a g e  1 2 3 4 



However, the right hand side is non negative and this contradicts the optimality 

o f  the original schedule. 

get set of dominant schedules and hence the result. 

Thus, b y  successively 'pushing' J ,  to the f i rst  position, w e  

7. Design of the experiment 

Control variables in generating the test problems are: number of jobs in a 

problem, distribution of the processing times, distribution of the due dates, correlation 

between the processing times and the due dates, priori ty or the weights assigned to 

the jobs. 

Processinq times and the due dates: Processing times and the due dates 

are generated using bivariate Normal distribution which incorporates the 

variation in processing times, variation in due dates and the correlation 

between the processing times and the due dates. W e  set the various 

parameters a t  the fol lowing levels: 

Tardiness factor(r) : 0 - 2 r 0 - 4 , 0 - 6 , 0 - 8  

Coefficient of variation for the 
processing times :0.1,0.3 

Correlation coefficent between 
p i  and Cj ( p )  : 0 , 0 . 5  

Range factor for the due dates ( R )  :0.4,0.8 

Population mean for the job 
processing times : 30 

0 W e q h t s  for the jobs: In prior studies by  RinnooyKan [ 121 and 

Schweimer [ 151, job weights were  generated independently of the job 

processing times and the due dates. However, w e  feel that on average 

the penalties associated with the tardiness of the jobs would be 

proport ionate to the work  content of the jobs. Taking this into 

consideration, w e  determine the weights f o r  the jobs by independently 

determining the factor w,/pl  from the uni form distribution in the range 

r 0 2  1. 
w,=(wl/pl) *p, 
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(wl/pi)" is random variate generated from the uniform distribution L0.2 1 
and pi is the processing time generated from a bivariate normal 

distribution as described above. 

Number of jobs: In order to study the effect of 

problem on our heuristic, we choose the number 

be 10, 20 or 30. 

We tested 20 problems for each specification o 

we tested 2Ox4x2x2xZx3= 1920 problems. 

the number of jobs in a 

of  jobs in a problem to 

the parameters. Thus, in total 

7.1 Computational experiments 

In testing our heuristidfor comparkon purposes, we used exponent form of our 

heuristic[H3] with parameter value set at  0.5) on 1920 problems, we made a few 

further changes. For problems where optimum solution could not be found(largely due 

to excessive memory requirement for Froblems with 30 jobs), we compared myopic 

heuristic solution against lower and upper bounds. We found additional lower and 

upper bounds by solving the linear assignment relaxation procedure suggested by 

RinnooyKan2 et a/ [ 121. Best upper bound for the solution was found by choosing 

the best solution among EDD sequence, WSPT sequence, Montagne's sequence, upper 

bound generated by the hybrid dynamic procedure at termination. solution to linear 

assignment relaxation procedure suggested by RinnooyKan et a/ and fifteen solutions 

generated by five parameter values for each of  the three different versions of our 

heuristic. 

Tables 2 through 5 give the computational results for various problem sizes. 

Table 2 provides the results for problems with 10 and 20 jobs. As may be noted, 

our heuristic performed well when compared to other heuristics. As noted earlier, we 

kept the parameter value of the myopic heuristic fixed at 0.5. However, results can 

L 
Our pilot studies as wel l  as published results [ 121 showed that the lower bound obtained by this 

procedure I S  about 20% below the optimum value. Howver. the lower bound tends t o  be tighter i f  the 
problems are less tardy and/or the variance of the job processing times is low. 
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Number of 
7 pr ob 1 ems 

fully solved OPT EDD WSPT MP MYH - 
0.2 73 0.027 0.107 0.099 0.035 0.017 

0.027 0.4 26 0.400 1.125 0.290 0.164 

0.6 8 2.069 2.049 0.439 0.350 0.056 

0.018 0.8 16 5.186 4.242 0.564 0.315 

TABLE 3 

Number of 
p r  ob lems 
fully solved 

80 

Mean Value of Performance Measure for fully solved 30 Job Problems 

(n = 30) 

~ ~~~ 

OPT EDD 

0.001 0.033 0.224 

0.739 

1.215 

R = 0.8 

0.020 0.007 

0.260 0.048 

0.634 0.073 

0.2 

0,4 

0.6 

0.8 

OPT : 
EDD : 
WSPT : 
MP : 
MYH 

38 

10 

20 

0.172 0.521 

1.600 2.412 

5.380 4.223 0.837 0.030 0.352 

Mean Value of Normalized Optimum 
Earliest Due Date Rule 
Weighted'Shortest Processing Time Rule 
Montagne's Procedure 
Myopic Heuristic [H3] with parameter k value set at 0,5 
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further be improved at low tardiness factors by increasing the value of the 

paramemter k. In case of problems with 20 jobs, we found optimum for all problems 

except two problems with tardiness factor 0.8. 

In the case of  30 job problems, we could not find the optimal solution to all 

problems. Results comparing the performance of various heuristics for problems 

where optimum could be found are shown in Table 3. It is clear that the myopic 

heuristic performed better than competing heuristics in this case also. Results in the 

case of  problems for which optimum could not be found are shown in Tables 4 and 

5. Table 4 compares the mean deviation of  normalized values of various heuristics 

from the best lower bound. Here again, myopic heuristic performs better than 

competing heuristics. Table 5 compares the mean value of myopic heuristic to the 

best available lower bound and best available upper bound. It is clear from this table 

that the myopic heuristic provided the best possible results among all heuristics tested. 

In case of  problems for which optimum found, it appears that the mean 

performance measure is at its worst for problems with tardiness factor 0.6 (Tables 2 

and 3). This conclusion agrees with Srinivasan's conclusion [ 163 that problems with 

tardiness factor 0.65 were most difficult to solve. His conclusion was based on the 

computational time required to find optimum for the problems. 

8. Conclusion 

It is clear from our computational study that the new myopic heuristic developed 

by us is much better than any other heuristic tested. The heuristic is simple and easy 

to implement in most real life situations. The myopic heuristic can be used as a 

dispatching rule as well. In such a case, we merely determine which job is to be 

loaded on the machine next and make subsequent decisions as and when the machine 

becomes available for further loading. It is further possible to improve upon the 

schedule generated by the heuristic by checking for the local optimality among adjacent 

jobs. It is easy to build a procedure where we start with an initial schedule generated 

by our heuristic and. make changes among adjacent jobs until no further improvement in 
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the solution takes place. W e  are currently extending the application of our myopic 

heuristic to situations where w e  have more  than one processor(identica1 processors in 

parallel). Further extensions in the area o f  generalized f l o w  shops are being explored. 
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APPENDIX 

Consider the following relaxation of the single machine weighted tardiness 

problem: suppose that all jobs have unit processing times(if not, we split them into 

jobs of unit processing time and assign each the weight wi/pl. The due dates for 

these jobs are set at dl,dl- l,dl-2 ,....... dl-pi+ 1). Let tc be the completion time for the 

job Ji. 

Consider the interchange of the current job JI with another job J which is due 

Since' all jobs are of equal length, such interchange does not 

Let wI and dl be the weight and the due 

J 

to be completed at tc+X. 

affect the completion time of any other job. 

date of job Ji. 

PROPOSITION A.1: Let tc be the completion time of JI. Consider another job J .  

completing X time units after J,. Then, an optimal sequence should satisfy the 

following property- 

J 

w 1 1 -  (di - tc) + 

i 
X 

+ 
( d .  - c C  

X 
+ I +  

PROOF: We have to consider eight subcases. These are as follows: 

Case I :  Both jobs are late in either position. Since both jobs are late in either 

position, the job with higher weight must precede the job with lower weight(Figure 

A. 1) 

It is clear that in this case the apparent priorities of both jobs are same as their 

weights and the condition is satisfied. 

Case II: Both jobs are early in either position(Figure A.2). In this case, we are 

indifferent as to which job is scheduled first. Schedule first the job with highest 
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apparent priority. 

Case 111: Both jobs are early in the current posit ion and late in position tc+X 

(Figure A.3). 

Cost if JI completes at tc and J. completes at tc+X = w (t +X-d 1 + 0 
1 J C  1 

Cost if JI completes at tc+X and J completes at tc = wl(tc+X-d,) + 0 
1 + 

Schedule J, at tc and J j  at tc+X if 

+ 

Case IV: One job  is late and the other is early in either position(Figure A.4). It is 

clear that the job  that is late should be  scheduled first. Note that the job that is early 

has zero apparent priori ty and the job  that is late has full weight as its apparent 

priority. 

Cases V and VI: One job  is late in either posit ion and the other is early in earlier 

position and late in later position(Figure A.5) 

Cost i f  JI completes at tc = w (t +X-d.) 
J C  J 

and J. completes at tc+X 
1 

Cost if J completes at tc = wi(tc+X-dl) + w.(t -d.) 
1 J C  J 

and J completes at tc+X 
1 

+ 
w { l -  ( d .  - t c i  

X j 

W e  schedule JI at  tc and J a t  tc+X if 
J 
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Ji 

tc+X 
Figure A . 1  
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Figure A . 3  
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j 1 
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di d 
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Figure A . 4  

I 1 
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t c  d; tc+X 2 

j I 

Figure A . 6  
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w (t +X-d ) I w.(t +X-di) +W (t -dj) 
I C  J I C  I C  

I (di - tc) 

X 
Since J is late a t  tc and dl-tc I X, the above expression may be rewri t ten as 

1 

Cases VI1 and VIII: One job is early in either position and the other is early in earlier 

position and late in later position (Figure A.6). It is clear that J, should be  scheduled at 

tc, since d -tc > X, apparent priori ty of Ji will be  greater than zero. 
1 

So, in all the cases discussed above, job  with higher apparent priori ty should be 

scheduled in the current position. 

PROPOSITION A.II: If all jobs have unit processng times and equal weights, the 

EDD sequence minimizes the average tardiness. 

PROOF: Consider two adjacent jobs in an optimal sequence such that J, 

precedes J, and d, > dJ. 

Figure A.7 

Case I: Suppose both JI and J. are early or on time. 

time and dl > d ,  pairwise interchange does not degrade the solution. 

Since J is early or on 
1 J 

1 

Case 11: Both Ji and J. are tardy. Pairwise interchange does not degrade the 
1 

solution since both processing times and weights are equal. 
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Case Ill J, is tardy and J is early or on time This is impossible since dl > d 
J 1 

and completion time of J, < J .  
J 

Case IV: J, is early or on time and J. is tardy. If JI is on  time, then pairwise 

If J, is early, then pairwise interchange 
1 

interchange does not degrade the solution. 

improves the solution. 

Thus, in all cases, pairwise interchange does not degrade the solution and, in 

Since our arguments employ only information about the individual fact, may improve it. 

jobs and not the location in the sequenceL21 , the EDD sequence is optimal. 


