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Abstract

it is well known that the single machine weighted tardiness problem (n/l//ZwiTi)
is NP-complete. Hence, it is unlikely that there exist polynomially bounded algorithms
to solve this problem. Further, the probilem is of great practical significance. We
develop myopic heuristics for this problem; these heuristics have been tested against
competing heuristics, against a tight lower bound, and where practical, against the
optimum, with uniformly good results. Also, these heuristics can be used as
dispatching rules in practical situations. In our efforts to seek optimum solutions we
develop a hybrid dynamic programming procedure (a modified version of Baker's
procedure) which provides lower and upper bounds when it becomes impractical to
find the optimum solution. Further, stopping rules are developed for identifying optimal

first job/jobs.






MYOPIC HEURISTICS FOR THE
SINGLE MACHINE WEIGHTED TARDINESS PROBLEM

1. Introduction

. The problem of minimizing weighted tardiness of a given set of jobs to be
processed on a single machine has attracted the attention of several researchers.
Lenstra [3] has shown that the problem is NP-complete. In view of this, it is not
surprising that earlier attempts in solving the problem resorted to both enumerative
techniques and heuristics. Panwalkar, Dudek and Smith [7] report that in a survey
conducted by them, the proportion of respondents who ranked meeting due dates or
minimizing penalty costs as the most important criterion was larger than for any other
criterion. In view of the practical importance of this problem,there a exists need for
developing ‘good heuristics which are useful for the single machine case and may be

extended and generalized to multiprocessors, flow shops and job shops.

Surprisingly, there are very few heuristics for the weighted tardiness problem.
The problem may be defined as follows: we have n jobs Jo Jz' J3 ...... J, that arrive
simultaneously to be processed on the machine. Each job Ji has associated with it a
triple(pi,di,wi) which represents the processing time, the due date and the weight of the
jobs. Each job has associated with it the penalty function Ci(ti) where t is the

completion time of the job. Cit) is given by1
Cit) = wit-d)*
toy [} )
We wish to find a schedule such that £-0C(t) is a minimum.  Without loss of

generality, we further assume that g, < Zj: P; Any job(s) not satisfying this condition

can be deleted from the problem since there always exist optimal solutions in which

1 +
we use the notation.X = max(0,X)



such a jobls) occupy the last position in the sequence. This condition can recursively

be applied on the problem until the condition is satisfied.

2. Review of earlier heuristics

It is well known that if no job can be completed earlier than its due date, then
the weighted shortest processing time rule(WSPT) minimizes weighted tardiness [1].
This is likely to be approximately the case when the machine or the shop is 'heavily

loaded.

Another heuristic which may be used is the earliest due date rule(EDD). Arrange
the jobs according to the EDD rule. If it is possible under any rule to schedule all
jobs on time, then the rule is optimal. This rule is likely to perform well when the

shop or the machine is ‘lightly loaded [13].

Taking into consideration the fact that these simple heuristics perform well under
these extreme situations, Schild and Fredman [13] developed a procedure that they
claimed to give an optimal schedule. However, Eastman [6] showed that the
procedure is not an exact one by constructing a counterexample. No computational
studies have been reported to determine how good a solution is génerated by their

procedure.

In a paper on the experimental comparison of solution algorithms for the
average(unweighted) tardiness problems, Baker and Martin [ 1] refer to Montagne's
method [10]). They claim it to be very effective for the weighted version of the
tardiness prob/lem. The heuristic is as follows: sequence the jobs in nondecreasing

order of pj/wj(Z:?p'—dj) [3].

Yet another heuristic proposed by Baker [4] for the average or unweighted
tardiness problem, called 'modified due date method, is as follows: if it is impossible
to complete a job before its due date revise its due date to be the earliest possible

completion time. Schedule next the job that has the earliest due date. It appears that



the procedure has done well in experimental studies [4]. It can easily be seen that
Baker's rule indeed provides optimal solution in two extreme cases for the unweighted
or average tardiness problems— when all jobs in an optimal sequence are either early

or late.

3. Description of our heuristie

Prior to the description of our heuristic, consider the following property which

characterizes an optimal solution to the single machine weighted tardiness problem.

PROPQOSITION || Let J, and Jj be any two adjacent jobs (J. precedes Jj) in an

optimal sequence for the single machine problem. The sequence satisfies the following

property—
T Y
y_i- _(di-t-pi) 5 .vil 1_(d.-t—p.
P3 Py P; Py

where t is the start time for Ji
PROOF: We have to consider six subcases. These are as follows:

Case I Both jobs are early in either position{Figure 1). In this case we are
indifferent as to which sequence(Ji immediately precedes Jj or JJ. immediately precedes
J) iIs used If J, does not precede Jj in a given optimal sequence, we can create

another optimal sequence satisfying the property by merely interchanging jobs & and JJ..

afo-d.

oV R
H.
e

Figure 1

Case Il Both jobs are late in either position(Figure 2).
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Figure 2

Since both jobs are late in either position, it is necessary that the the job with higher
ratio of the weight to the processing time must be scheduled first for the sequence

to be optimal. Since d<t+p. and dj<t+pj,

+
" +
, W, W, (d, -t -p.) W (d, -t - p,)
LY o __E(l__l__fi)z_l(l__l__p___l
Py pj Py pj pJ i
Case Il One job is late in either position and the other is early in the earlier
position and late in the later position{Figure 3)
[ [
' .
| !
J. J.
} 1 1J
d. t d.
1 J
Figure 3
dj>t+pj dj<'c+pi+pj d <t

Cost if J. precedes Jj wi(t+pi—di) +wj(t+pi+pj-dj)

Cost if Jj precedes J, wi(t+pi+pj—dj)
JI should precede J}. if

wl(t+pi+pj—di) 2 wittp —d) + Wj(t+pi+pj_dj)



W, W, (d.-t-p.)
L > Ly 3]
Py Pj Ps

Since d| < t and dj <t+p + P; the above expression may be rewritten as

+ +
W, (d. -t -p.) —e-p )
-—l—{l- iTETP ), W, dymroey)
Pi Pj pj i

Case IV: One job is late in either position and the other is early in either

position(Figure 4).

i !
| |
r
—{ J J. !
i 1 J !
d
di j
Figure 4
d <t dj. >’t+pi+pj
It is obvious that J, should precede Jj
+
W, (d, -t -p.)
Since d ~{t+p) > p, -1 {l - 1 pJ } =0
! s ! P. p.
j i
Since d. < t,
+ +
W, (d. -t-p.) +
i i P, W, (d, -t -p.)
_— 1 - L >
D, { I e— P b B i R |

Case V. One job is early in either position and the other is early in the earlier

position and late in the later position(Figure 5).
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Figure 5

dj > t+pi+pj d > t+p, d < t+pi+pj
It is clear that in this case .Ji should precede Jj.

Since dj—(t+p1.) > P,

L F
W, (d. -t -p.)
S B N I X =0
pj P
Since w, > 0, di—(t+pl.) >0 and di—(t+pi) < pj,
+
w, (d, -t-p.)*) . .
1)y i i is positive.
Pj Pj
Therefore,
+ + "
. . - - Pp. . .- L -p.
E{l_(dl tpl)} > le_(d p)}

Case VI Both jobs are early in the earlicer position and late in the later

position{Figure 6).

[T

[V R S,

O
a oo |
';—l.
[

Figure 6

d > t+p, and d < t+pi+pj



dj > 'c+pj and dJ < t+pi+pj
J, should precede Jj if

wi(t+pi+pj—-di) > Wj(t+pi+pj‘dj)

+ +
+ +
W, d, -t -p, X .- T -p.
_1{ _dimt-py) } > Yif, Yyoropy) }
Py P i i
Thus, in all cases the property is satisfied by at least one optimal solution »

This proposition can be used directly to find a schedule which cannot be
improved by adjacent pairwise interchange. ‘We exploit this property in the following
manner in developing our heuristic: for every job, we determine an 'apparent priority

index'(APi) as defined below:

+
+
AP, = ﬁ{ {4yt }
L P; X

where t is the current time. Since at any instance, we do not know what the optimal
first two jobs on the machine would be, we approximate the value of P, by X. In the
absence of any estimate, we approximate the value of P, by the mean processing time
of the jobs. However, it may be noted that in assigning X value equal to the mean
processing time of the jobs, we are in fact trying to strive towards local optimatity. It
is clear that since local optimality does not necessarily ensure global optimality in this
problem, we may attempt to assign X a value which is more than one muitiple of the
average processing time of the jobs, ‘hus helping us look beyond the next job and

achieve better results.

Our heuristic is as follows: at any instance, we determine the apparent priority
for all unscheduled jobs. We assign next the job with the highest apparent priority. In

case of ties, we assign next the job that has the earliest due date(the secondary



criterion is based on our study of a relaxation of the problem where all jobs have
equal processing times and equal weights. It is also interesting to note thé existence
of a property similar to the one we discussed for the relaxed problem with jobs
having equal processing times. In this case, the result holds good not only in the case
of adjacent pairwise interchange, but also when comparing jobs not necessarily
adjacent to each other in an optimal solution. These details are presented in the

appendix).

it is interesting to note the change in apparent priority assigned by our heuristic
over time. This is shown in Figure 7. It is clear that if a job is too early, then it
need not be scheduled immediately. Also, if the job is late, it is given full
priorityiw,/p) as in WSPT rule. In the intermidiate range, the apparent priority is
smoothly increased. Also, we note that as X - oo, our heuristic is same as WSPT
rule. However, as X - 0, it assignec priority as follows:

AP =0 if slack is positive

[t}

w,/p, if slack is zero or negative

When we impose the secondary priority rule also, it may be noted that as X -
0. our heuristic behaves somewhat like EDD rule, but not quite the same. However,
even when jobs are rather slack, our heuristic appears to have performed better than

the EDD rule(see the section on computational experiments).

An appropriate choice of X is necessary for the good performance of our
heuristic.  Intuitively, as explained before, one would expect it to be related to the
average processng time of the jobs. So the apparent priority may be written as

follows:

H1: AP. =




———.——..—.—————)——-——

| _WSPT RULE

o’
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where k is a parameter to be determined and p is the average processing time
of unscheduled jobs. It is possible for us to develop different rules for assigning
apparent priority for the jobs. However, we would expect these alternate schemes to
have features similar to H1 such as assigning the job full priority oncelw/p) it is late
and zero or near zero priority if it is too early. In the intermediate range, we may
follow alternate schemes which gradually increase the priority of the job. Two
alternate scemes, where the rate of change in the priority of the job in the

intermediate range itself increases over time are envisaged below:

W 5
H2: AP; = — 1 - =
* Py p+k(di—t—pi)+
v +
H3 AP = — exp |- _If_(dl‘t‘Pl)
Py 5

H2 and H3 are similar to H1. Their characteristics are shown in Figures 8 and 9
respectively. It may be noted that in these cases, as in H1, jobs are assigned full
priority(w‘/pi) if the slack is zero or negative. However, as is evident from Figures 8
and S, rate of change in the priority assigned to a job increases as t is increased until
there is no more slack. In our pilot studies, we found that H3 performed better than
H1 and a parameter value of k in the range of 0.5 to 2 yielded good results over
wide range o“ problems.
it is also interesting to note the asymptotic forms of the heursistics These are shown

in table 1.
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Apparent Priority

Heuristicl k=20 k » 00
H1 0 if early Same as
W, WSPT Rule
i
— o/w
Py
Same as 0 if early
HZ2, H3 WSPT Rule .
i
— o/w
Py

Table 1

4. Review of prior computational studies

In testing out various enumerative algorithms for the weighted tardiness problem
tand also unweighted or average tardiness probiem), various authors followed different

procedures for generating test problems. [2]

Two important factors over which control was exercised in generating test
problems are the tardiness factor and the due date range. In most prior studies, it
was assumed that the job weights were independent of other factors. The tardiness
factor is a rough measure of the number of jobs which might be expected to be
tardy in a random sequence [16]. Llet p be the mean processing time and d be the
average due date. Then, in an average sense, the number of jobs completed in time in
a random sequence is given by d/p. The tardiness factor, 7, is given by

7 = 1-Proportion of jobs on time
1-({d/py/n)

n

Ql
)

np(1-7)

The typical procedure followed by various authors in generating the test
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problems is as follows: generate the p, as per some distribution and generate the due
dates using the tardiness factor and population mean or the sample mean of the
processing times. The range for the due dates was controlled by specifying the

variance of the distribution generating the due dates.

Srinivasan [ 16], in testing his hybrid algorithm for the average or unweighted
tardiness problem used a bivariate normai distribution for generating processing times
and the due dates. Srinivasan generated test problems controlling for the following
factors: the coefficient of variation for the processing times, the coefficient of
variation for the due dates, the correlation coefficient between the processing times
and the due dates. The number of jobs in a problem was varied from 8 to 50. His
results indicated that the problems with tardiness factor of 0.6 were most difficult to

solve.

In a study comparing the effectiveness of various algorithms for unweighted or
average tardiness probiem, Baker and Martin [ 1] followed a similar procedure, but
used a normal distribution to generate processing times and uniform distribution to
generate due dates. The range of the due dates was varied from 20% to 95% of the
total processing times of the jobs. The number of jobs in a problem was varied from

8 to 15.

Fisher [8], in testing a dual based procedure for solving average or unweighted
tardiness problem, used a uniform distribution to generate both the processing times
and the due dates. He tested his procedure on problems with the number of jobs
varying upto 50, tardiness factor varied from 05 to 0.8 and the range of the due
dates varied from 20 to 100% of the total processing time of the jobs  His

conclusions regarding the problem difficulty are similar to those of Srinivasan [18).

Schweimer [15], in testing his branch and bound procedure for the weighted
terdiness problem, generated processing times from a uniform distribution[ 1,101 and

the due dates were. generated from a uniform distribution[pi,5.5n]. Job weights were
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generated from a uniform distribution [1,5]. Number of jobs in a problem were
chosen to be 10 or 20. It may be noted that the weights were generated independent
of the processing times and the due dates. It may also be noted that no control was
exercised over the tardiness factor. In fact, it can be shown that tardiness factor was

implicitly set at approximately 0.5.

In 8 study conducted by RinnooyKan et a/ [12] to test their branch and bound
algorithm for the weighted tardiness problem, weights were generated from a uniform
distribution[ 45,155}, Problem sizes of 10,15 and 20 were tried Tardiness factor
was set at 0.2,04,06 and 0.8 Processing times were generated using the Normal
distribution and the due dates were generated from a uniform distribution. As in
Schweimer's study, job weights were generated independent of the processing times
and the due dates. RinnoyKan et a/ study indicated no relation between computational
time and the correlation coefficient between processing times and the due dates.
Problems with large range for due dates were relatively easier to solve compared to
problems with short range for the due dates. RinnooyKan et a/ study indicated that
the problems with tardiness factor of 0.8 were difficult to solvelcompared with 0.6 in
Srinivasan's study [16]). However, any such comparison must take into consideration
the fact that RinnooyKan et a/ study was on the weighted tardiness problem whereas

Srinivasan’s study was on the average or unweighted tardiness problems.

Picard and Queyrenne [11] tested their adaptation of time dependent travelling
salesman algorithm to the weighted tardiness probiem on the same set of problems
used by RinnooyKan et a/. Schrage and Baker [14] used the same set of problems

generated by RinnocoyKan et a/ to test their procedure.

5. Measure of performance

Prior computational studies on the weighted tardiness problem were largely
confined to validating enumerative methods. This being the case, it is not surprising
that the emphasis in these studies was on the use of computational time and/or

memory requirements. However, in our study, we wish to find how 'good our
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heuristic is when compared to the optimum value. Since this implies that the study is
to be condﬁcted across wide range of values of number of jobs in a
problem,processing times of jobs, weights etc, the performance measure should take
these aspects into consideration. Absolute deviation from the optimum value is likely
to suffer from scaling effects. Any averaging of the percentage deviation from the
optimum is >Iikely to misiead us since such deviations are likely to be very large in the
case of problems with low tardiness factor(For a more detailed discussion of the
choice of appropriate measure of performance, see [5]). The metric that we will be

using in our study is as follows:

Weighted tardiness for Optimum
heuristic sequence value
Performance of the heuristic: —_— ——
W % n % p W % n % p

W.n and p are, respectively, the mean weight of the jobs, number of jobs and
the mean processing time of the jobs in a problem. We normalize the performance
measure by dividing the deviation from the optimum by the number of jobs. This
normalizes the measure with respect to the number of jobs in a problem and thus
permits comparison among problems with different number of jobs. Further division
with the average weight normalizes the measure for the differences in the average
weights of the job sets in different problems. Finally, division with the average
processing time expresses the measure in terms of the number of average processing

times tardy.

In case of problems where the optimum value could not be found due to
computational limitations such as time and/or memory requirements, we used a tight

lower bound and the best feasible solution.
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6. Method for obtaining optimum or ‘high bench mark’ solution

In order to test our heuristic, it is necessary that we compare the performance
of our heuristic against the optimum, if possible. Based on the reported performance
results, three enumerative methods [14, 11, 12] seem most promising. Of all the
enumerative methods, we choose the dynamic programming procedure suggested by
Schrage and Baker [14]. Among the various enumerative methods, this procedure has
the best computational time performance for the set of tested problems. Furthermore,
the labelling procedure used in this method leads to compact memory requirements,
particularly in case of the problems with high tardiness value. These are the very
problems that have been found by other researchers most difficult to solve. Also, the
stopping rule that we develop for identifying first job/jobs in an optimal solution is

based on the dynamic programming procedure.

it is however possible that, though the dynamic programming approach suggested
by Baker and Schrage [14] requires the least computational time, labelling space
requirement may be too large, particularly in case of the problems with low tardiness
factor. These are the problems for which no computational results have been reported
by Baker and Schrage. Also, none of the earlier studies have reported results for
problems having more than 20 jobs in case of weighted tardiness problems. Since we
planned to test problems having more than 20 jobs, it seemed likely that we might be
constrained by limitations of excessive memory requirements and/or excessive
computational time. In such cases, we compared the performance of our heuristic
against a 'high bench-mark’, such as a tight lower bound. Unfortunately, Schrage and

Baker [14] procedure does not compute lower and upper bounds for the problem.

Since it is most likely that in case of large problems{problems with more than
20 jobs) we might be constrained by the limitations of computational time and/or
memory requirements, we modified the Baker and Schrage procedure [14] to
determine the lower and upper bounds. The procedure was further modified to

arrange the jobs in stages, which was necessary to determine the lower bounds and



17

also for the use of a stopping rule developed by us. The bounds become sharper and
sharper as we progressively move from one stage to the next The details of the

hybrid dynamic programming procedure developed by us are shown in the next section.

6.1 Hybrid dynamic programming procedure

This procedure is a modification of the dynamic programming procedure for the
sequencing problems with precedence constraints developed by Schrage and Baker
[14]. We modified this procedure in order to determine the lower and upper
bounds at every application of the recursive reiationship. We also developed a
stopping rule for identification of first job in an optimal sequence. We follow notation
similar to Baker and Schrage [14] with appropriate additions as needed for our

modification of the procedure.

Notation

J, i Job i
S : set of feasible jobs. S is feasible if, for every job Ji € S,
all the predecessors of J. are also included in S.
N : Set of all jobs.
t(i) : Zj es P
S:N\S
f{S) : Value of the optimal schedule for set S
R(S) : Set of jobs in S that have no successors in S
glk.t(S)) : Penalty for completing J, at tS), keS
WSPT(S) : Value of minimum weighted lateness schedule for
the jobs in S with the release date being t(S)
B(S) : Lower bound for the weighted tardiness problem given that
feasible set S is scheduled optimally at the beginning
F(S) : Index of the job scheduled to be in the first position in
the sequence generated for f(S)
LB(l) : Lower bound for the problem given that all feasible
subsets of cardinality | have been enumerated.

Recursive relation is [16],

fS) = min__ .o 1 fIS\K) + gk, tS)) )
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Initial condition is f(0)=0
Optimal value is given by f(N).

Schrage and Baker [14] provided the detailed procedure for enumerating all
feasible subset S in such a way that S\k is enumerted before S and a procedure for

assigning an address to the subset S\k so that f(S\k} can be accessed quickly.

At every enumeration, we determine B(S) as follows:

B(S) = f(S) + max {0, WSPT (S) }

If B(S) 2 current best feasible solution, then f{S) can be set at infinity and
need not be further considered. Further, a lower bound for the problem is

given by

Bl =min BS) V |S] =land SEN
An upper bound for the solution is given by
UB(S) = f{S) + weighted tardiness of WSPT sequence for jobs in §

We terminate if UB(S) = LB(|S]| - 1)

6.2 Stopping rule for the optimal first job

In order to guarantee the optimal first job, we can use the foliowing procedure:
suppose F(S) is same for all S such that |S|=l, 1=2,3,.n. Stop further computation

after the condition is satisfied for the smallest value of |

For identifying the optimal first job and/or determinig the lower bounds, it is
necessary to know when all feasible subsets of jobs of given cardinality have been
enumerated. This may be done by numbering the jobs and arranging the jobs in stages
as shown below:

1. Jobs are assigned to stages such that no job is assigned to a stage less
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than or equal to its predecessors.
2. Jobs at any stage have indices greater than jobs at earlier stages.
3. Every job is assigned to the earliest possible stage, subject to (1) and (2.

These details are shown for a hypothetical example in Figure 10. It may be
noted that, when the above mentioned job indexing procedure is used in conjunction
with the enumeration scheme proposed by Baker and Schrage [14]. all feasible
subsets of cardinality k=1 would have been enumerated before the job with the lowest
index in stage k can be considered for inclusion in a feasible subset of tasks. Thus,
the updating of LBIl) and checking for the optimal first job can be carried out when
the job with the lowest index at any stage is being considered for the first time for

inclusion in the feasibie set S.

Another independent stopping rule for identifying the optima first job follows

from the next proposition—

PROPOSITION Il If the job with the highest wi/pi is tardy even if scheduled

first, then there is an optimal sequence in which it must be sequenced first.

PROOF: Without loss of generality, assume that w1/p1 > Wyl Py . Also,
since J, is tardy even if scheduled first, p, > d1, Suppose there exists an optimal

schedule such that J1 occupies jth position and let .Ji occupy j— | th position(Figure 11).

Pairwise interchange of J, and J, does not affect the completion times of other
jobs. Decrease in the value of the objective function due tc pairwise interchange of

J, and J, equals

W [{0.T+p=d } "={0,T+p+p,~d 171 + w ({0, T+p+p=(1)~d,} "~ {0T+p,~d,} "]
{ wip - wp,
$ P, lw,/py) = w/p)]



EIGURE 1]
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However, the right hand side is non negative and this contradicts the optimality
of the original schedule. Thus, by successively ‘pushing’ J, to the first position, we

get set of dominant schedules and hence the resuit

7. Design of the experiment

Control variables in generating the test problems are: number of jobs in a
problem, distribution of the processing times, distribution of the due dates, correlation
between the processing times and the due dates, priority or the weights assigned to

the jobs.

® Processing times and the due dates: Processing times and the due dates

are generated using bivariate Normal distribution which incorporates the
variation in processing times, variation in due dates and the correlation
between the processing times and the due dates. We set the various

parameters at the following levels:

Tardiness factor(r) :0.2,0.4,0.6,0.8

Coefficient of variation for the
processing times :0.1,0.3

Correlation coefficent between
P, and a, (p) :0,0.5

Range factor for the due dates (R) :0.4,0.8

Population mean for the job
processing times :30

e Weights for the jobs: In prior studies by RinnooyKan [12] and

Schweimer [15], job weights were generated independently of the job
processing times and the due dates. However, we feel that on average
the penalties associated with the tardiness of the jobs would be
proportionate to the work content of the jobs. Taking this into
consideration, we determine the weights for the jobs by indépendently
determining the factor w/p. from the uniform distribution in the range
(0.2}
MG=hN/pJ;p
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(Wi/pi)" is random variate generated from the uniform distribution [0,2]
and p, is the processing time generated from a bivariate normal

distribution as described above.

e Number of jobs: In order to study the effect of the number of jobs in a

problem on our heuristic, we choose the number of jobs in a problem to
be 10, 20 or 30.

We tested 20 problems for each specification of the parameters. Thus, in total

we tested 20x4x2x2x2x3=1820 problems.

7.1 Computational experiments

In testing our heuristicifor compar.son purposes, we used exponent form of our
heuristic[H3] with parameter value set at 05) on 1820 problems, we made a few
further changes. For problems where optimum solution could not be foundllargely due
to excessive memory requirement for problems with 30 jobs), we compared myopic
heuristic solution against lower and upper' bounds. We found additional lower and
upper bounds by solving the linear assignment relaxation procedure suggested by
F?innooyKan2 et a/ [12]. Best upper bound for the solution was found by choosing
the best solution among EDD sequence, WSPT sequence, Montagne's sequence, upper
bound generated by the hybrid dynamic procedure at termination, solution to linear
assignment relaxation procedure suggested by RinnooyKan et a/ and fifteen solutions
generated by five parameter values for each of the three different versions of our

heuristic.

Tables 2 through 5 give the computational results for various problem sizes.
Table 2 provides the results for problems with 10 and 20 jobs. As may be noted,
our heuristic performed well when compared to other heuristics. As noted earlier, we

kept the parameter value of the myopic heuristic fixed at 0.5. However, results can

2 . )

Qur pilot studies as well as published resuits [12) showed that the lower bound obtained by this
procedure is about 20% below the optimum value. Howver, the lower bound tends to be tighter if the
problems are less tardy and/or the variance of the job processing times is low.
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TABLE 3

Mean Value of Performance Measure for fully solved 30 Job Problems
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(n = 30)
R = 0.4
Number of
T problems
fully solved OPT EDD WSPT MP MYH
0.2 73 0.027 0.107 0.099 0.035 0.017
0.4 26 0.400 1,125 0.290 0.164 0.027
0.6 8 2,069 2,049 0.439 0.350 0.056
0.8 16 5.186 4,242 0.564 0.315 0.018
R =0.8
Number of
T problems
fully solved OPT EDD WSPT MP MYH
0.2 80 0.001 0.033 0.224 0.020 0.007
0.4 38 0.172 0.521 0.739 0.260 0.048
0.6 10 1.600 2.412 1.215 0.634 0.073
0.8 20 5.380 4,223 0.837 0.352 0.030 J
OPT: Mean Value of Normalized Optimum
EDD: Earliest Due Date Rule
WSPT: Weighted Shortest Processing Time Rule
MP: Montagne's Procedure
MYH Myopic Heuristic [H3] with parameter k value set at 0,5
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further be improved at low tardiness factors by increasing the value of the
paramemter k. In case of problems with 20 jobs, we found optimum for all problems

except two problems with tardiness factor 0.8.

In the case of 30 job problems, we could not find the optimal solution to all
problems. Results comparing the performance of various heuristics for problems
where optimum could be found are shown inh Table 3. It is clear that the myopic
heuristic performed better than competing heuristics in this case also. Results in the
case of problems for which optimum could not be found are shown in Tables 4 and
5. Table 4 compares the mean deviation of normalized values of various heuristics
from the best lower bound. Here again, myopic heuristic performs better than
competing heuristics. Table 5 compares the mean value of myopic heuristic to the
best available lower bound and best available upper bound. It is clear from this table

that the myopic heuristic provided the best possible results among all heuristics tested.

In case of problems for which optimum found, it appears that the mean
performance measure is at its worst for problems with tardiness factor 0.6 (Tables 2
and 3). This conclusion agrees with Srinivasan's conclusion [ 16] that problems with
tardiness factor 0.65 were most difficult to solve. His conclusion was based on the

computational time required to find optimum for the problems.

8. Conclusion

It is clear from our computational study that the new myopic heuristic developed
by us is much better than any other heuristic tested. The heuristic is simple and easy
to implement in most real life situations. The myopic heuristic can be used as a
dispatching rule as well. In such a case, we merely determine which job is to be
loaded on the machine next and make subsequent decisions as and when the machine
becomes available for further loading. It is further possible to improve upon the
schedule generated by the heuristic by checking for the local optimality among adjacent
jobs. 1t is easy to build a procedure where we start with an initial schedule generated

by our heuristic and make changes among adjacent jobs until no further improvement in
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the solution takes place. We are currently extending the application of our myopic
heuristic to situations where we have more than one processor(identical processors in

parallell. Further extensions in the area of generalized flow shops are being explored.






28

References

1. Baker, KR, and Martin, JB. "An experimental comparison of soiution algorithms for
the single machine tardiness problem.” Naval/ Research Logistics Quarterly 21, 1
(January 1974), 187-198.

2. Baker, KR. /ntroduction to sequencing and scheduling. John Wiley & Sons, Inc,
NewYork, 1874

3. Baker, KR private communication. (telephonic conversation)

4. Baker, KR A Dynamic Priority Rule for scheduling againtst due dates. TIMS—ORSA
Conference, Houston, October 12,1981.

5. Beshara, S.D., and M.J Magazine. "Myopic Heuristics for Single Machine Scheduling
Problems." [/nternational Journal of Production Research 19, 1 {(Jan—Feb 1881), 85—
85,

6. Eastman, W.L. "Comments on a paper by Schild and Fredman" Management
Science 71 (1965), 754-755.

7. Elmaghraby, SE(ed). Symposium on the Theory of Scheduling and Its
Applications. Springer—Verlag, NewYork, 1973.

8. Fisher, ML "A dual algorithm for the one machine sequencing problem.”
Mathematical Programming 11 (1876), 229-251.

9. Llenstra, JK Seguencing by Enumerative Methods. Mathematisch Centrum,
Amsterdam, 1877.

10. Montagne, ER, Jr. "Sequencing with time delay costs.” Arizona State University
Industrial Engineering Research Bulletin (January 1968), 20-31.

1. Picard, JC. and Queyranne, M. "The time dependent travelling salesman problem
and its applications to the tardiness problem in one machine scheduling” Operations
Research 26, 1 (January—February 1978), 86-110.

12. RinnooyKan, AHG, Lagweg, B.J, and Lenstra, JK “Minimizing total costs in one
machine scheduling.” Operations Research 23, 5 (September—Qctober 1975), S308-827.

13. Schild, A. and Fredman, LJ. "On Scheduling tasks with associated linear loss
functions.” Managment Science 7 (1961), 280-285.

14. Schrage, L. and Baker, KR. "Dynamic Programming solution of sequencing
problems with precedence constraints.” QOperations Research 26, 3 (May-June 1978,
444-44Q

15. Schweimer, J. "On the N-job, one machine, sequence—dependent scheduling
problem with tardiness penalties: a branch and bound solution” Management Science
78, B (1872), 301-313.

16. Srinivasan, V. "A hybrid algorithm for the one machine sequencing problem to
minimize total tardiness.” MNaval Research Logistics Quarterly 18 (September 1971),
317-327.






29

APPENDIX

Consider the following relaxation of the single machine weighted tardiness
problem: suppose that all jobs have unit processing times(if not, we split them into
jobs of unit processing time and assign each the weight wi/pi. The due dates for
these jobs are set at d.d-1d-2...d-p+1. Let t be the completion time for the

job J.

Consider the interchange of the current job J with another job JJ. which is due
to be completed at tc+X. Since all jobs are of equal length, such interchange does not
affect the completion time of any other job. Let w, and dI be the weight and the due

date of job Ji.

PROPOSITION Al Let t be the completion time of J. Consider another job Jj
completing X time units after Jl.‘ Then, an optimal sequence should satisfy the
following property—-

+17F +
(d. -t ) _(d. -t)
-1 ¢ 1l ¢

X X
PROOF. We have to consider eight subcases. These are as follows:

Case ! Both jobs are late in either position. Since both jobs are late in either
position, the job with higher weight must precede the job with lower weight(Figure

AT)

It is clear that in this case the apparent priorities of both jobs are same as their

weights and the condition is satisfied.

Case Il Both jobs are early in either position(Figure A2). In this case, we are

indifferent as to which job is scheduled first Schedule first the job with highest
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apparent priority.

Case lll. Both jobs are early in the current position and late in position tc+X

{Figure A.3).

Cost if J completes at t_and Jj completes at t +X = w}.(tc+X-dJ.) + 0

+
+
X
Cost if J. completes at t +X and Jj completes at t_ = wit +X-d) + 0
+
+
I O I S Y } (IT.
X
Schedule J att and J at t +X if
t [ J 4
+ +
+ v+
. - (d. -t )
(1) £ (I1I) = Wi{l'(d_l__i) } wj{l— i e’ }
X X

Case 1V: One job is late and the other is early in either position(Figure A.4). It is
clear that the job that is late should be scheduled first. Note that the job that is early
has zero apparent priority and the job that is late has full weight as its apparent

priority.

Cases V and VI One job is late in either position and the other is early in earlier

position and late in later position(Figure A.B)

Cost if J, completes at t_ wj.(tc+X—dj)

and Jj completes at tc+X

Cost if J. completes at t wit +X-d} + w. (t —-d)
J c [ | ] c }

and JJ. completes at tC+X

We schedule .JI at tc and Jj at tc+X if
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wj(tc+X—dj) < wi(tc+X—di) +wj(tc—dj)

w, < w, 1 (di } tc)
X
Since Jj is late at t and di—'cc < X, the above expression may be rewritten as
+ +

+ +

- d. -t )

i 1—(di tc) > wj 1~(] c

X X

Cases VIl and Vil One job is early in either position and the other is early in eariier
position and late in later position (Figure AB). It is clear that J should be scheduled at

t . since dj--tc > X, apparent priority of J will be greater than zero.

So, in all the cases discussed above, job with higher apparent priority should be

scheduled in the current position.

PROPOSITION All: If all jobs have unit processng times and equal weights, the

EDD sequence minimizes the average tardiness.

PROOF. Consider two adjacent jobs in an optimal sequence such that Ji

precedes Jj and d > dJ..

Figure A7

Case I Suppose both J, and Jj are early or on time. Since JJ. is early or on

time and d > dJ, pairwise interchange does not degrade the solution.

Case Il Both J.’ and JJ. are tardy. Pairwise interchange does not degrade the

solution since both processing times and weights are equal.
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Case Il J is tardy and Jj is early or on time. This is impossible since d > dj

and completion time of Ji < JJ..

Case IV: J is early or on time and J). is tardy. If J is on time, then pairwise
interchange does not degrade the solution. If J. is early, then pairwise interchange

improves the solution.

Thus, in all cases, pairwise interchange does not degrade the solution and, in
fact, may improve it Since our arguments employ only information about the individual

jobs and not the location in the sequence[2] , the EDD sequence is optimal.



