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1 Introduction 

The problem of controlling a robotic manipulator can be conveniently divided into two 
closely related subproblems: (i) trajectory planning (also called motion planning), and (ii) 
trajectory tracking (also called motion control.) For instance, a possible strategy for controlling 
a manipulator consists of off-line trajectory planning followed by on-line trajectory tracking, the 
latter usually involving the implementation of closed-loop feedback. Here, the term trajectory 
refers to the time history of displacement, velocity, and acceleration of each degree-of-freedom 
of a manipulator model. This research focuses on a methodology for suboptimal (i.e., near 
optimal) trajectory planning for unconstrained as well as constrained manipulator motions. 

Schemes for trajectory planning generally "interpolate" or "approximate" the desired path 
by a class of polynomial functions. These schemes then generate a sequence of time-based 
controZ set points for the control of the manipulator from the initial location to its destination. 
Quite often, there exists a number of possible trajectories between the two given endpoints. (In 
theory, there exists an infinite number of possible trajectories.) For instance, the manipulator can 
be moved along a straight-line path that connects the endpoints (straight-line trajectory), or the 
manipulator can be moved along a smooth, polynomial trajectory that satisfies the position and 
orientation constraints at both endpoints (joint-interpolated trajectory). The research reported 
here exploits this potential of a multiplicity of possible solutions by developing an off-line 
optimal motion planning algorithm that generates trajectories that minimize a given performance 
index without violating any constraints. This trajectory generation algorithm can be formulated 
as an optimal control problem. 

In solving optimal control problems, it is typical to apply variational methods to derive the 
necessary conditions for optimality which can be formulated as two-point boundary-value 
problems (2PBVPs). Numerical algorithms have been developed to solve some 2PBVPs that are 
analytically intractable [1,2]. Although these algorithms have been applied to solve some 
optimal control problems, they are inadequate computationally to solve for the optimal control of 
systems, such as robotic manipulators, that have large numbers of degrees of freedom and strong 
nonlinearities. 

In view of these numerical difficulties, various approaches have been suggested for the 
optimal motion programming of robotic manipulators. For example, by linearizing the 
manipulator dynamics at the final target point, Kahn and Roth [3] formulated a near-minimum- 
time control law for open kinematic chains. Vukobratovic and Kircanski [4] used a dynamic 
programming based method to calculate the optimal velocity profile for a prespecified 
manipulator path. By neglecting the influence of Coriolis and centrifugal forces, Vukobratovic 
and Kircanski [5]  also applied optimal control theory to solve for the optimal motion of 
"simplified" robotic models. Kim and Shin [6] presented a suboptimal control approach for 
manipulators with a weighted minimum time-fuel criterion based on the concept of averaging the 
dynamics at each sampling interval. Although these approaches have been tested via computer 
simulations, their success is limited. Each approach is either confined to a problem with a 
particular type of performance index or it depends upon a simplified dynamic model which may 
be valid only in a special case. 
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Townsend, et al., [7] and Schmitt, el  al., [SI presented conceptually similar, but alternative, 
approaches for solving for the optimal motion of manipulators. In both approaches each joint 
angular displacement is approximated by a function. In [7] this function consists of a sum of a 
polynomial and a half-range cosine series; in [8] it consists of a sum of a cubic polynomial and a 
sequence of known functions with unknown weighting coefficients. The optimization problem 
then involves finding the parameters of the approximating functions that minimize a 
performance index. 

In practice, these approaches are suboptimal. Only finite terms of the expansion functions 
( ie . ,  the half-range cosine series in [7] and the sequence of known functions in [SI) are included, 
whereas, in theory, the optimal solution requires infinite terms. Nevertheless, these approaches 
appear useful in solving several types of optimal motion problems. However, in applying these 
methods a number of unanswered issues are raised. 

1. Convergence. Can it be guaranteed that the suboptimal trajectory converges to 
the optimal solution, or if this is not possible, that the suboptimal performance 
index, at least, converges to the optimal performance index? 

2. Polynomial function. Can the (minimum) degree and coefficients of the 
polynomial function be specified such that convergence is guaranteed? 

3. Boundary Conditions. Can various types of boundary conditions, such as free, 
fixed, and coupled final conditions, be treated? 

4. Criterion of Optimality. Can a criterion of optimality be identified that can be 
used to ensure the quality of the suboptimal solution? 

5. Applicability. What, if any, limitations exist in applying such suboptimal 
approaches? For instance, can such approaches be used to solve bang-bang control 
problems? 

In response to the above questions, this research develops a general purpose Fourier-based 
suboptimal control algorithm to generate manipulator trajectories. This algorithm approximates 
the time history of each generalized coordinate by the sum of a fifth order polynomial and a 
finite term Fourier-type series. Instead of finding the continuous time history of the control 
variables, the proposed method reduces the optimal control problem to one of searching for the 
optimal parameters of the approximating functions, the optimal values of any free boundary 
conditions, and the optimal final time (if it is not fixed). Due to the nature of the conversion, the 
computational scheme of this method is based on an inverse dynamic approach and therefore 
avoids most of the numerical difficulties encountered in optimal control problems. By using 
standard nonlinear programming techniques, the determination of the optimal motion for high 
order, nonlinear robotic manipulator models is hence feasible. 

Unlike previous schemes, this method does not require model simplification and can be 
applied to a large class of optimal control problems. Problems with variable final time as well as 
problems with free or constrained final states can be handled directly. In addition, a guideline 
that can be used to confirm the quality of the suboptimal trajectory is suggested. 

This paper is organized as follows. In Section 2 the methodology and the function of 
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various types of trajectory planning algorithms are considered. Section 3 is concerned with the 
formulation and numerical difficulties of optimal control problems for dynamic systems such as 
robotic manipulators. The main contributions of this research are presented in Sections 4 and 5. 
In Section 4, the Fourier suboptimal control approach is developed and in Section 5, some 
important characteristics of the approach are discussed. Computer simulation results that 
demonstrate the application and effectiveness of the proposed algorithm are presented in Section 
6. Conclusions are given in Section 7. 

2 Planning Manipulator Trajectories 

In manipulator programming it is typical to view the trajectory planner as a black box. 
Usually, the inputs are the path specifications, where the path is defined as the space curve along 
which the manipulator end-effector moves from the initial to final location (position and 
orientation). The planner also accepts constraint infomation such as obstacle constraints 
(whether there are any obstacles present in the path) and dynamic constraints (whether there are 
any limitations on the generalized forces). The outputs of the trajectory planner are the histories 
of the joint trajectories and generalized forces. 

There are two common approaches for planning manipulator trajectories. One approach 
requires the user to explicitly specify a set of constraints at selected locations, called 
interpolation points, along the trajectory. The trajectory planner then selects a parameterized 
trajectory from a class of functions that "interpolates" and satisfies the constraints at the 
interpolation points. A second approach requires explicit specification of the path that the 
manipulator traverses by an analytical function, such as a straight-line path in Cartesian 
coordinates. The trajectory planner then generates a trajectory to approximate the desired path. 

In the above two trajectory generation approaches it is desirable to provide simple 
trajectories that are smooth, accurate, and efficient (in terms of computational requirements and 
in terms of manipulator performance such as energy consumption.) A fast computation time for 
generating the sequence of control set points along the desired trajectory is preferred especially 
for cases of on-line implementation. However, current trajectory planners usually do not account 
for interaction between the trajectory and controller and for dynamic constraints. As a result, 
large tracking errors may develop. Another drawback of current trajectory planners is that they 
lack an objective index to evaluate the trajectory performance. 

Recently, the design of trajectory planners has shifted away from a real-time planning 
objective to an off-line planning phase in order to generate trajectories that can accommodate 
more constraints and achieve better system performance. For example, Lee [9] proposed an off- 
line approach in which a trajectory planning problem was formulated as a maximization of the 
straight-line distance between two consecutive Cartesian set points subject to smoothness and 
torque constraints. 

In essence, this new trend decomposes the control of robotic manipulators into off-line 
trajectory planning followed by on-line tracking control. Running off-line, a sophisticated 
trajectory planner should be able to (i) generate a trajectory that satisfies path specifications and 
various types of constraints, and (ii) achieve a trajectory with superior performance (measured 
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by an objective function, i.e., performance index). These goals led to the development of the 
trajectory planning algorithm presented in this paper. 

3 Manipulator Optimal Control 

In practice, optimal control approaches have not been implemented wideIy for 
programming trajectories of manipulators due to the nonlinear nature and high dimensionality of 
such systems. As mentioned in the Introduction, the necessary conditions for optimality based 
on standard optimal control theory lead to a two-point boundary-value problem (2PBVP). 

Various numerical techniques have been proposed to solve the ZPBVP. In general, these 
techniques fall into two categories: gradient-based methods and dynamic programming methods. 
The utility of the gradient-based methods is limited due to their dependence on gradient-type 
information which is quite sensitive to numerical errors. The applicability of the dynamic 
programming methods is hindered by dimensionality problems (Le., the number of computations 
as well as storage requirements typically grow much faster than the order of the system.) 

In addition to optimal control methods, nonlinear programming methods represent an 
important class of optimization techniques. The main difference between solving an optimal 
control problem and a nonlinear programming problem is the dependence on time (a continuous 
variable). In an optimal control problem one seeks the time history of an optimal trajectory, 
which in theory consists of an infinite number of points. In a nonlinear programming problem, 
one searches for a finite number of free variables to optimize a given objective function, where 
the objective function and constraints are time-independent. In order to bridge the difference 
between the nonlinear programming and the optimal control methods, two different approaches 
have been proposed, namely, the Rayleigh-Ritz technique and the method of finite difference. 
The basic idea of these two methods is to reduce the optimal control problem of infinite 
dimensionality into a problem of finite dimensionality which can be solved by nonlinear 
programming methods. 

The method of finite difference discretizes the time history of the generalized coordinate 
into a finite number of piece-wise continuous intervals. The problem is thus changed into a 
problem of finding the extrema of the objective function with the values of the piece-wise 
continuous generalized coordinate as free variables. This technique is generally impractical 
when the degrees-of-freedom or the time interval of interest becomes large since the number of 
variables increases significantly under such circumstances. 

The basis of the Rayleigh-Ritz method is to replace each generalized coordinate by a set of 
weighted known functions. The unknown weighting coefficients are determined such that the 
performance index of the original problem can be minimized. The K term approximation can be 
expressed as 

K 

Here the generalized coordinate variable, 8, consists of a sum of the product of weighting 
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constant, ck, and known approximating function, uk . If the desired trajectory is specified on one 
or both of the boundaries, the approximating functions should be constructed in such a way that 
the given conditions will be satisfied for all values of the weighting constants. If the boundary 
conditions are natural (i.e., fiee) boundary conditions, no such special precaution is required. 
Usually, the number of constants required depends on the complexity of the optimization 
problem and the shrewdness in selecting the approximating functions. In general, best results are 
obtained when using approximating functions drawn from a functionally complete set of 
eigenfunctions. 

Two drawbacks of the Rayleigh-Ritz method can be identified. First, it is difficult to 
determine a set of approximating functions that simultaneously satisfies the boundary conditions 
on both the generalized coordinates and their time derivatives. Second, even if the 
approximating functions converge to the optimal solution, there is no guarantee that the 
respective derivatives will converge. The approach presented in the following section 
generalizes the Rayleigh-Ritz method and corrects for these problems. 

4 Fourier-Based Suboptimal Control Algorithm 

The dynamic equations of motion of a rigid-body manipulator model are a coupled set of 
nonlinear ordinary differential equations describing the dynamic behavior of the manipulator. 
These equations can be derived by a variety of approaches, such as the Newton-Euler, Lagrange- 
Euler, and generalized D’ Alembert formulations. For an n degree-of-freedom manipulator 
configured as an open kinematic chain the equations can be expressed in the form 

where e is an n x 1 vector of generalized coordinates associated with the n degrees-of-freedom of 
the manipulator, is an n x 1 vector of generalized forces applied at the joints, M, is an n x n 
inertial-mass matrix, _V is an n x 1 vector representing centrifugal and Coriolis effects, G is an n x 
1 gravity loading torque vector, is time, and superscript dot represents time derivative. In 
general, each element of M and G is a complicated function which depends on e(t) , while each 
element of ,V depends on both e(?) and &r). 

Given the equations of motion of a manipulator model, two types of dynamic problems can 
be solved. In the direct dynamic problem, the generalized force history is specified and the 
equations of motion can be integrated to obtain the motion trajectories of the manipulator. In the 
inverse dynamic problem, the desired generalized coordinates and their rates are assumed known 
a priori, e.g., from a trajectory planning program, and the equations of motion are used to 
compute the generalized force history. 

Numerically, the inverse dynamic approach is much more straightforward than the direct 
dynamic approach. In the direct dynamic approach, integration of the differential equations of 
motion is required, while in the inverse dynamic approach the same set of equations is used as a 
system of algebraic equations. This distinction is important from the perspective of 
computational efficiency and has implications when considering the accumulated numerical 
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error. Both truncation and roundoff errors significantly influence the convergence of standard 
optimal control algorithms. Consequently, computational algorithm that are based on a direct 
dynamic approach generally have serious convergence problems in searching for optimal 
solutions of high order, nonlinear systems. 

The optimal control problem is to find an admissible control, Lpt, that causes the 
manipulator to follow an admissible trajectory, $pt and eopt7 such that the performance index, 

is minimized. In equation (3), fand  g are general functions of the arguments shown and it is 
assumed that the initial conditions, S(t,) and $(to),  and the initial time, to , are specified. The 
final time, 9, and the final states, e(?) and e(?) , can either be fiee or fixed. 

The problem can be generalized further by adding two types of constraints. The first class 
of constraints, state variable inequality constraints, can be written as 

where E is an rn x 1 (rn < n) vector function of the states and possibly time. In the trajectory 
planning problem, these constraints are usually due to obstacles that must be avoided in the 
working environment. The second class of constraints, actuator-related inequality constraints, 
can be expressed as 

where zi is the maximum allowable torque at the i-th joint. These constraints reflect the fact that 
each joint actuator is power limited and subject to saturation. 

The central concept of the proposed suboptimal algorithm is to convert the optimal control 
problem into a nonlinear programming problem by approximating each joint angular 
displacement by the sum of a fifth order polynomial and a finite Fourier-type series. For 
example, for joint i , 

where the auxiliary polynomial, P, (t), is defined as 

and the K term Fourier-type series is defined as 
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The velocity and acceleration of the i-th joint are obtained by direct differentiation of the 
above equations. This approach is adopted for the n joints, and then the control variables, i.e., 
the generalized forces, are calculated readily from the equations of motion. Finally, the 
performance index is computed using a straightforward numerical integration method such as 
Simpson’s composite integral technique. 

Assuming that both the initial and final conditions of the state variables Cjoint 
displacements and velocities) are given, the coefficients of the fifth order auxiliary polynomial 
are computed to satisfy the following algebraic equations for each joint i: 

The search for the optimal trajectory, which in theory consists of an infinite number of points, is 
thus converted into a nonlinear programming problem with a finite number of free variables. 
These variables are the Fourier-type coefficients, aik and bik, the free boundary conditions of the 
trajectory, including the initial accelerations, gi (to ), and final accelerations, ei  (9) , and the final 
time, if it is not fixed. 

The necessity of the fifth order auxiliary polynomial can be justified by the definition of the 
Fourier series and its property of differentiability. The following theorem can be found in 
standard engineering mathematics textbooks such as [lo]. 

Theorem ofDirichlet: If X(t )  is a bounded periodic function, X ( f )  = X ( t  + 2a), which in any 
one period has at most a finite number of local maxima and minima and a finite number of 
points of discontinuity, then the Fourier series of X ( f )  converges to X ( t )  at all points where X ( f )  
is continuous and converges to the average of right- and left-hand limits of X ( t )  at each point 
where X ( t )  is discontinuous. 

The conditions of the Theorem of Dirichlet, usually referred to as the Dirichlet conditions, make 
it clear that a function need not be continuous in order to possess a valid Fourier expansion. The 
implication is that it is reasonable to expect that every optimal trajectory can be approximated by 
a Fourier series since such a trajectory satisfies the Dirichlet conditions. 
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It is next necessary to show that the suboptimal solution converges to the optimal solution. 
To do this, the following property is fmt introduced. 

Property of Differentiability: The necessary and sufficient conditions for 4 2 )  = k(t) in the 
interval [6,6+2a] where F(r) is X(t)’s Fourier series and X ( t )  is continuous are (i) X ( t )  is 
continuous, (ii) X(r) is piecewise differentiable in (6,  6+2a), (iii) X(6)  = X(6+2a), and (iv) 
k(S) = ?(6+2a). This property can be generalized to the second derivative case. 

According to this property, it can be concluded that as long as the above four conditions are true, 
the result of term by term differentiation of the Fourier series of period 2a representing X ( t )  in 
the interval of [6,6+2a] converges to X( t )  at each point in [6, 6+2a] at which X(r) is continuous. 
A proof can be found in [ 111. Thus, it can be shown that equations (9) through (14) guarantee 
the feasibility of direct differentiation of the Fourier series from displacement to velocity and 
from velocity to acceleration as long as they are all continuous. The convergence of the 
suboptimal trajectory (in terms of displacement, velocity and acceleration) to the optimal 
solution is thus guaranteed. 

5 Discussion of Suboptimal Approach 

This section discusses some of the detailed characteristics, including the restrictions and 
strengths, of the proposed approach. 

Local Minimum. The method guarantees only that a local minimum solution is achieved. 
The suboptimal solution may not be unique. Identification of the global optimal solution may 
require trial-and-error selection of the initial guess. 

Numerical Algorithm. The original optimal control problem has been converted to a 
problem of ordinary extrema which can be solved by a number of well-developed nonlinear 
programming techniques [12-161. For example, the Simplex method [16] is adopted in this 
research. 

Accuracy. A closed form expression of the joint variables is available and, thus, the joint 
torques can be computed directly from the equations of motion by straightforward algebra. The 
accuracy of these calculations is limited only by the least significant digit of the computer. As a 
result, the accuracy of this approach is dominated by the numerical error of the integration 
algorithm used to the evaluate the performance index. Because the errors of numerical 
integration can be estimated and controlled, the problem of convergence which is encountered 
frequently in implementing standard optimal control approaches is avoided. 

Final States and Time. The final states and final time (if it is not fixed) can be treated as 
free variables. During the search for the optimal solution, they -- together with the coefficients of 
the Fourier-type series - are adjusted simultaneously in every iteration to minimize the 
performance index. 

Restrictions. One of the necessary conditions for the convergence of the proposed 
approach is the continuity of displacement, velocity and acceleration of the optimal trajectory. 
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This requirement is violated in bang-bang control problems due to the finite jump(s) of the 
control variables. Hence, the suboptimal trajectory does not converge to the optimal trajectory at 
the switch point. However, since bang-bang control has a finite number of switch points, the 
value of the suboptimal performance index converges to the value of the performance index of 
the optimal solution. 

Although in theory the proposed approach is capable of achieving optimal performance, 
simulation results show that the speed of convergence of the suboptimal bang-bang control 
solution is usually very slow. This property is similar to the "Gibbs' phenomenon" ([lo], pp. 
247-249) which occurs when developing the Fourier series for a square wave function. As a 
consequence, when high accuracy is desired (say an error in the performance index of less than 5 
percent), the number of Fourier-type expansion functions increases dramatically such that the 
approach may become computationally impractical. In spite of this drawback, the proposed 
approach can always provide a smooth trajectory except where there is an instantaneous jump of 
the control input (a situation which is physically impossible). 

Criterion for Optimality. A possible means of verifying the quality of the suboptimal 
control law is to check if it satisfies the necessary conditions for optimality which are derived by 
variational methods. In practice, this verification can be carried out by substituting the 
suboptimal solution into an appropriate standard optimal control numerical algorithm and 
determining if the termination criterion of the selected algorithm is satisfied. 

An alternative empirical approach is to append another term of the series to the previous 
solution and repeat the optimization process. Additional terms can be added, on a term by term 
basis, until the change in the performance index is sufficiently small. (For unconstrained 
problems, simulation results show that a two or three term Fourier-type expansion yields 
satisfactory results.) It should be noted that although it is a reasonable idea to use the previous 
solution as part of the initial guess of the current optimization process, one cannot fix the 
preceding terms of the Fourier type series and only treat the newly appended terms as free 
variables. This is because a Fourier series with finite terms is only optimal in the sense of mean 
square error. That is, the coefficients determined by the Fourier formulas are the optimal 
coefficients only in terms of the mean square error between the original function and the finite 
term Fourier series. The proposed algorithm minimizes the algebraic difference between the true 
and suboptimal performance indices which is mathematically different from finding a suboptimal 
trajectory to minimize the mean square error of the true optimal trajectory. 

Controller Design. The dynamic equations that describe the manipulator motion are 
coupled, highly nonlinear, ordinary differential equations. The control system design is 
complicated by the coupling and nonlinearity (due physically to gravitational torques, reaction 
torques, and Coriolis and centrifugal torques.) As a result, these effects are often carefully 
studied in the process of control system design. For instance, if the coupling inertias between 
joints are small with respect to the effective joint inertias, the manipulator can be treated as 
independent mechanical systems and the complexity of the control law can be greatly reduced. 
Another example is a manipulator not moving at high speed, for which the velocity dependent 
terms are typically neglected, thereby making the implementation of various real-time control 
laws possible. The simplifications mentioned in these examples are often adopted but limit the 
operating domain of the manipulator controller. 
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The interaction among various terms of the dynamic equations is determined not only by 
the physical characteristics of the manipulator and the load it carries but also by the trajectory. It 
is possible to search for trajectories that give rise to minimal nonlinear effects and/or minimal 
dynamic coupling between joint motions so that (in theory) simplified control strategies such as 
linear control theory and/or decoupled feedback control schemes can be applied. One of the 
objectives of this research is to explore this approach of selecting special trajectories such that 
the control system design problem can be simplified. 

6 Examples 

Example 1. The dynamic system of interest is the two degree-of-freedom (i.e., planar) 
If acceleration due to gravity acts in a direction robotic manipulator shown in Figure 1. 

perpendicular to the x-y plane, the equations of motion are: 

0. .. . .  
T,  = H , ,  e, + ~ , , e , - ~ i ) ~ - 2 ~ e ,  e, 
T, = H , ,  e, +H2,e2  + H  (3; 

where the coefficients of the joint angular rates are the effective mass moments of inertia given 
by: 

H ,  , =M, 4 + I ,  +M, [ 0: +4 +20, d,   COS^,] +Z2 

H,, =M2 4 +Z2 

H , ,  =M2 D , d2 COS 0, + M, 4 +I2 
H=M,D, d,sin8, 

Here the mass of link i is M i ,  the centroidal mass moment of inertia of link i is Zi , the center of 
mass of link i is located on the centerline passing through adjacent joints at a distance di from 
joint i, and the length of link i is Di . In equations (15) and (16), the first two terms on the right 
represent inertial torques, while the third term represents the effective centrifugal torque. The 
fourth term in equation (15) represents the effective Coriolis torque. 

The path specification is to move the manipulator from initial position [ O , ( O ) ,  e,(O)] = [ O O ,  

30'1 to final position [el(?) , e,(?)] = [120°, 60'1 with the initial and final velocity zero. If the 
final time, t , is known, a simple trajectory planning method is to introduce a cubic polynomial 
for each joint angular displacement. A cubic polynomial has four coefficients, which can be 
found from the boundary requirements on initial and final displacement and velocity. 

Alternatively, if a performance index representing certain performance characteristics of the 
manipulator is proposed, the optimal trajectory can be obtained by applying the suboptimal 
method presented in this paper. In applying the method, each joint displacement is approximated 
by the sum of a fifth order polynomial and a Fourier-type series containing two terms. In this 

f 
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Figure 1: Two Link Planar Manipulator Model. 
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example, the performance index is the control effort, represented by the integral of the sum of 
the joint torques squared: 

Two different optimization problems are investigated. In the first problem, the final time is 
fixed (i.e., 9 = 1 second specified) and the suboptimal trajectories with and without state 
constraints are calculated. Here, the state constraints refer to the requirement that joint 
displacements must fall within the range defined by the initial and final values. In the second 
problem, the final time is not fixed but is constrained (Le., ~fcannot  exceed 2 seconds). The 
suboptimal solution assuming no state constraints is obtained. In both these problems, the 
Simplex method [16] is used to search for the optimal values of the coefficients of the series and 
the initial and final accelerations for both joints (with the cubic polynomial trajectory used as the 
initial guess.) The state constraints are included in the performance index using a penalty 
function on their violation. 

For the first problem, in which the final time is fixed, the time histories of the joint 
displacements and the performance index integrand are graphed in Figures 2 and 3, respectively, 
for the cubic polynomial trajectory, the state constrained suboptimal trajectory, and the state 
unconstrained suboptimal trajectory. These figures show that the cubic polynomial and the state 
constrained suboptimal solutions remain within the range defined by the two endpoint 
displacements, whereas the state unconstrained suboptimal solution involves displacements of 
the joints that deviate outside the boundaries. The state constrained suboptimal trajectory for 
joint 2 approaches its upperbound much faster than the cubic polynomial trajectory. 

Although it appears from Figure 2 that the state unconstrained suboptimal trajectory is 
excessive, in fact the trajectory is compact. Multiple exposure schematic drawings of the robot 
executing the cubic polynomial trajectory and the state unconstrained suboptimal trajectory are 
shown in Figure 4 (at 0.1 second intervals). Furthermore, the control effort of the state 
unconstrained suboptimal solution remains small during the motion (Figure 3). In contrast, the 
cubic polynomial and state constrained suboptimal solutions require control efforts that are 
especially large near the boundaries. Integration of the curves of Figure 3 shows that the value 
of the performance index decreases from 387.5 N2-m2-sec for the cubic polynomial solution to 
341.8 N2-m2-s,: for the state constrained optimal solution and to 122.9 N2-m2-sec for the state 
unconstrained suboptimal solution. In summary, substantially improved performance is possible 
by relaxing the constraints on the joint displacements, constraints which are usually imposed 
(implicitly or explicitly) in trajectory generation methods. 

For the second problem, in which the final time is not fixed but constrained, the time 
histones of the joint displacements and the performance index integrand for the suboptimal 
sohtion are shown in Figures 5 and 6,  respectively, for the cases of fixed and constrained final 
times. In these figures the curves corresponding to the suboptimal solution with fixed final time 
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Figure 2: Joint Displacement Histones for Example 1 (Fixed Final Time). 
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Figure 4: Multiple Exposure Schematic Drawings of Robot Executing 
(a) Cubic Polynomial Trajectory, and (b) State Unconstrained 

Suboptimal Trajectory (at 0.1 sec intervals). 
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are identical to the curves in Figures 2 and 3. The optimal final time coincides with the 
upperbound of the constraint, i.e., 9 = 2 second. The displacement trajectories for the 
constrained time problem exhibit similar shapes to those of the fixed time problem, but are 
stretched out to fill the full time available. As a result, there is a reduction in the extrema which 
occur outside the range of the boundary conditions. 

From the integration of the curves of Figure 6, the value of the performance index decreases 
from 122.9 N2-m2-sec to 20.7 N2-m2-sec when releasing the fixed constraint and imposing an 
inequality constraint on the final time. This significant improvement reflects the effect of the 
final time on system performance. 

Example 2. The simulation results of the previous example suggest that a major 
improvement in performance in terms of decreased control effort is possible by implementing the 
(state unconstrained) suboptimal strategy. This example is designed to highlight the advantages 
of applying the proposed strategy for shaping the trajectory dynamics as desired. In this 
discussion, the manipulator model and path boundary conditions (with fr = 1 second fixed) are 
the same as in the first example. 

First consider using the cubic polynomial trajectory as the planned trajectory in a scheme, 
shown in Figure 7, to generate an actual trajectory. The scheme concatenates the inverse 
dynamics of a simplified model with the direct dynamics of a full dynamic model. (That is, the 
actual generalized forces, c, which are calculated according to the equations of motion of a 
prespecified simplified model, are used in the integration of the equations of motion of a 
complete dynamic model to determine the planned trajectory.) The simplified model is a 
reduced version of the full dynamic model in which one or more effects have been neglected. 
Clearly, the planned and actual trajectories will be different, especially as more important effects 
(Le., nonlinearities, coupling, etc.) are neglected. In this study, two simplified models are 
examined. One model neglects the Coriolis effect; a second model neglects both Coriolis and 
centrifugal effects. 

Figure 8 compares the planned and actual displacements for the two simplified models. 
Although in general the trendwise character of the graphs agree, errors in the final boundary 
conditions exist for both simplified models. Furthermore, the actual displacement of the second 
joint deviates significantly from the planned motion, suggesting that the centrifugal component 
of acceleration is important for the cubic polynomial trajectory. 

It is possible to embed the open-loop scheme of Figure 7 in a closed-loop algorithm that 
attempts to minimize the differences between the planned and actual trajectories. Such a scheme 
is shown in Figure 9, where the proposed suboptimal framework described in this paper is 
adopted. The performance index consists of functions of the errors and error rates at the final 
time and an integral of the errors and error rates during the trajectory. The intent of the closed- 
loop scheme is to drive the actual trajectory to the planned trajectory (while satisfying the 
boundary conditions), thereby minimizing the influence of those effects which are neglected in 
the simplified model. 

By using such a scheme, it is expected that the simplified mode1 will satisfactorily simuIate 
the real dynamic model in the neighborhood of the proposed "optimal" trajectory. If this is true, 
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Figure 7: Flowchart of Open-Loop Algorithm for Generating 
Actual Trajectory from Cubic Polynomial Planned Trajectory. 
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a simplified feedback controller that accounts only for the dynamics of the simplified model 
should be able to effectively regulate the dynamic response of the manipulator when moving 
along the corresponding optimal trajectory. However, the sensitivity of the resulting optimal 
trajectory to disturbances requires further investigation in order to determine the actual effective 
operating range of such a simplified controller. 

In this example, the performance index is assumed to be: 

Again, two simulation cases are studied. In one case, the actual torques are generated based 
on a simplified model that neglects the Coriolis effect. In a second case, the simplified model 
neglects both Coriolis and centrifugal effects. In both cases, the cubic polynomial solution is 
taken as the initial guess of the planned trajectory. 

Figure 10 displays the resulting suboptimal trajectories, i.e., the planned and actual joint 
displacement histories for the two cases. The figure shows that the tracking error for the first 
simulation case (in which only Coriolis is neglected) is so small that the curves of the planned 
and actual trajectories coincide. Note that the minimization of the Coriolis term is achieved by 
making the velocity of each joint approximately equal to zero during part of the trajectory. For 
the second simulation case (in which both Coriolis and centrifugal effects are neglected), the 
tracking error is observable in the figure, i.e., a small difference between the planned and actual 
trajectories exists. The implication is that the trajectory for which the manipulator dynamics 
appears to have no contributions of Coriolis and centrifugal effects cannot be reached fully. 
However, the actual trajectory comes very close to matching the planned trajectory for which 
these effects are absent. Finally, it should be mentioned that the boundary conditions of the 
trajectories for both cases are satisfied, since the performance index has a strong penalty on their 
violation. 

In summary, this example demonstrates that the manipulator dynamics can be influenced 
strongly by the trajectory. By adopting a "smart" trajectory, it is suggested that the effectiveness 
of simplified controller designs may be increased. 

7 Conclusion 

A basic problem in robotics is planning motions to solve some prespecified task, and then 
controlling the manipulator as it executes the commands necessary to achieve those actions. 

This paper presents a general-purpose suboptimal trajectory generation algorithm for 
robotic manipulators. The proposed approach is a Fourier-based method that converts an 
optimal control problem into a nonlinear programming problem. The algorithm is especially 
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Figure 10: Suboptimal Planned and Actual Displacement 
Histones for Example 2 (from Figure 9.) 
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effective in finding optimal manipulator motions for a variety of performance indices while 
sidestepping many of the numerical difficulties typically encountered when applying optimal 
control theory directly to find such trajectories. A novel feature of this work is the feasibility of 
integrated trajectory planning and controller design. 
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