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Abstract
This paper deals with the learnability of boolean functions. An intuitively appealing notion of
dimensionality of boolean functions is developed and used to identify the most general ciass of boolean
function families that are learnable from polynomially many positive examples with onc-sided error. It is
then argued that although bounded DNF expressions lie outside this class, they must have cfficient lcarning
algorithms as they are well suited for expressing many human concepts. A framework that enables efficient

learning of bounded DNF functions is then identified.






1. Introduction

Much attention has been paid to machine learning in the arca of Artificial Intelligence (Michalski,
Carbonnell and Mitchell, 1983). Most of the literature in this category report investigations involving
heuristic and ad hoc methods for solving specific problems. Until recently, formal approaches were limited to
the arca of inductive inference, as surveyed in (Angluin and Smith, 1983). The work reported in (Valiant,
1984) and (Blumer, Ehrenfeucht, Haussler and Warmuth, 1986) has helped rcfocus interest in a formal

framework for the problem.

(Valiant, 1984) presents computational models for learning and derives algorithms for learning specific
classes of boolean functions like bounded CNF, monotone DNF etc. In answer to an important question left
open in (Valiant, 1984), we identify a general family of functions that is no harder to learn than bounded CNF
but is not expressible as k-CNF for any fixed k. Going further, we give a theorem that identifies the most
general class of function families that can be learnt with one-sided error from polynomially many positive
examples. In doing so we develop the notion of dimensionality for boolean functions, in a manner that is
indcpendent of the structure of their boolecan expressions. This is the main result of this paper. Our
deveiopment of the notion of dimensionality was independant of that first introduced in (Vapnik and
Chervonenkis, 1971) and more recently discussed in (Blumer et al, 1986). Although our notion is less general,
in that it is specific to boolean functions, it is far more intuitive than that of (Vapnik and Chervonenkis, 1971).
The supporting lemmas and theorems in this paper do not invoke the heavy machinery that (Blumer et al,
1986€) borrow from (Vapnik and Chervonenkis, 1971) , as they (the lemmas and thcorems) are no stronger
than necessary to the problem at hand. For the sake of completeness, we show that our notion of dimension is

equivalent to that of (Vapnik and Chervonenkis, 1971).

We then argue that many human concepts are bounded DNF, and hence there must be efficient
algorithms that learn them. Using our dimensionality theorem we show that bounded DNF functions cannot
be lcarnt with one-sided error from polynomially many positive examples. Placing some restrictions on the
probability distribution of the examples allows us to obtain a polynomial time algorithm that learns bounded

DNI- cxpressions with two-sided crror.  We can show that learning algorithms that work for arbitrary



distributions do not exist. This leads us to believe that while human concepts are often bounded DNF, they

are not learnt as such, but as disjunctions of simpler sub-concepts.

2. Preliminaries

We consider n boolean variables V¥, that can take on values from {0,1}. An assignment is an
assignment from {0,1} to cach of the variables. A leaining algoritim is an algorithm that attenmpts to infer a
function fon the variables, from positive examples for £ i.e, assignments that satisfy £ The lcarning algorithm
has at its disposal a subroutinc EXAMPLE, that at cach call produces a positive example for the function to
be learnt. For a particular assignment a, the probability that the learned function will be queried on a is Aa),
as given by the probability distribution function P. Also, the probability that a particular satisfying
assignment a of fwill be produced by a call of EXAMPLE is Xa)/(3; P(a)), where the summation is over the

set of satisfying assignments for £, In addition the learning algorithm knows a priori that the function to be

learned belongs to some subset of all boolean functions on the same variables,

We define a family of functions F to be any set of boolean functions such that if fand g are two functions
in Fwith the same number of variables, then they are also functions of the same variables. The nt subfamily
Fn of a family F'is the set of functions in F of n variables. Hence

F=U_, F,.

n

3. Learning with One-Sided Error
Following (Valiant, 1984), we say that a family of functions F is learnable with one-sided crror if and only
if there exists an algorithm that
(a) makes polynomially many calls of EXAMPLE both in an adjustable error parameter 4 and in the

number of variables n. The algorithm need not run in polynomial time.

(b) for all functions fin F, and all probability distributions P over the assignments, the algorithm

deduces with probability (1 —~1/4) a function g in Fsuch that for any assignment a,
gla)=1impliesfla) = 1

ifS = {a|Aa) = 1 and gla) = 0}, then



Z Pla) < /h
aesS
Further, if the algorithm runs in polynomial time, we say that the family is polynomial time learnable or
p-time learnable. The notions of learnability and p-time learnability capture the idea that the teacher’s time is

a lot more valuable than the student’s time. So a concept is learnable if it requires a small amount of

student-teacher interaction, even though the student may have to do a lot of homework.

(Valiant, 1984) shows that bounded CNF expressions are p-time lcarnable with one-sided error and
questions whether the class of p-time learnable functions can be significantly extended beyond the bounded
CNF functions. We will exhibit a rather general family of functions that is p-time learnable with one-sided
error but is not included in the bounded CNF families. For any positive integer m, let B™ be the family of
boolean functions whose n% sub-family consists of all functions of n variables with at most n"™ satisfying

assignments.
Theorem 1: For any m, B™ is p-time learnable with one-sided error.

Proof: (sketch) Construct an algorithm that calls EXAMPLE 2h(n™ + log elz) times and presents as
output the disjunction of the distinct assignments produced by EXAMPLE. With probability (1—1/4) the
algorithm will output a function in B” that differs from the function to be learned with probability no greater

than 1/h. This can be proved with arguments similar to that of (Valiant, 1984). O
Theorem 2: For any fixed mand &, B™ ?ﬁ k- CNF.

Proof: Consider the function f, of n variables v,,...,v, given by

f;' =V VYV Ay WA Y

where N=mlogn. Now f, has 9mlogn

= n™ assignments and so f, is in B™. Suppose that for some £, f, is
cxpressible as k-CNF for any n. Pick n such that mlogn > k and examine the clauscs of the k-CNF formula
g, that is supposedly cquivalent to j;’ . g, must contain a clause of the form

(u1 ViV Vou Vo uk)

where0 < i < kand



{ul,...,u’.} - {vl.....vN}
{“i+1""’“k} C {VN+1""vn}
If not, g, has a satisfying assignment that sets ali of VeV 1O 0 and hence g, £ f" . But then, every satisfying

assighment of g_has atleast one of u_,...,u, set to 1 and again g /.. Hence the theorem. OO
n 1 1 n n

It is easy to see that the above proof holds for the family of functions with at most X(n) satisfying
assignments where X(n) is an increasing function. Furthermore, any such family is p-time learnable as well,

extending the class of p-time learnable functions well beyond the k-CNF expressions.

Next we identify the set of all function families that are learnable with one-sided error. We need the
following definitions for our discussion, In what follows, we shall use the name of a function to refer to the

function or the set of assignments that satisfy it, unless the context demands clarification.

A boolean function is said to be consistent with a set of assignments if it is satisfied by every assignment

in the sct.

A sub-family F " is well-ordered if, for any set of assignments S that is consistent with some function in Fn,
there exists a function fin F, such that

(a) fis consistent with S

(b) forany f € Fn consistent with S, f/C f;
We say that fis the least function in Fn consistent with S. A family Fis well-ordered if its nh sub-family

Fn is well-ordered for all n.

Define the operator Mn to be a mapping from sets of assignments to functions in F_ as follows. For any
subset S of assighments consistent with some fin Fn, Mn(S') is the least function in Fn consistent with S, If S

is not consistent with any function Fn, M n(S') is undefined.

Proposition 1 F_is well-ordered if and only if for any two functions fand gin F, fN g £ @ implies

that there exists a function 4 € 1"n éuch that h = fN g



Proposition 2: For any two sets 4 and B,

M (AU B) = M (M (A)U M (B))

The dimension of a sub-family Fn, denoted by dim(Fn), is the least integer d such that for every function f

in Fn, there existsa set fof‘ d or fewcr assignments such that fis the least function in F, consistent with S -

A family F is of polynomial dimension if therc exists a polynomial D(n) such that for all a, F is of

dimension at most D(#n).

Proposition 3; Let F'I be of dimension 4. Then there exists a set S of d assignments such that

(a) S is consistent with some function in Fn.

(b) for any S, c S,
S, 7 S, implics M (S)) # M (S)
Proof: Since Fn is of dimension d, there is some function fin Fn, such that for any set of assignments .S
f= M (S)implies|S] = d

Pick a set S of d assignments such that £ = Mn(S) and (a) is satisfied.

Then, suppose that S1 and S, are two subsets of S such that S1 £ S2 and yet Mn(Sl) = M”(Sz). Without
loss of generality let }S| < |S,|. Now,
§=(5§-S)US US,
Using Proposition 2 on the above equation we get
M (S) = M (M (S=S)UM(S)U M(S))
=M (M (S~S)U M (S))since M (S) = M (S).
= Mn((S - Sz) U 51) by Proposition 2 again.
Hence f= M (S) = M ((S-S)U S)
where (S~ S) U le <d

A contradiction. Hence the result. O



Theorem 3: A family Fis learnable with one-sided error if and only if F'is of polynomial dimension.

Proof:(sketch) (only if) We begin by showing that if a family is learnable with one sided-error, it is
well-ordered. Let I be a family that is learnable, but not well-ordered. Let A be a lcarning algorithm for Fn.
Then, for any set of assignments that is consistent with some function in F", A produces the least such

function. Otherwise A would not learn with one-sided error. Hence F” is well-ordered and so is I,

Let A be an algorithm that learns Fn, using (n/h)k calls of EXAMPLE, where & is some integer and h is
the error parameter. Suppose that Fn is of super-polynomial dimension D(n). Then, pick n and % such that
D(n) > (n/h)k(l—h). Letd = D{n)and m = (n/h)k. Recall that A must learn any function in Fn for any
probability distribution on it. Pick a set S of size d as in Proposition 3, and place the uniform probability
distribution on it. Now, A will see some m elements of .§ and output the least function g that is consistent
with these. By Proposition 3, this function will not be consistent with any of the other d-m elements in S.
Consequently, g differs from the function to be learned, Mn(S), with greater than //4 probability. Hence A

does not learn I’ o

(ify Let F be of polynomial dimension D(n). We build an algorithm A to learn Fas follows. Let f¢ F
be the function to be learned with error at most 1/# as defined earlier. For any probability distribution £ on
/; consider the set of functions

Cr={dge F, Af~g 2 1/h}
Thesc are the functions that differ from fwith more than the allowable crror. The probability that m calls of
EXAMPLE will produce assignments all consistent with some particular function in C ' is bounded by
(1-1/m™ Now |C JJ <IF) < 2"XM_ Hence the probability that all m examples will be consistent with any
one function in C fis bounded by 2""(1 ~1/k)™. Therefore, if

2D~ /Ry < U/

is satisfied, A will learn F. Simplifying, we get

m > h(nD(n) + logn)

to be sufficient. Since D(n) is polynomial, m is polynomial in n and A, making I lcarnable with one-sided



error.
This completes the proof. [

Corollary: A boolean family F is learnable with one-sided error if and only if there exists a polynomial
D(n) such that

IF.} < 2% for all n.
We will now work an example to demonstrate the scope of Theorem 3.

Example 1: For cach n, given are k(n) predetermined boolean functions fng,...fk(n), where k(n) is some
fixed polynomial in n. Consider the function family F whose ah subfamily Fn is defined as follows.
Fo={se = fi/e\s 5 SC U Syt

In words, F,l consists of conjuncts of any subset of the given k(#) functions.
Claim 1: Fis well-ordered.
Proof: Straightforward. O
Claim 2: F'is of polynomial dimension.

Proof: For any function fin Fn, construct a set of assignments S  as follows.
begin
S = %}
for each g of the given k(n) functions do
if gis not included in f; pick an

assignment that satisfies fbut not g.

If such exists, add it to S -
od

end



S fcontains at most k(n) clements and it is easy to verify that f= M (S ) Hence F, is of dimension k(n)

and therefore F'is of polynomial dimension. [
Claim 3: Fis learnable with one-sided error.
Proof: Immediate from Theorem 3 and the foregoing claims. O
Indeed, it is not hard to see that bounded CNF is a special case of this family. [J

Theorem 3 is useful in determining whether or not a family of functions is learnable. However, it cannot
be used to determine p-time learnability. This is precluded by generality of the theorem in that it makes no
assumptions on the structure of the function family. To extend the the scope of the theorem to p-time

learnability, we need the following definition.

A sub-family Fn is orderable in time ¢ if and only if for any set of assignmients S that is consistent with
some function in F, the least function in Fn consistent with S is computable in time £. A family Fis p-time

orderable if and only if there exists a polynomial 7{x) such that for all n, F" is orderable in 7T{#) time.

Theorem 4: A family Fis p-time learnable if and only if it is of polynomial dimension and is p-time

orderable,
Proof: A straightforward extension of the proof of Theorem 3. [J

We will now establish the relationship between our notion of dimension and that of (Vapnik and
Chervonenkis, 1971). Following (Blumer et al, 1986), we define the Vapnik-Chervonenkis dimension,

denoted by d, c(Fn), of a subfamily Fn as follows.

Given a set S of assignments of n variables, let IT(S) denote the set of all subsets of S obtained by
intersecting S with the functions in Fn. i.e.
(s) = {SN A1 e F}

If11(S) = 25, we say S is shattered by Fn. d, c(1",,) is the smallest integer d such that no set of cardinality d+1



is shattercd by F "

Theorem 5; For any subfamily Fn,

dim(F) s d (F) < ndim(F)

Proof: I.et dim(Fn) = d. Since |F nl < 2™ 1o set of cardinality nd-+ 1 can be shattered by F . Hence,
dvc(Fn) < n-dim(Fn)
By Proposition 3, there exists a set of cardinality d that is shattered by Fn. Hence,
dim(F") < dvc(Fn)
and therefore
dt'm(Fn) < dv c(Fn) < n-dim(Fn)
g

4. Learning with Two-Sided Error
Consider the family of boolean functions generated by the bounded-DNF expressions. i.c., for any k, the

k-DNF functions are those represented by DNF formulae with at most & variables per clause. It is easy to
verify that for any fixed &, the k-DNF functions are not well-ordered. Take a single assignment., There are
many k-DNF functions that are consistent with this assignment, but there is no least one among them. Hence
k-DNF functions are not learnable with one-sided error. This is unfortunate as many human concepts tend to
be bounded DNF rather than CNF, perhaps because the former naturally favours positive concepts like

(this A that A that) Vv (that A tha) V...
while k-CNF favours negative concepts like

(—(this A that A that)) A (—(that A thaD)) A...

In words, k-DNF expresses what is included by the concept, while k-CNF expresses what is excluded by it.

Suppose we send out a child to buy some fruit. Given his limited development, let us assume that the

child only knows of apples, mangoes, pomegranates and grapes. So his concept of fruit is likely to be



10

fruit = apples V mangoes V pomegranates N grapes
= (red A juicy A fleshy) Vv (yellow A juicy A fleshy) V
(red A = juicy A cellular) V (purple A juicy A fleshy)
where each clause in the second expression describes the corresponding fruit in the first, in terms of the
observable variables. It appears that the concept of fruit is better expressed in DNF rather than CNF. Also,

k-DNF concepts tend to be general, in that any k-DNF formula has atleast 2k satisfying assignments.

The point of all this is that bounded-DNF functions are important and siuce they are learned easily by
humans, there must be efficient algorithms for them. Our interest here is best expressed thus. Suppose the
child in the above example delegated the task to the family robot. How does he get the robot to learn quicky
what he means by “fruit”? In particular, we wish to find the framework within which the child can quickly
communicate to the robot what he means by a fruit, as opposed to analyzing a particular protocol with respect

to such concepts. We will now define such a framework.

A family of functions F is learnablie with two sided crror if and only if there exists a leaining algotithm
that
(a) makes polynomially many calls of EXAMPLE both in the adjustable error parameter h and in the

number of variables a.

(b) For all functions fin F, and the uniform distribution over the assignments, the algorithm will
deduce with probability (1 —1/h) a function g in Fsuch that for any assignment a,
P(g(a) 7 fa)) < Vh
We emphasize here that the uniform probability distribution applics to the examples produced by
EXAMPLE as well as to the queries asked of the learned function. If the distribution is allowed to be
arbitrary, we can show easily that any learning algorithm can be forced to deviate from the function to be

learned with probabilit approaching unity,

We say a k-DNF clause is prime if and only if it contains k distinct variables. ( A variable and its

negation are not distinct). We now present an algorithm that lcarns k-DNF functions of # variables.
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Algorithm 1
(1) Perform (32n3kh3) calls of EXAMPLE and for each prime k-DNF clause ¢ of the n variables,

compute the hit frequency
number of examples satisfying ¢

r.=
! total nunber of examples

(2) Pick the clause Cm such that r_ is a maximum. Construct g, the disjunction of all clauses ¢ ; such that

1
rzr -
iem 2h2n)
(3) Output the constructed function g,

Define the hit probability of a clause to be the probability that a call of EXAMPLE will result in a
satisfying assignment of the clause. Algorithm 1 does nothing more than estimate the hit probability of each
prime k-DNF clause. (There are no more than(zlf ) < (2n)k of these.) Since the probability distribution is
uniform, all of the prime clauses that are included in the function to be learned will enjoy the same hit
probability and that will be a maximum. Hence, the algorithm attempts to identify the clauses with maximum
hit probability and will do so with high probability. There might be some clauses that are not included in the
function to be learned, but have a hit probability approaching the maximum. These will be included in the
output function g if their error contribution is lower than that allowed by the parameter 4. Some algebraic
manipulation is required to compute the number of calls to EXAMPLE as specified in the algorithm. In
particular, an approximation of the binomial distribution (Feller, 1957) is useful in estimating the number of

calls to EXAMPLE necessary to cnsure that for any clause, with proabability at least (1—1/4), the deviation
1

aK2n)

of its hit frequency from its hit probability is at most § = . This ensures that with probability (1—1/4),

(a) the clauses in the function to be learned will enjoy a hit frequency in the interval (rm, T 28), where

r.,is the maximum hit frequency observed.

(b) a clause with hit probability less than (rm—48) will have a hit frequency outside the interval (rm,

rm—26).
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Of the above conditions, (a) implies that with high probability, our algorithm will correctly identify the
clauses present in the function to be learned, while (b) implies that the error contribution of a spurious clause
that is included by the algorithm in the output function is ai most 48. Since there can be at most (2n)k
spurious functions, it follows that with high probability the output function is incorrect with probability at
most

@n)as = =222 = Wk

Which is as required.

From the foregoing, we see that bounded DNF functions are not easy to learn except in some restricted
situations. Perhaps humans do not learn k-DNF functions at one go, but do so clause by clause.i.c, bottom up
instead of top-down. In the robot-child example, this translates to the child teaching the robot the sub-
concepts of apple, mango, grape and pomegranate, and then unifying them into the concept of fruit. Of
course, if negative examples were allowed, bounded DNF functions are no harder to learn than bounded

CNF functions. But it is unusual for human concepts to be learned from negative examples.

5. Conclusion

In this paper, we dealt with the learnability of boolean functions. We identified the most general class of
function families that are learnable with one-sided error from polynomially many positive examples. In doing
so, we developed an intuitively appealing notion of dimensionlity for boolean functions. Arguing that many
human concepts are bounded DNF, we identified a framework within which bounded DNF expressions are

learnable.
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