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Abstract 

This papcr deals with the learnability of boolean functions. An intuitively appealing notion of 

dimensionality of boolean functions is developed and used to identify the most gcneral class of boolean 

function faniilics that are learnable from polynomially many positive examples with onc-sidcd crror. It is 

then argued that although bounded DNF expressions lie outside this class, they must have ci'ficicnt Icarnitig 

algorithms as they are well suited for expressing many human concepts. A framework that enablcs efficient 

learning of bounded DNF functions is then identified. 





1. Introduction 

Much attcntion has bccn paid to machine learning in the arca of Artificial Intclligcnce (Michalski, 

Carbonnell and Mitchell, 1983). Most of the literature in this category report investigations involving 

heuristic and ad hoc methods for solving specific problems. Until recently, formal approaches were limited to 

the arca of inductive inference, as surveyed in (Angluin and Smith, 1983). The work reportcd in (Valiant, 

1984) and (Ulumer, Ehrenfeucht, Haussler and Warmuth, 1986) has helped rcfocus interest in a formal 

framcwork for the problem. 

(Valiant, 1984) presents computational models for learning and derives algorithms for learning specific 

classcs of boolean functions like bounded CNF, monotone DNF etc. In answer to an important question left 

open in (Valiant, 1984), we identify a general family of functions that is no harder to learn than bounded CNF 

but is not expressible as k-CNF for any fixed k. Going further, we give a theorem that identifies the most 

general class of function families that can be learnt with one-sided error from polynomially many positive 

examples. In doing so we develop the notion of dimensionality for boolean functions, in a manncr that is 

indcpcndent of the structure of their boolean expressions. This is the main result of this paper. Our 

deveiopmcnt of the notion of dimensionality was independant of that first introduced in (Vapnik and 

Chervonenkis, 1971) and more rcccntly discusscd in (Blumer et (11,1986). Although our notion is less gcneral, 

in that it is specific to boolean functions, it is far more intuitive than that of (Vapnik and Chervonenkis, 1971). 

The supporting lemmas and theorems in this paper do not invoke the heavy machinery that (Blumer et al, 

1986) borrow from (Vapnik and Chcrvonenkis, 1971) , as they (the lemmas and theorems) are no stronger 

than necessary to the problem at hand. For the sake of completeness, we show that our notion of dimension is 

equivalent to that of (Vapnik and Chervonenkis, 1971). 

We then argue that many human concepts are bounded DNF, and hence there must be efficient 

algorithms that learn them. Using our dimensionalitj theorem we show that bounded DNF functions cannot 

be lcarnt with one-sidcd error from polynomially many positive examples. Placing some restrictions on the 

probability distribution of the exaniples allows us to obtain a polynomial time algorithm that learns bounded 

I ) N F  cxprcssions with two-sided ‘error. Wc can show that learning algorithms that work for arbitrary 
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distributions do not exist. This leads us to believe that while human concepts are often bounded DNF, they 

are not learnt as such, but as disjunctions of simpler sub-concepts. 

2. Preliminaries 

We consider n boolean variables vl,...v, that can take on valucs from {O,l}. An nssigrtrnenl is an 

assignment from {O,l} to each of the variables. A learning algurithtn is an algorithm that atlciripts to infer a 

function f on the variables, from positive examples for/: i.e, assignments that saiisfy /: The lcarning algorithiii 

has at its disposal a subroutine EXAMPLE, that at each call produces a positive example for the function to 

be learnt. For a particular assignment a, the probability that the learned function will be queried on a is f lu),  

as given by the probability distribution hnction P. Also, the probability that a particular satisfying 

assignment a offwill be produced by a call of EXAMPLE is f lu) / (  2 fla)), where the summation is over the 

set of satisfying assignments for f: In addition the learning algorithm knows a priori that the hnction to be 

learned belongs to some subset of all boolean hiictions on the same variables. 

We define a family of hnctions F to be any set of boolean functions such that iff and g arc two fiinctions 

in F with the same number of variables, then they are also functions of the same variables. The it* subfimily 

Fn of a family F is the set of fbnctions in Fof  n variables. Hence 

F = U,, F,,. 

3. Learning with One-sided Error 

Following (Valiant, 1984), we say that a family of fiinctions Fis learnable with one-sided error if and only 

if there exists an algorithm that 

(a) makes polynomially many calls of EXAMPLE both in an adjustable error paramcter h and in the 

number of variables n. The algorithm need not run in polynomial time. 

(b) for all functions f i n  F, and all probability distributions P over the assignments, the algorithm 

deduces with probability (1- l /h )  a fbnction g in Fsuch that for any assignment a, 

do)= 1 impliesAa) = 1 

ifS = {a  I Aa) = 1 and &n) = 01, then 
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O € S  
Further, if the algorithm runs in polynomial time, we say that the family is polynornial time lcarnablc or 

p-timc lcarnablc. 'Thc notions of learnability and p-titnc lcarnability capture thc idca that the tcachcr's timc is 

a lot more valuable than tlie student's time. So a concept is learnable if it requires a small amount of 

student-teacher interaction, even though the student may have to do a lot of homework. 

(Valiant, 1984) shows that bounded CNF expressions are p-time learnable with one-sided crror and 

questions whether the class of p-time learnable hnctions can be significantly extended beyotid thc boundcd 

CNF functions. We will exhibit a rather general family of functions that is p-time learnable with one-sided 

error but is not included in the bounded CNF families. For any positive integcr in, lct Bm be the family of 

boolean functions whose n* sub-family consists of all functions of n variables with at most n"' satisfying 

assignments. 

Theorem 1: For any nz, B"' is p-time learnable with one-sided error. 

Proof: (sketch) Construct an algorithm that calls EXAMPLE 2h(nm f lug&) times and presents as 

output the disjunction of the distinct assignments produccd by EXAMPLE. With probability (1- I / h )  the 

algorithm will output a hnction in Bm that differs from the hnction to be learned with probability no greater 

than l/h. This can be proved with arguments similar to that of (Valiant, 1984). 0 

Theorem 2: For any fixed m and k, B" k- CNF. $ 
Proof: Consider the function4 of n variables vl, ..., vn given by 

fn = (vl V v2...V vN)A v ~ + ~ . . . / \  vn 

where N= mlogn. Now fn has 2m'0gn = nm assignments and so fn is in p .  Suppose that for some k, fn is 

cxprcssible as k-CNF for any n. Pick n such that mlogn > k and examine the clauscs of the k-CNF formula 

gn that is supposcdly cquivalent tom. gn must contain a clause of the form 

(Ul v u, ... v u,v -l u,+l V...T UJ 

whcrcO c i I kand 
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{ulp*..#ui> c {vlt*.*tvN~ 

{ui+13."fuk} c {vN+l'**.vn} 

If not, g, has a satisfying assignmcnt that sets all of vl,...,vN to 0 and hence gn # f n .  Dut then, every satisfying 

assignment of gn has atleast one of u,, ..., uiset to 1 and again glI # fn, Hence the theorem. 0 

It is easy to see that the above proof holds for the family of functions with at most X ( n )  satisfying 

assignments wlicre X(u)  is an increasing function. Furthermore, any such family is p-timc lcarnable as well, 

extending tlie class of p-timc learnable functions well beyond the k-CNF expressions. 

Next we identify the set of all function families that are learnable with one-sided error. We need the 

following definitions for our discussion. In what follows, we shall use the name of a function to refer to the 

function or the set of assignments that satisfy it, unless the context demands clarification. 

A boolean function is said to be consistenl with a set of assignments if it is satisfied by cvcry assignment 

in the set. 

A sub-family Fn is well-orderedif, for any set of assignments S that is consistent with some hnction in F,,, 

there exists a functionfin Fn such that 

(a)fis consistent with S 

(b) for any4 E Fn consistent with S,fG f ;  

We say that fis the least function in Fn consistent with S. A family F is well-ordered if its nrh sub-family 

Fn is well-ordered for all n. 

Define thc operator Mn to be a mapping From sets of assignments to functions in F,, as follows. For any 

subset S of assignments consistent with some fin Fn, Mn(S, is the least function in Fn consistent with S. If S 

is not consistent with any function Fn, Mn(S) is undefined. 

Proposition 1: Fn is well-ordered if and only if for my two functions f and g in Fn. fn g # 0 implies 

that thcrc cxists a function h E such that h = fn g. 
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Proposition 2: For any two se&s A and B, 

n q n  u U )  = M,,W.ln(A)U M J B ) )  

The dimension of a sub-family F,,, dcnoted by dim(F>, is the least integer dsuch that for cvcry fiinctionf 

in F,,, thcrc exists a sct S,.of dor fcwcr assignmcnts such thatfis thc lcast function in F,, consistent with S,.. 

A family F is of polynomial dimcnsion if therc exists a polynomial D(ii) such that for all 12,  Fn is of 

dimcnsion at most D(n). 

Proposition 3: Let F,, be of dimension d. Then there exists a set S of dassignments such that 

(a) S is consistect with some hnction in F,,. 

(b) for any S,, S, C S, 

# S2 implies M,,CS,> # yp,) 
Proof: Since F,, is of dimension d, there is some function fin F,,, such that for any set of assignmcnts S 

f = M,(S) implies IS1 2 d. 

Pick a set S of dassignments such thatf= M,(S’) and (a) is satisfied. 

Thcn, suppose that Sl and S2 are two subscts of S such that Sl # S2 and yet M,,(S,> = hf,,(SJ. Without 

loss of generality let IS,l s ISJ. Now, 

s = (S-S,) u s, u s2 

M$s) = hl,,(Mn(S- s,> u ypJ u 1l.in(S2)) 

IJsing Proposition 2 on the above equation we gct 

= Mn(Mn(S-S> U itf,,(S,)) since M,,(S> = Mn(S2). 

= M,((S- SJ U S,> by Proposition 2 again. 

Hencef= MJS) = M,,((S-S,) U SI) 

where I(S- S,) U SII < d. 

A contradiction. IIcnce the result. 0 
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'Theorell1 3: A family Fis learnable with one-sided error if and only if Fis of polynomial dimension. 

Proof:(skctch) (only if) We begin by showing that if a family is learnable with one sidcd-error, it is 

wcll-ordered. Lct I; be a family that is learnable, but not well-ordered. Let A be a lcarning algorithm for F,,. 

Then, for any sct of assignments that is consistent with some fiinction in F,,, A produccs the least such 

function. Otherwise A would not learn with one-sidcd error. Hence F,, is well-ordcred and so is 1.: 

Let tZ be an algorithm that learns F,,, using (n/h)& calls of EXAMPLE, where k is some intcgcr and h is 

the error parameter. Suppose that F' is of super-polynomial dimension D(n). Then, pick n and h such that 

D(n) > ( n / / ~ ) ~ ( l - h ) .  Let d = D(n) and m = (n/h)&. Recall that A must learn any hnction in Fn for any 

probability distribution on it. Pick a set S of size d as in Proposition 3, and place the uniform probability 

distribution on it. Now, A will see some m elements of S and output the least hnction g that is consistent 

with thcse. By Proposition 3, this hnction will not be consistent with any of thc other d-m elcmcnts in S. 

Consequently, g diffcrs from the function to bc learned, Mn(S), with greater than I / h  probability. Hence A 

does :lot lcarn F,,. 

(io Let I; be of polynomial dimension D(n). We build an algorithm A to learn F as follows. Let f E Fn 

be the function to be learned with error at most l / h  as defined earlier. For any probability distribution P on 

f; consider the set of functions 

Cf = {gig E Fn, W-g) 2 l /h l  

Thesc arc the functions that diffcr fromfwith more than the allowable error. The probability that m calls of 

EXAMPLE will produce assignments all consistent with some particular function in Cf is bounded by 

(1- l /h)m.  Now IC' 5 IFJ 5 2@'). Hence the probability that all m examples will be consistent with any 

onc function in CJis bounded by 2"D<n)(1 - l/h)". Therefore, if 

2'D(4(1- l/h)" < l / h  

is satisfied, A will learn F. Simplifying, we get 

tn > h(nD(n) + logn) 

to bc sufficicnt. Sincc D(ii) is polynomial, is polynomiid in )i  and h, making F 1cnrn:rblc with onc-sidcd 
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error. 

'I'his completes the proof. 0 

Corollary: A boolean family F is learnable with one-sided error if and only if there exists a polynomial 

II( n) such that 

1 ~ ~ 1  5 2mn) for all n. 

Wc will now work an example to demonstrate the scope of Theorem 3. 

Example 1: For cach n, given are k(n) predetermined boolean functions r;f,,...,&,, where k(n) is some 

fixed polynomial in n. Consider the function family F whose n* subfamily Fn is defined as follows. 

Fn = Cgk = r;: A E s J;. s c cfi'f2''..fk(n)H 
In words, Fn consists of conjuncts of any subset of the given k(n) functions. 

Clsim 1: F is \vel!-ordered. 

Proof: Straightforward. 0 

Claim 2: Fis of polynomial dimension. 

Proof: For any functionfin Fn, construct a set of assignments S'as follows. 

begin 

s/= % 

for each g of the given k(n) functions do 

if g is not included inf; pick an 

assignment that satisficsfbut not g. 

If such exists, add it to 5''. 

od 

end 
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S contains at most k(rz) elements and it is easy to verify thatf= M,(S/>. Nence Fn is of dimension k(n) f 
and thercforc F is of polynomial dimension. 

Claim 3: F is learnable with one-sided error. 

Proof: Iinmediatc from Theorem 3 and the foregoing claims. 

Indeed, it is not hard to see that bounded CNF is a special case of this family. 0 

Theorem 3 is useful in determining whether or not a family of functions is learnable. tiowevcr, it cannot 

be used to determine p-time learnability. This is precluded by generality of the theorem in that it makes no 

assumptions on the structure of the function family. To extend the the scope of the theorem to p-time 

learnability, we need the following definition. 

A sub-family Fn is orderable in time I i f  and only if for any set of assignments S that is consistent with 

some function in Fn, the least function in Fn consistent with S is computable in time 1. A family F is p-time 

orderable if and only if there exists a polynomial q t z )  such that for all n, F,, is orderable in 7(n) time. 

Theorem 4: A family F is p-time learnable if and only if it is of polynomial diinensioii and is p-time 

orderable. 

Proof: A straightforward extension of the proof of Thcorem 3. 0 

We will now establish the relationship between our notion of dimension and that of (Vapnik and 

Chervonenkis, 1971). Following (Blumer et al, 1986), we define the Vapnik-Chcrvonenkis dimension, 

denoted by dV&F,>, of a subfamily F,, as follows. 

Given a set S of assignments of n variables, let n(s) denote thc set of all subscts of S obtained by 

intcrsccting S with the functions in Fn. i.e. 

II(s) = W V l f E  Fn) 
If n(S) = 2', we say S is shattered by Fn. dVc(Fn) is the smallest integer dsuch that no set of cardinality d+ 1 
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is shattered by Fn. 

Thcorcm 5: For any subfamily Fn, 

dim(F,,) 5 d,(F,,) 5 n.divl(F,,) 

Proof: Let dim(F,,) = d. Since lF,J 5 2"4 no set of cardinality nd+ 1 can bc shattered by F,,. Hcnce, 

dJF,,) 5 ti.dim(Fn) 

By Proposition 3, there exists a set of cardinality d that is shattered by Fn. Hence, 

ditn(F> <- dw(F,) 

and therefore 

dim(F,J I dJF,,) 5 ndim(FJ 

0 

4. Learning with Two-sided Error 

Consider the family of boolean functions generated by the bounded-DNF exprcssions. Le., for any k, the 

k-DNF hnctions are those represented by DNF formulae with at most k variables per clausc. It is easy to 

verify that for any fixed k, the k-DNF functions are not well-ordered. Take a single assignment. 'Thcre are 

many k-DNF fbnctions that are consistent with this assignment, but there is no least one among them. Hence 

k-DNF fimctions are not learnable with one-sided error. This is unfortunate as many human concepts tend to 

be boundcd DNF rather than CNF, perhaps because the former naturally favours positive concepts like 

(!his A rhat A fhaf)  V (that A that) V... 

while k-CNF favours negative concepts like 

( i ( f h i s  A fhal A fhaf)) A ( i ( f h a f  A rhaf)) A,.. 

In words, k-DNF expresses what is included by the concept, while k-CNF expresses what is excluded by it. 

Suppose we send out a child to buy some fruit. Given his limited development, let us assume that the 

child only knows of apples, mangoes, pomegranates and grapes. So his concept of fruit is likely to be 
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fruit = apples v mangoes v porriegraiiates V grapes 

= (red A juicy A fleshy) V (yellow A juicy A fleshy) V 

(red A 7 juicy A cellular) V (purple A juicy Ajlcshy) 

wherc each clause in the second expression describes the corresponding fruit in the first, in tenns of the 

observable variables. It appears that the concept of fruit is better expresscd in DNF rather than CNF. Also, 

k-DNF concepts tcnd to be general, in that any k-DNF formula has atleast 2"-k satisfying assignments. 

The point of all this is that bounded-DNF hnctions arc important and sitice they are lcarncd easily by 

humans, there must be efficient algorithms for them. Our interest here is best expresscd thus. Suppose the 

child in the above examplc delegated the task to the family robot. How does he get the robot to lcarn quicky 

what he means by "fruit"? In particular, we wish to find the framcwork within which the child can quickly 

communicate to the robot what he means by a fruit, as opposed to analyzing a particular protocol with respect 

to such concepts. We will now define such a framework. 

A family of fiinctions F is leamabie with two sided crwr if an3 only if there exists a leai-ning algotithm 

that 

(a) makes polynomially many calls of EXAMPLE both in the adjustable error parameter h and in the 

number of variables n. 

(b) For all functions f i n  Fn, and the uniform distribution over the assignments, the algorithm will 

dcduce with probability (1 - l / h )  a fbnction gin Fsuch that for any assignnient a, 

P(d4 # Ad) 5 

Wc emphasize hcre that the uniform probability distribution applies to the examples produced by 

EXAMPLE as well as to the queries asked of the learned function. If thc distribution is allowed to be 

arbitrary, we can show easily that any learning algorithm can be forccd to deviate from the function to be 

learncd with probabilit approaching unity. 

We say a k-DNF clause is prime if and only if it contains k distinct variables. ( A variable and its 

ncgation arc not distinct). Wc now prescnt an algorithm that lcarns k-1)NF functions of tz variables. 
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Algorithm 1 

(1) Perform (32dkh3)  calls of EXAMPLE and for each prime k-DNF clause ci of the n variables, 

compute thc hit frequency 

ri = 
number of examples satisfying ci 

mlul number of examples 
( 2 )  Pick the clause Cm such tliat rm is a maximum. Construct g, the disjunction of all clauses cI such that 

1 
ri 2 rm - 

2h(2n)k 
(3) Output the constructed function g. 

Define the hit probabiliiy of a clause to be the probability that a call of EXAMPLE will result in a 

satisfying assignment of the clause. Algorithm 1 does nothing more than estimate the hit probability of each 

prime k-DNF clause. (There are no more than(:) I (2n)k of these.) Since thc probability distribution is 

uniform, all of tlie prime clauses that are included in the function to be learned will cnjoy the same hit 

probability and that will be a maximum. Hence, the algorithm attempts to ideiitify the clauses with maximuin 

kit probability and will do so with high probability. There might be some clauses that are not included in the 

function to be learned, but have a hit probability approaching the maximum. These will be included in the 

output function g if their error contribution is lower than that allowed by the parameter h. Some algebraic 

manipulation is required to compute the number of calls to EXAMPLE as specified in the algorithm. In 

particular, an approximation of the binomial distribution (Feller, 1957) is useful in estimating the number of 

calls to EXAMPLE necessary to cnsure that for any clause. with proabability at least (1 - l lh) ,  thc deviation 

of its hit frequency from its hit probability is at most 6 = -. This ensures that with probability (1 - l/h), 1 

4h(2n)k 

(a) the clauses in the hnction to be learned will enjoy a hit frequency in the interval (r,, rm- 2 6 )  , where 

r, is the maximum hit frequency observed. 

(b) a clause with hit probability less than (rm-4CS) will have a hit frequency outside the jntcrval (rm, 

r, - 26). 
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Of the above conditions, (a) implies that with high probability, our algorithm will corrcctly identify the 

clauses present in the !?unction to be learned, while (b) implies that the error contribution of a spurious clause 

that is includcd by thc algorithm in the output function is at most 46. Since thcre can be at most (2n)k 

spurious hnctions, it follows that with high probability the output hnction is incorrect with probability at 

most 

-- - l / h .  4(2n)& 

4 h( 2n) 
(2n)k46 = 

Which is as rcquired. 

From the foregoing, we see that bounded DNF functions are not easy to learn except in some restricted 

situations. Perhaps humans do not learn k-DNF functions at one go, but do so clause by clause.i.e, bottom up 

instead of top-down. In the robot-child example, this translates to the child teaching the robot the sub- 

concepts of apple, mango, grape and pomegranate, and then unifying them into the concept of h i t .  Of 

coursc, if  negative examples were allowed, bounded DNF functions arc no hardcr to learn than bounded 

CNF hnctions. But it is unusual for human concepts KO be learned from negative examples. 

5.  Conclusion 

In this paper, we dealt with the learnability of boolean functions. We identified the most general class of 

function families that are learnable with one-sided error from polynomially many positive examples. In doing 

so, we dcveloped an intuitively appealing notion of dimensionlity for boolean functions. Arguing that many 

human concepts are boundcd DNF, we identified a framework within which bounded DNF expressions are 

learnable. 
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