
Two New Frameworks for Learning

B. K. Natarajan

CM U-RI-TR-87-25

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 1521 3

November 1987

0 1987 Carnegie Mellon University

Table of Contents
1. Introduction
2. Preliminaries
3. Learning Architectures
4. Learning as Improvement In Computational Efficiency
5. Conclusion
6. Acknowledgements
7. References

2
3
6

10
13
14
14

1

Abstract

This paper presents two new formal frameworks for learning. The first framework requires the
learner to approximate an unknown function, given examples for the funtion as well as some background
information on it. It is shown that this framework is no more powerful than a framework that allows the
learner to see examples but not background information. The second framework explores learning in the
sense of improving computational efficiency as opposed to acquiring an unknown concept or function.
Specifically , the framework concerns the acquisition of heuristics from examples over problem domains
of special structure. A theorem is proved identifying some conditions sufficient to allow the efficient
acquisition of heuristics over the aforementioned class of domains.

2

1. Introduction
This paper concerns learning algorithms - algorithms that construct good approximations to

unknown functions from examples for those functions. The recent interest in formal methods in machine
learning started with the introduction of a formal framework for concept learning in [Valiant 19841. Since
then, the framework has been extended and analyzed by numerous authors [Blumer et al. 1986,
Natarajan 1987a, Kearns et al. 1987. Unfortunately, the framework appears rather limited in scope and
does not seem to capture the essence of many of the learning paradigms and architectures in use by the
experimentalists. Since one of the important goals of theoretical research in machine learning is to
develop a general framework for the problem, it is necessary to formulate and analyze alternative
frameworks that capture the behaviour of learning models popular among workers in Artificial Intelligence.
With the above in mind, this paper presents two new frameworks for learning (a) a learning framework
that captures the essential ingredients of what is called a "learning architecture" in the AI literature, (b) a
learning framework for the acquisition of heuristic rules as a means of improving computational efficiency.
The former is a framework that provides the learning algorithm with randomly chosen examples of the
function to be learned andsome background information or "theory" about the function to be learned. It is
a widely held intuition among workers in Artificial Intelligence that such a framework is strictly more
powerful than the one of [Valiant 19841. The latter is a framework specifically aimed at algorithms that
construct heuristics in problem-solving domains such as symbolic integration. In analysing these two
frameworks, we prove two theorems, one on each framework.

We begin by extending the results of [Blumer et at. 1986, Natarajan 1987 on the learnability of
boolean-valued functions to the learnabality of general functions. To do so, we give a new and simple
definition of the dimension of a family of functions and use it to prove a theorem identifying the most
general class of function families that are learnable from polynomially many examples. Our results hold
only for discrete domains. For continuous domains, we show how the results of [Blumer et al 19861 for
boolean-valued functions may be modified to include general-valued functions. We also establish that our
notion of dimension is equivalent to the more complicated Vapnik-Chervonenkis dimension of [Blumer et
a1.1986, Vapnik and Chervonenkis 19711. The theorem of this section will be heavily used in the following
sections and is the first of our results.

We then propose a new framework for learning, one that attempts to capture the essential
ingredients of the "general learning architectures" of the experimentalists [Laird et al 1986, Mitchell et al
19861. This is a major contribution of the paper. Specifically, the framework requires the learning
algorithm to learn a function from examples for the function. The examples are picked at random by the
teacher. In addition, the teacher provides the learner with some "theory" relevant to the concept to be
learned, with the understanding that the concept to be learned is consistent with the "theory" presented.
For instance, when teaching a concept in geometry, the teacher may present the learner with some basic
theorems in geometry in addition to examples for the concept to be learned, in the hope that this would
accelerate the learning process. Our main result here is a theorem stating that the class of function
families learnable in this framework (Le. from few examples and short theories) is exactly the class of
families learnable in the framework of [Valiant 841 (Le. from few examples and no theories). As it

3

happens, the proof of this theorem is remarkably simple, owing to the intuitive strength of the new notion
of dimension introduced in this paper. Yet, the theorem has some unintuitive consequences. Firstly, it

directly implies that learning from background information and examples is no more powerful than
learning from examples alone. This contradicts the beliefs prevalent in the Artificial Intelligence
community. Secondly, and more subtly, the theorem leads to the realization that although background
information cannot reduce the information complexity of learning, it could reduce the computational
complexity of processing the information obtained from examples. This opens up a rich new area of
theoretically interesting problems, one of which is stated in this paper but left open.

Finally, we develop a learning framework that explores learning as a means of improving
computational efficiency rather than learning new concepts. Consider the problem of learning symbolic
integration. Theoretically speaking, given a table of integrals the student should become an expert
instantly. However, the student appears to need some sample problems and solutions before he

develops any facility with integrals. Our framework attempts to capture the flavour of the above. Define a
problem domain D on an alphabet C to be the pair (G,O) where G is the goal function (boolean valued
function on C'), and 0 is the set of operators (length preserving functions on C*). These notions will be
made precise later. An algorithm for D would take an input string x and transform it using the operators in
0 so that the transformed string satisfies G, if such is possible. A meta-domain M is simply a set of
domains, and a meta-algorithm for M is an algorithm that takes as input the specification of a domain D E

M, calls for a small number of randomly selected examples for D , and produces as output an efficient
algorithm for the domain D . To illustrate the power of the framework, we exhibit a set of domains each of
which possesses a simple polynomial time algorithm. We show that although the task of computing an
efficient algorithm for a domain from its specification is NP-complete for this set of domains, the task is
quite tractable within our framework. We then prove a theorem identifying some conditions sufficient to
allow the existence of a meta-algorithm within the proposed framework. To our knowledge, this is the first
formalization where examples provide no new information to the learner, and serve only to improve the
computational complexity of processing the information already possessed by the learner.

2. Preliminaries
We now describe our version of the learning framework proposed by [Valiant 19841. We will call this

Framework 1, to distinguish it from those that follow. Without loss of generality, let C be the binary
alphabet and C' the set of all binary strings. We consider functions from C to Z'. An example of a
functionf is a pair (x,f(x)). A learning algorithm is an algorithm that attempts to infer a function from
examples for it. The learning algorithm has at its disposal a routine EXAMPLE, that at each call produces
an example for the function to be learned. The probability that a particular example (xy) will be produced
by a call of EXAMPLE is P(x), as given by the probability distribution P . Also, the probability that the
learned function will be queried on a particular string x is P(x). The distribution P can be arbitrary and
unknown.

We define a family of functions F to be any set of length preserving functions from C' to C*. The

4

nh-subfamily F,, of a family F , is the family of functions induced by F on E". Specifically, if F =f,,f,, ..&,...,
then F,, = g,, g, ,... g, ,... where g, is defined as follows.

gJx) =f,!x) if Irl =n

undefined otherwise

A basis for F,, is a subset B, of F such that for each g E F,,, there is exactly one functionf E 13, such
that f and g agree on Cn.

Following [Valiant 19841, we say that a family of functions is learnable if there exists a uniformly
convergent learning algorithm for it. Specifically, a family of functions F is learnable if there exists a
learning algorithm that
(a)takes as input integers II and h.

(b)makes polynomially many calls of EXAMPLE, both in the adjustable error parameter h and in the

(c)For all functions f in F,, and all probability distributions P on Cn, with probability (1-l/h) the

problem size II. EXAMPLE produces examples of some function in F,,.

algorithm outputs a function g in F such that c P(x) I l lh
X E s

where
S = (XI Ixl = n andfix) f g(x))

We assume that the learning algorithm's output is the index of the learned function in some
acceptable indexing of the functions in family F . Furthermore, if the learning algorithm runs in time
polynomial in n and h, we say that the family is polynomial-time learnable.

The dimension of a sub-family F,,, denoted by dim(F,,), is given by
dim(F,,) = log(lF,1)/(2n).

A family F is of dimension D(n) if for all n, dim(F,J I D(n). If D(n) is polynomial in n, we say that F is of
polynomial dimension.

For any set of examples S, define the set II&5') as the set of all subsets of S obtained by intersecting
S with the functions in F. i.e
l7dS) = (RIR G S, and 3 f ~ F such that

f agrees with Son R
and disagrees with S on S-R).

If l7dS) = 2', we say that F shatters S.

Lemma 1 : If F,, is of dimension d, then there exists a set of d examples that is shattered by F,.

Proof: Omitted for brevity. Please see [Natarajan 1987bI.

Theorem 1 : A family of functions is learnable if and only if it is of polynomial dimension.

Proof: Omitted for brevity. Uses Lemma 1. Please see (Natarajan 1987b1.

5

As our results above are based on information theoretic methods, it is difficult to extend them directly
to continuous spaces where each example can be of infinite length. On the other hand, the results in
[Blumer et al 19861 for learning boolean-valued functions are obtained using some classical results in
probability theory and are valid over continuous domains. In the following, we show how to extend their
resutts to general functions.

As in [Blumer et al. 19861, we define the Vapnik-Chervonenkis dimension dVcQ of a family F as
follows. dvc(F) is the smallest integer d such that no set of cardinality d+l is shattered by F .

Since we no longer need the notion of a sub-family, we modify our definition of learnability
accordingly. In particular, a family of functions F is learnable if there exists an algorithm that
(a)takes as input an integer h,

(b)makes polynomially many calls of EXAMPLE, polynomial in the adjustable error parameter h.

(c)as in the earlier definition of learnability.

With these definitions in hand, we can state the following theorem.

Theorem 2: For any finite alphabet X, a family of functions from C* to C* is learnable if and only if it is
finite Vapnik-Chervonenkis dimension.

Proof: The proof of this theorem is similar to the proof of the corresponding theorem for boolean
valued functions [Blumer et al. 19861.

To establish the relationship between the two measures of dimension, we have the following.

Theorem 3: For any family F

dim(F,) 5 dvc(F,) 5 (2n)dim(F,).

Proof: Omitted for brevity. Please see [Natarajan 1987bJ.

Lastly, we give a result that attempts to introduce computational complexity into Theorem 1. Define
an ordering of a family of functions to be an algorithm that
(a)takes as input an integer n and a set S = (el, e2, ... e?.) of examples such that each ei is a pair of

(b)produces as output a functionf E F that is consistent with SI if such exists. i.e, (X J) E S implies

strings of length n.

Ffo.

Furthermore, if the ordering runs in time polynomial in the length of its input, we say it is a
polynomial-time ordering and F is polynomial-time orderable.

Theorem 4: A family of functions is polynomial-time learnable if it is of polynomial dimension and is
polynomial-time orderable.

Proof: Follows from that of Theorem 1.

6

3. Learning Architectures
Workers in Artificial Intelligence have long sought to build general-purpose learning programs that

may be used over many domains. Specifically, such programs or "architectures" take as input a
description of the family of functions to be learned and after some precomputation, behave like learning
algorithms for that family. We will refer to such algorithms as "learning architectures".

Consider a learning architecture M that works over a set of families G,, G,...,Gi.... i.e, M takes as
input the description of some Gi and then behaves as a learning algorithm for Gi. Now, if G = G l u G2

u...Gi... is itself a family of low dimension, then, it follows from Theorem 1 that we can build a learning
algorithm for G and not bother with the complications of M. The interesting question is whether it is
possible for G to be of intractably-high dimension and yet be decomposable into GI, G,... such that each
G, is of low dimension and each G, has a short description that can be fed into the learning architecture.
In order to answer this question, we consider the framework of the following section.

3.1 Learning from Examples and Background Information
We now present a learning framework that allows the learning algorithm to see examples for the

function to be learned as well as some background information. We will call this Framework 2.

Let F be a family of functions. A theolyfor F is simply any total function from F to C*.

A learning algorithm for F is an algoiihm that attempts to infer functions in F from examples and
background information. The learning algorithm has at its disposal a routine TEACHER, that is best
described as the pair <EXAMPLE, T>, where EXAMPLE is the source of random examples described in
Framework 1 and T is a theory for F . When attempting to teach the learning algorithm any functionfi E

F,,: On the first call of TEACHER, TEACHER returns ti E TV) wherefis any function in F that agrees with
fi on Cn. On subsequent calls, TEACHER returns a randomly chosen example for f i by invoking
EXAMPLE recursively.

We say that a family of functions F is learnable in Framework 2 if there exists a learning algorithm A

and a theory Tfor F such that
(a)A takes as input integers n, h.

(b)A makes polynomially many calls of TEACHER = cEXAMPLE,T>, polynomial in n and h.

(c)For all functions f in F,,, and all probability distributions P over the examples for f, the algorithm

TEACHER should return a theory of length polynomial in n.

deduces with probability (l-l/h) a function g in F such that

P(x) I I/h
X E s

where
S = (XI Ixl = n andflx) z g(x))

Furthermore if the learning algorithm runs in time polynomial in n and h, we say that F is
polynomial-time learnable.

Abusing notation, we extend the theory function T to subsets of F as follows.

7

ForB G F , T(B) = (TMI fE B) .

F o r t € C*, r (t) = W ~ E F , T(n = 1)

Also, we define the inverse of a theory T to be the function T from C* to subsets F as given below.

We are now ready to state our main result.

Theorem 5: A family of functions F is learnable Framework 2 if and only if
(a)F is of polynomial dimension.

(b)F is learnable in Framework 1.

Proof: (Part(a)) (if) By Theorem 1 , if F is of polynomial dimension, then F is learnable in Framework
1. Hence it is learnable in Framework 2 as Framework 1 is but a special case of Framework 2.

(only if) Let A be a learning algorithm for F in Framework 2 using a TEACHER =<EXAMPLE, T> for
some theory T for F. For any n, let T,, be the set of theories offered by TEACHER over all the functions in
F,,. Surely T,, = T(B,,) for some basis B , for F,,. Whatever the interpretation of the theories used by A , the
set of functions A considers consistent with a theory ti E T,, contains the set T(ri) n B,. Hence, if for all n,

A requires polynomially many examples after seeing til then by Theorem 1, T(ti) n B,, must be of
dimension bounded by a polynomial in n. Also, the length of the theories must be bounded by a
polynomial in n as A is a learning algorithm for F in Framework 2. From these two bounds and the
following claim, we conclude that F is of polynomial dimension.

Claim 1 : Let F,, be the n-th subfamily of a family F , B, a basis for F,, and T any theory for F. Let A
be a learning algorithm for F with TEACHER = <EXAMPLE, T>. Then, there exists a theory ti E T(B,)
such that

2ndim(T(ti)nB,)+Zength(ti) 2 n.dim(F,,).

Proof:
Let T,, = T(B,,).
Since V f E F,f E T(T(n) , we have

Bn = E TnTQ.

NOW IF,) = IB,I = lU T(t) 1.
Tn

Let t = mux (length(ri) I ti E T,,)
and d = mux (dim(T(rj))lti E T,,).
Hence,
lF,J 5 2' 22"d and hence

Which in turn implies that
3 ti E T,, such that
length($) + 2n dim(T(fi)) 2 2n dim(F,,)/2

= ndim(F,,)

which is as required.

22ndL"(Fn) 5 2'+M*

8

(Part (b)) Follows from (part (a)) and Theorem 1. This completes the proof. 0.

This answers our question at the beginning of this section: If C is a family of high dimension, then G
is not decomposable into component families of low dimension with short descriptions. It is the
understanding of this author that it is widely believed in the Artificial Intelligence community that learning
architectures can be efficiently applied to domains of intractably-high dimension [Mitchell 19871. As we
see from the above, this is not true. Does this mean that learning architectures are not very useful? No,
for three reasons. The first reason is primarily of theoretical interest. Specifically, if NP # RP, there are
families of functions that are polynomial time learnable in Framework 2, but not polynomial time learnable
in Framework 1.

Theorem 6: If a family F is polynomial dimension, then F is polynomial-time learnable in Framework
2.

Proof: For eachfi in F,,, simply choose ti to be the index off,. Since dim(F,) is polynomial in n, there
exists a basis B, for F, such that the indices of B, are of length polynomial'in n. 0

If NP # RP, then we know that there exist function families that are of polynomial dimension but are
not polynomial-time learnable [Kearns et al. 1987. Hence we have the following:

Corollary: If NP # RP, then
(FI F is p-time learnable in Framework 1) d (FI F is p-time learnable in Framework 2).

The second reason is of practical interest. Let A, and 4 be two polynomial time learning algorithms
for a family F in Frameworks 1 and 2 respectively. Now, A, could run in time as little as nhdirn(F,) on
inputs (n,h) [Natarajan 1987b, Theorem 11. A, could run in time n-dim(F,,) on the same input, simply by
choosing the theories to be the indices of the functions as in the proof of Theorem 6. Thus, A, could be
faster than A, by a factor of h, something that could be of significant practical importance.

Thirdly, in situations where the cost of obtaining an example is, bt for bit, significantly more than the
cost of a comparable amount of background information, it is advantageous to use all the "theory"
available. Again, this is of practical significance.

3.2 An Open Problem
First some notation: we use

respectively, as relations on functions.
=u, to denote asymptotically greater than, equal to and less than

The last corollary prompts that we ask the following question. Is there a learning hierarchy over the
complexity measure of theory length? Specifically, does there exist an infinite collection of functions
(g,(n), g&) ...g& n) ...) where g, gj-, , such that for each gi, there exists a family of functions that is
p-time learnable with gj long theories but not with gi-, long theories? In an attempt to answer this
question, we consider the following model of computation. Letf:C+C be a function. An algorithm A is
said to computefwith g(n) long theory ii

9

(a)A receives x as input and producesflx) as output.

(b)A also receives eNx)), where e : C + c* is a function such that le(y)I I g(lyl). We call e, the
theory or advice function and e(f(x)) the advice. We also say that A receives advice of length g.

The intent here is to provide the algorithm A with some short advice on the output string y , short
compared to the length of y. (While this model may appear similar to the model of [Karp and Lipton
19801, it is quite different altogether.) We now ask whether there exists a hierarchy of functions gl <, g2
<,... such that for each gi there exists some functionfthat is p-time computable with gi advice, but not
with gi-l advice.

Define FSAT to be the following problem.
Input: A boolean formula of n variables.

Output: Any satisfying assignment for a.
Clearly FSAT is NP-complete. Using FSAT, we can exhibit a weak hierarchy as follows.

k
Claim 2: If NP d uk, ,DTfME(2g(")) for some g(n) >, logn, then for any r(n) such that logn <, r(n) 5,

g(n), there exists a function that is computable in polynomial time with g-r(n) advice, but not with r(n)
advice. It is assumed that g is a one-one function and g- is the inverse of g.

Proof:(sketch) By assumption, FSAT c DTIME(2g(9 and hence is not computable with g(n) advice.
But surely, FSAT is computable with n advice. This proves the claim for r(n) = g(n). By a simple padding
argument, this can be generalized to any r(n), 2ogn ea r(n) I, g(n), completing the proof.

We can also exhibit an equally weak learning hierarchy as follows.

k
Claim 3: If N P d Vk,,RTIME(2g(" 1) for some g(n) >, logn, then for any r(n) such that logn <, r(n)

I, g(n), there exists a family of functions that is polynomial time learnable with g-r(n) theory, but not with
r(n) theory. (Here, RTIME stands for random-time, and again g is assumed one-one.)

Proof:(sketch) Similar to the proof of the previous claim. Hinges on the result of [Kearns et al. 1987)
showing the problem of ordering boolean threshold functions to be NP-complete..

Unfortunately, the above hierarchies are rather weak, and are based on strong assumptions. While
we do not have stronger results, we feel compelled to point out that this problem might be of interest from
the cryptography viewpoint as well. Specifically, suppose that E were a cryptographically secure
encryption function with an rn-bit key. Given polynomially many examples of the form (~ , E (x)) , and
rn-O(rn) bits as advice on the key, is it possible to efficiently compute the key of an encryption function
that agrees with the examples?

We close this section with a conjecture.

Conjecture: If P#NP, FSAT is not polynomial time computable with g(n) = n-O(n) advice.

10

4. Learning as Improvement in Computational Efficiency

efficiency. This is of considerable practical importance [Mitchell 19831.

In this section, we develop a framework to explore learning in the sense of improving computational

Define a problem domain D to be the pair (C , 0), where
(a)The goal function C:C -+ (OJ) is a total function from C' to (0.1) computable in polynomial time.

(b)O is a finite set of operators (ol, 02, ...) where each oi : r+C* is a length preserving function
computable in polynomial time. The operators need not be total functions.

For the problem of symbolic integration discussed in the introduction, G would simply be the rule that
the expression was free of integral signs and the operator set 0 would be a table of standard integrals.

The specification of a domain D = (G.0) is a set of programs for C and 0 that run in polynomial time.
Notation: for any string x, we denote the length of x by Irl. We say X E C is solvable if there exists a
sequence Q of operators in 0 (written QE 0') of length Irl or less such that C(o(x)) = 1. a (x) is a solution of
x and Q is a solution sequence of x. An algorithm for D is a deterministic program that takes as input XE

C' and computes a solution sequence for x, if such exists.

A meta-domain M is any set of domains such that every domain in M is defined on the same
alphabet. A meta-algorithm for M is an algorithm that takes as input the specification of any domain D E
M and computes as output an algorithm for D.

Example: Let z = (O,l,$). For any boolean function @ of n variables, let r(@) denote the following
function from C' to (0,l).

=O otherwise.
r (aq(x) = i f x = y$. y E (o-tiy

Let ol, o2 be functions from C* to (0+1) given by
o&) = xO$y , x of the form x h y , x y ~ (0+1)'.

U E (0+1).
=x otherwise

02(x) = nl$y , x of the form day, x y ~ (0+1)*,

UE (0+1).
=x otherwise

Let M be the collections of all domains of the form (G,O) where C = r(@) for some boolean function cp and
0 is the two operators defined above.

It is easy to see, that constructing an algorithm for an ahitrary domain D E M is equivalent to
deciding the satisfiability of boolean formulae. Hence, if P# NP, M does not have a polynomial-time
meta-algorithm. We break here for a definition.

An example for a domain D is a pair (X,Q,>. X E E', ox E Ok, k I Irl such that C(o,(x)) = 1.

Example:(continued) Returning to our example, we see that if the meta-algorithm were allowed to

11

see a single example for its input domain, its task is trivial. 0

The point behind the example is as follows. Given a domain D , it might be computationally
intractable to compute an efficient algorithm for D, even if we knew that such existed. Yet, seeing solved
examples for the input domain allows an efficient algorithm to be constructed quickly. The examples
serve to improve the computational efficiency of the meta-algorithm, and hence we view this as learning
in the sense of improving efficiency as opposed to concept learning.

To furnish the meta-algorithm with examples, we place at its disposal a routine EXAMPLE, similar to
the one of Framework 1. At each call, EXAMPLE returns a randomly chosen example for the input
domain.

We say a metadomain M allows heuristics if there exists a meta-algorithm A for M such that
(a)A takes as input integers n, h and the specification of a domain D E M. Let t be the least upper

bound of the running time on inputs of length n of the programs in the specification of D.

(b)A computes for time polynomial in n, h, the length of its input, and t. A may call EXAMPLE, which
returns examples for D, chosen according to some unknown distribution P over the solvable
subset of F.

(c)For all D E M and all distributions P over Cn, with probability (1-l/h) A outputs a program H,, that
approximates an algorithm for D in the sense that c P(x) 5 l / h

X E s
where
S = (X I M=n, H,, is incorrect on x).

(d)For any two inputs (l ,h,P) and (m,h#), 12 m, let A output HI and H , respectively. Then

Ifis run time on C'

Hm's run time on Cm

where k is a constant that
depends only on D.

I

Conditions (a) through (c) in the definition above are as in Framework 1, and have the same
purpose. Condition (d) is a uniformity condition requiring that the run time of the algorithm output by A

grows polynomially with the length of the strings it is useful on.

Let D=(G,O) be a domain. For each operator O E 0,and integer i 2 1, consider the set
VLo) = (XI o(x) has a solution sequence

of length M-i or less).
We call the ULO) the preimages of o in D, and we call the collection of preimages for all the operators in D
the preimages of D.

Claim 4: For any domain D , given efficient programs to test membership in the preimages of D, we
can construct an efficient algorithm for D.

Proof: Consider the following algorithm

12

input X, Irl= n
begin

t null-sequence ;
for i = 1 to n do

pick o E 0 such that XE U,(o);
if no such exists, fail;
x t. o(x);
d t e o ;

od
output a, a solution sequence for x.

end

Clearly this is an algorithm for D. 0

We need one more definition before we can state the second of our main results. Let F be a family
of functions from C" to (0.1) for some alphabet C. With any f E F we associate the set S'= (XIAX) = 1).

Any string XE C' is a positive example forfE F if x E 5'' We say that F is well-ordered if for any set S of
strings in Z' such that S E Sffor some f E F , there exists a leastg E F such that S G Se. Le, for all g' E

F, S s Sgn implies that Sg E Sg.. An ordering for a well-ordered family is similar to an ordering for general
families as defined in section 1, except that it takes as input a set of positive examples and outputs the
least function consistent with these examples as defined above. For more details on well-ordered
families, see [Natarajan 1987a).

Theorem 7: Let A4 be a meta-domain on an alphabet C. If there exists a family of functions F from
X" + (0,l) such that
(a)F contains the preimages of every domain in M,
(b)There exists a polynomial p(n) such that every function in F is computed by some program that

(c)F is of polynomial-dimension, well-ordered and polynomial time orderable by an algorithm A that

then, M allows heuristics.

runs in time p(n) on inputs of length n,

outputs the p(n)-time bounded programs of (b),

Proof: (sketch) Let F be a family as above and let A be ordering for it as in (c) above. We use A to
construct a meta-algorithm A' for M as shown below. Essentially, the algorithm uses A to construct good
approximations for the preimages of D and then uses these preimages to build an algorithm for D as in
Claim 4.

Meta-Algorithm A'

input n,h, D=(G,O)

begin
fo r i = 1 to n do
for each O E 0 do

Let F, be of dimension d.
m c n(nhlOl)d
S t 0;
f o r j = 1 tomdo

Call EXAMPLE to obtain (x, ax);

13

for each decomposition of ax
into cr10cr2. 1021 I lxci do

s t s u (a,(x));
od

od
U,@> + 49;

od
od

output the following as the algorithm for D;

input X , Ixl = n

begin
Q t null-sequence;
for i = 1 to n do

pick o such that X E Vdo)
if no such exists, fail;
x t o(x);
Q t 0.0;

od
output Q, a solution sequence forx.
end

end

In the interest of brevity, we skip a formal proof that A' is a meta-algorithm for M. 0

Essentially, Theorem 7 reduces the task of learning in this framework to one of learning boolean
valued functions in Framework 1 , and then invokes the dimensionality theorem for Framework 1. The
reader should not jump to the conclusion that the role of the examples here is therefore the same as that
in Framework 1. Even in the absence of examples, the specification of the domain gives the learner
sufficient information to construct an algorithm for the domain: The examples serve only to speed up this
computation and add no new information. Hence it is not possible here to make a distinction analagous
to the distinction between polynomial-time learnability and learnability of Framework 1, a distinction that
separated the information complexity of concept learning from the computational complexity. It follows
that tightening Theorem 7 to an "only-if" will have to wait until the "only-if" counterpart to Theorem 4 is
proved, which in turn waits for a better understanding of the relationship between NP and RP.

5. Conclusion
This paper introduced two new frameworks for learning.

The first framework concerned learning functions or concepts, allowing the learner to see both
examples for the function to be learned as well some backgfround information or "theory" on it. We
showed that the class of function families learnable in this framework (Le, from few examples and short
theories) is exactly the class learnable in the more established framework of [Valiant 19841 (i.e from few
examples and no theories). We believe that this result will better motivate those in the Artificial
Intelligence community concerned with building "learning architectures". The proof of the aforementioned

14

result directly relates the length of a piece of information with how useful it is to the learner. Although the
relationship is remarkably simple, it required the formalization of a learning framework to permit its
interpretation in the context of learning from background information and examples.

The second framework concerned learning in the sense of improving computational efficiency. The
framework has sufficient structure to allow a crisp analysis, yet is rich enough to capture the flavour of
many practical problems. We proved a theorem identifying some conditions sufficient to allow a learning
algorithm within the framework. We believe that this framework and the associated theorem are of
significant practical import.

6. Acknowledgements
I thank R. Kannan, T. Mitchell and P. Tadepalli for their help and patience.

7. References
Blumer A., Ehrenfeucht, A., Haussler D., & Warmuth, M., (1986), "Classifying Learnable Geometric
Concepts with the Vapnik-Chervonenkis Dimension", ACM Symposium on Theory of Computing,
~~273-282.

Karp, R, and Lipton, R, (1980), "Some Connections between Nonuniform and Uniform Complexity
Classes", ACM Symposium on Theory of Computing, pp302-309.

Kearns, M., Li, M., Pitt, L., and Valiant ,L.G., (1987), "On the Leamability of Boolean Formulae", ACM
Symposium on Theory of Computing, pp285-295.

Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, S.T., (1986), "Explanation Based Generalization: A
Unifying View", Machine Learning, Vol 1 , No 1, January.

Mitchell, T.M., (1983), "Learning and Problem Solving", International Joint Conference on Artificial
Intelligence.

Mitchell, T.M., (1987), Private Communication.

Natarajan, B.K., (1987a) "On Learning Boolean Functions", ACM Symposium on Theory of Computing,
pp296-304.

Natarajan, B.K., (1 987b), "Learning Functions from Examples", Tech. Report, Robotics Insitute, Carnegie-
Mellon U., CMU-RI-TR-87-19.

Laird, J.E., Newell, A., Rosenbloom, P.S., "Soar: An Architecture for General Intelligence", Tech. Report,
Computer Science, Carnegie-Mellon U., CMU-CS-86-171.

Valiant, L.G., (1984) "A Theory of the Learnable", ACM Symposium on Theory of Computing, pp436-445.

Vapnik, V.N., and Chervonenkis, A.YA., (1 971), "On the Uniform Convergence of Relative Frequencies of
Events to their Probabilities", Theory of Probability and its Applications, ~0116, No. 2, pp264-280.

