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Abstract 
This paper presents some formal results on learning. In particular, it concerns algorithms that learn 

sets and functions from examples. We seek conditions necessary and sufficient for learning over a range 
of probabilistic models for such algorithms. 
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1. Introduction 
This paper concerns algorithms that learn sets and functions from examples for them. The results 

presented in this paper appeared in preliminary form in [Natarajan, 1986; 19881. The motivation behind 
the study is a need to better understand the class of problems known as "concept learning problems" in 
the Artificial Intelligence literature. 

What follows is a brief definition of concept (or set) learning. Let C be the (0.1) alphabet, C* the set of 
all strings on C, and for any positive integer n, Cn the set of strings on C of length n. Letfdenote a subset 
of C* and F a set of such subsets. An example for f is a pair (x.y), X E  C*, YE C, such that XE f iff y=l. 

Informally, a learning algorithm for F is an algorithm that does the following: given a sufficiently large 
number of randomly chosen examples for any setf E F, the algorithm identifies a set g E F, such that g 
is a good approximation off. (These notions will be formalized later.) The primary aim of this paper is to 
study the relationship between the properties of F and the number of examples necessary and sufficient 
for any learning algorithm for it. 

To place this paper in perspective: There are numerous papers on the concept learning problem in 
the artificial intelligence literature. See [Michalski et at., 19831 for an excellent review. Much of this work 
is not formal in approach. On the other hand, many formal studies of related problems were reported in 
the inductive inference literature. See [Angluin & Smith, 19831 for an excellent review. As it happened, 
the wide gap between the basic assumptions of inductive inference on the one hand, and the needs of 
the empiricists on the other, did not peni t  the formal work significant practical import. More recently, 
[Valiant, 19841 introduced a new formal framework for the problem, with a view towards probabilistic 
analysis. The framework appears to be of both theoretical and practical interest, and the results of this 
paper are based on it and its variants. Related results appear in [Angluin, 1987; Rivest & Schapire, 1987; 
Berman & Roos, 1987; Laird, 1986; Kearns et al., 19861 amongst others. [Blumer et al., 19861 present an 
independent development of some of the results presented in this paper, their proofs hinging on some 
classical results in probability theory, while ours are mostly combinatorial in flavour. 

We begin by describing a formal model of learning, our variant of the model first presented by 
[Valiant, 19841. Specifically, we define the notion of polynomial learnability of sets in Section 2. We then 
discuss the notion of asymptotic dimension of a family of concepts, and use it to obtain necessary and 
sufficient conditions for learnabiliiy. In doing so, we give a general learning algorithm that turns out to be 

surprisingly simple, though provably good. Section 3 deals with a slightly different learning model, one in 
which the learner is required to learn with one-sided error, Le., his approximation to the set to be learned 
must be conservative in that it is a subset of the set to be learned. Section 4 deals with the time 
complexity of learning, identifying necessary and sufficient conditions for efficient learning. Section 5 
generalizes the learning model to consider functions instead of sets. instead of sets. Notions of 
asymptotic learnability and asymptotic dimension are defined in this setting and necessary and sufficient 

conditions for learnability obtained. This requires us to prove a rather interesting combinatorial result 
called the generalized shattering lemma. Finally, Section 6 deals with a non-asymptotic model of 
learning, where the division is between finite and infinite, rather than on asymptotic behaviour. In 
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particular, we consider learning sets and functions on the reals, introducing the notion of finite-learnability. 
We review the elegant results of [Blumer et al., 19861 on conditions necessary and sufficient for 
leamability in this setting. We then identify conditions necessary and sufficient for the finite-learnability of 
functions on the reals. 
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2. Feasible Learnability of Sets 
We begin by describing our variant of the learning framework proposed by [Valiant, 19841. 

Let C be the binary alphabet (O,l) ,  C* the set of all strings on Z, and for any positive integer n, let Cn- 

be the set of strings of length n or less in r. A concept' f is any subset of C. Associated with each 
concept f is the membership funcrionp":z+ (O,l), such thatpn(x) = 1 iff x E f. Unless othewise required, 
we will drop the superscript i n p  and use f to refer both to the function and to the set. An example for a 
concept is a pair (xy), XE c", y E {0,1) such that y =Ax). A family of concepts F is any set of concepts on 
C. A learning algorithm (or more generally, a learning function) for the family F, is an algorithm that 
attempts to infer approximations to a concept in F from examples for it. The algorithm has at its disposal 
a subroutine EXAMPLE, which when called retums a randomly chosen example for the concept to be 
leamed. The example is chosen randomly according to an arbiiraty and unknown probability distribution P 

on C, in that the probability that a particular example (%Ax)) will be produced at any call of EXAMPLE is 

P(X). 

Defn: Let f be a concept and n any positive integer. The projection f,, off on En- is given by f, = 
fnCn-. 

Defn: Let S be any set. A sequence on S is simply a sequence of elements of S. S' denotes the set 
of all sequences of length 1 on S, while X(S) denotes the set of all sequences of finite length on S. 

Defn: Let f be a concept on C' and P a probability distribution on C'. A sample of size 1 for f with 
respect to P is a sequence of the form ( X ~ ~ X ~ ) ) ,  (%fl+)), ...,(x ,fixl)) where xl, +,..., xI is a sequence of 
elements of C', randomly and independently chosen according to P. 

Defn: Let f and g be any two sets. The symmetric difference off and g, denoted by fAg, is defined 

by fAg = V-g)ub-fI. 

With these supporting definitions in hand, we present our main definition. Intuitively, we will call a 
family F feasibly learnable if it can be leamed from polynomially few examples, polynomial in an error 
parameter h and a length parameter n. The length parameter n controls the length of the strings the 
concept is to be approximated on, and the error parameter h controls the error allowed in the learnt 
approximat ion. 

Defn: Formally, a family F is feasibly learnable if there exists an algorithm* A such that 
(a)A takes as input two integers n and h, where n is the size parameter, and h is the error 

parameter. 

(b)A makes polynomially few calls of EXAMPLE, polynomial in n and h. EXAMPLE returns 
examples for some fE F, where the examples are chosen randomly and independently according 

'we use the term concept instead of a set to conform with the artificial intelligence literature. 

'Unless stated otherwise, by "algorithm' we mean a finitely representable procedure, not necessarily computable. That is, the 
procedure might use well-defined but noncomputable functions as primitives. 
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to an arbitrary and unknown probability distribution P on F-. 

a concept gE F such that 
(c) For all conceptsf E F and all probability distributions P on Cn-, with probability (1-l/h), A outputs 

Defn: Let N be the set of natural numbers. The learning function Y:NxN>ih(C*x(O,l))-+F 
associated with a learning algorithm A is defined as follows. 
Learning Function Y 
Input n, &integers; C: sample; 
begin 
Let C = (x,. yl), (3, yd.... 
Run A on inputs n,h; 
In place of EXAMPLE, at the ith call of EXAMPLE by A, 
give A (xjyj) as example. 
Output A's output. 
end 

We now introduce a measure called the dimension for a family of concepts. Recall that we defined 
the projectionf, off on Zn byf, = (fnZn) Similarly, the projection F ,  of the family F on Zn is given by F ,  = 
@ f ' ~  F ) .  We call F, the nth-subfamily of F.  

Defn: The dimension of a subfamily F,, denoted by dim(F,) is defined by 
dim(F,) = log2(lF,I). 

(Notation: For a set X, Ix1 denotes the cardinality, while for a string x ,  denotes the string length.) 

Defn: Let d:N-,N be a function of one variable, where N is the natural numbers. The asymptotic 
dimension (or more simply the dimension) of a family F is d(n) if dim((,) = B(d(n)). That is, there exists a 
constant c such that 

V n : dim(F,) 5 d(n) 
and dim(F,) 2 cd(n) infinitely often. 

We denote the asymptotic dimension of a family F by dim(F). We say a family F is of polynomial 
dimension if the asymptotic dimension of F is a polynomial in n. 

With these definitions in hand, we can give our first result. The result is a lemma concerning the 
notion of shattering. Let F be a family of subsets of set X. We say that F shatters a set SEX, i f  for every 
S, LS, there existsf€ F such t h a t f i  = SI. To our knowledge, this notion was first introduced by [Vapnik 
& Chervonenkis, 19711. 

We can now state our first result. 

Lemma 1 (Shattering Lemma:) If F ,  is of dimension d,  then F, shatters a set of size 
3ceUing(d/(n+2)). Also, every set shattered by F is of size at most d. 

3ceding(r) is the least integer greater than r. 
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Proof: First, we prove the upper bound. Suppose a set S is shattered by by F,. Since there are 2lS1 
distinct subsets of F,, it follows from the definition of shattering that 2'." 5 W,l. Taking logarithms on both 
sides of the inequality, we get IS1 I log(lF,I) = d,  which is as desired. To prove that the upper bound can 
attained, simply let F be all possible subsets of some d strings in F-. 

We prove the lower bound part of the lemma through the following claim. A variant of the claim is 
given by Vapnik & Chervonenkis (1971) amongst others. 

Claim: Let X be any finite set and let H be a set of subsets of X. If k is the size of the largest subset 
of X shattered by H ,  then 

Wl I (IXl+l)k. 

Proof: By induction on VYI, the size of X. 

Basis: Clearly true for 1x1 =I .  

Induction: Assume the claim holds for Kl = m and prove true for m+l. Let Ix1= m+l and let H be any 
set of subsets of X. Also, let k be the size of the largest subset of X shattered by H .  Pick any XE X and 
partition X into two sets ( x )  and Y = X - ( x ) .  Define H ,  to be the set of all sets in H that are reflected about 
x. That is, for each set h, in H , ,  there exists a set h E H such that h differs from h,  only in that h does not 
include x. Formally, 

H I =  ( h l l h l e  H , 3 h ~  H,h#hlandh,=hu(x)). 

Now define H2 = H-H1. Surely, the sets of H2 can be distinguished on the elements of Y.  That is, no 
two sets of H2 can differ only on x, by virtue of our definition of H , .  Hence, we can consider H2 as sets 
defined on Y. Surely, H2 cannot shatter a set larger than the largest set shattered by H .  Hence, H~ 
shatters a set no bigger than R. Since IM I m, by the inductive hypothesis we have W21 I (IYl+l)k. 

Now consider H , .  By definition, the sets of H ,  are all distinct on Y. That is, for any two distinct sets 
h,, $ in H I ,  h ,nY f $nu. Suppose H ,  shattered a set S G Y, IS1 2 k. Then, H would shatter SU(X). But, 
lSu(x)12 k + l ,  which is impossible by assumption. Hence, H ,  shatters a set of at most (k-I) elements in 
Y .  By the inductive hypothesis, we have 

W,I s (IYl+l)k-'. 

Combining the two bounds, we have 
HI = W-H,I + &,I = W21 + IH,I 

I (IYl+l)k + (IYl+l)k--' s (m+l)k + (m+l)k-' 
I (m+1)~-l(n2+2) s (m+2)lt 5 (KI +l)lt. 

Thus the claim is proved.. 

Returning to the lemma, we see that if X is all strings of length n or less on the binary alphabet, Ix1= 
2"". By our claim, if the largest set shattered by F, is of size R,  
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IF,I I (2"+'+l)k. 
Hence, k 2 l0g(V;,I)/log(2~+~+1) 2 dim(F,)/(n+2). 

Since k must be an integer, we take the ceiling of the right-hand side of the last inequality. This 

completes the proof of the lemma. 

We can now use this lemma to prove the main theorem of this section. 

Theorem 1 : A family F of concepts is feasibly learnable if and only if it is of polynomial dimension. 

Proof: (If) Let F be of dimension d(n). The following is a learning algorithm for F, satisfying the 
requirements of our definition of learnability. 

Learning-Algorlthm A l  

Input: n, h 
begin 
call EXAMPLE h(dim(FJln(2) + In@)) times. 
let S be the set of examples seen. 
pick any concept g in F consistent with S 
output g .  
end 

We need to show that A, does indeed satisfy our requirements. Note that A ,  may not be 
computable, but, as noted earlier, this is not a difficulty. Letfbe the concept to be learned. Since P is a 
distribution on Cn, EXAMPLE returns examples of f,. We require that with high probability, A ,  should 
output a concept g E F, such that the probability that f and g differ is less than ( l lh) .  Let Chv) be all 
concepts in F, that differ fromf, with probability greater than llh. By definition, for any particular g such 
that g, E Chv), the probability that any call of EXAMPLE will produce an example consistent with g is 
bounded by (1-l/h).  Hence, the probability that m calls of EXAMPLE will produce examples all consistent 
with g is bounded by ( l - l /h)m.  And hence, the probability that m calls of EXAMPLE will produce examples 
all consistent with any g, E C h o  is bounded by IChV)I(i-i/h)m. We wish to make m sufficiently large to 
bound this probability by Ilh. 

Ichy)I(1-l/hy" l /h .  
But surely, IChv)l 5 IFJ I 24,) 
Hence, we want 

Taking natural logarithms on both sides of the inequality, we get 
d(n)ln(2) + m.ln(l-l/h) I In(1lh) 
-main( 1-Ilh) 2 d(n)ln(2) +ln(h) 
-m (-l /h) 2 d(n)ln(2) + In@) 
Or 
m 2 h(d(n)ln(2)+ln(h)). 

26'"'(1-1/h)" 5 l lh  

Hence, if h(d(n)ln(2)+ln(h)) examples are drawn, the probability that all the examples seen are consistent 
with a concept that differs from the true concept by l lh or more, is bounded by l lh.  Since, A ,  draws as 
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many examples and outputs a concept consistent with the examples seen, with probability l-W, A ,  will 
output a concept that differs from the true concept with probability less than I/h. Hence, A ,  does satisfy 
our requirements. Clearly, if d(n) is a polynomial in n,  the number of examples called by A ,  is polynomial 
in n, h and hence F is feasibly learnable. 

(only if) 

Now suppose that F is of super-polynomial dimension d(n) and yet F were feasibly learnable by an 
algorithm A from (nh)& examples, for some fixed k. Let Y be the learning function corresponding to A.  

Now pick A and h 2 5 such that 

By the shattering lemma, there exists a set S E; F such that El2 dim(F,)/(n+l), and S is shattered by F,. 
Let X f  E S1 denote the sequence xl, %,..., xI and letfe F,. Define the operator 6 as follows. 

dim(F,) 2 2(n+l)(nh)&. 

In words, ti& X', Y) is the probability error in the concept output by A on seeing the sample (x,f(x,)), 

(+A+)) ....(x &)) forf Let G, G F, be such that for each S, rS, there is exactly one ge G, such that gnS 

= S,. Such G ,  must exist as F, shatters S. Let P be the probability distribution that is uniform on S and 
zero elsewhere. 

Claim: Let 1 = (nh)&. Then for eachfc G,, and X k  Si, there exists unique g E  G, such that G(f,X',y? 
s l / h  if and only if 6(gJf,Y) 2 l/h. 

Proof: Let (X') denote the set of strings occuring in x', Le., (X') = (xlx occurs in X'). By the 
definition of G,, for eachf, XI, there exists unique gc g, such thatfAg =S-(X'). Hence, 

WJf,y? + 6(gJ', Y) 2 P(x) 
*E S-(X') 

2 1/2. 

The last step follows from the fact that (X') has at most half as many elements as S, and P is uniform on 
S. Since h 2 5 .  l/h I 1/5, at most one of the terms on the left can be smaller than (1/5), if the inequality is 
to hold. Hence the claim. 0 

Since Y is a learning function for F ,  for eachfe F, 

Pr(sCfJr, y? 5 i/h)) 2 (i-i/h) 
(Notation: Pr{Y) denotes the probability of event Y . )  

Define the switch function e:(true,false) +N as follows. For any boolean-valued predicate Q, 

e(Q) = { 
Now write 

1, if Q is true 
0 otherwise 

Pr(?@$,y? I i/h) = 2de(wxf,Y) 2 i /h)prW~ 
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Substituting the above in the last inequality, we get, 

e(s(rJr',y) 2 l/h)Pr{x9 2 (l-l/h) 
2 d  

Summing over G,, 

Flipping the order of the sums, 

Hence, we have 

Flipping the order of the sums again, 

Which reduces to 

which is impossible as h 2 5. 
The last contradiction implies that A cannot be a learning algorithm for F as supposed and hence the 
result. 

This completes the proof. 
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3. Learning Sets with One-sided Error 
We now consider a learning framework in which the learner is only allowed to see positive examples 

for the concept to be learned, and is required to be conservative in his approximation in that the concept 
output by the learner must be a subset of the concept to be leamt. Historically, this was the framework 
first studied by [Valiant, 19841. 

Let F be the family of concepts to be learned. EXAMPLE produces positive examples for some 
conceptf E F. Specifically, EXAMPLE produces a string x E f. Let P be a probability distribution on C'. 
The probability that a string x E f is produced by any call of EXAMPLE is the conditional probability given 

bY I 

P(X) 

assuming the denominator is non-zero. If the denominator is zero, EXAMPLE never produces any 
examples. We can now define leamability as we did earlier. 

Defn: A family of concepts F is feasibly learnable wjfh one-sided error if there exists an algorithm A 

such that 
(a) A takes as inputs integers n and h, where n is the size parameter and h the error parameter. 

(b) A makes polynomially few calls of EXAMPLE, polynomial in n and h. EXAMPLE returns positive 
examples for some concept f E F, chosen according to an arbitrary and unknown probability 
distribution P on X*. 

(c) For all conceptsf E Fand all probability distributions P on IT-, with probability (1-l/h), A outputs 
gE F such that grfand 

Defn: We say a family of concepts F is well-ordered if for all n, FnuO is closed under intersection. 

With these definitions in hand, we state and prove the following theorem. 

Theorem 2: A family F of concepts is feasibly learnable with one-sided error, if and only if it is of 
polynomial dimension and is well-ordered. 

Proof: (If) This direction of the proof begins with the following claim. 

Claim: Let SzZ* be any non-empty set such that there exists a concept g E F,, containing S. Le. 
g e  F,,, and SEg. If F is well-ordered, there exists a leastconceptfin F, containing g, i.e., 

V gE F,: SEg impliesfrg. 

Proof: Let s E* be non-empty and let (f',,f2...) be the set of concepts in F,, containing S. Now the 
intersection of all these conceptsf= V1nJ2n ...), is in F,,. To see this, notice that since FnuO is closed 
under intersection,fe F,,u0. But,f#0 as S # 0  and S Q .  Hence,fE F,,. 
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This allows us to write the following learning algorithm for F.  

Learning-Algorithm A2 

input: n, h 
begin 
call EXAMPLE h(d(n).ln(2) + In(h)) times. 
let S be the set of examples seen. 
output any g in F such that g,, is the least 
concept in F ,  containing S. 
end 

Let f be the concept to be learned. Since g,, is the least concept consistent with S, surely, g,, G f,,. 
Using arguments identical to those used in our proof of Theorem 1, we can show that with probability 
greater than (1-lh), g will not differ from the concept to be learned with probability greater than l lh.  This 
completes the "if" direction of our proof. 

(only if) Let F be feasibly learnable with one-sided error by an algorithm A. Let us show that F is 
well-ordered, i.e., for all n, F n u O  is closed under intersection. Suppose for some n,  FnuO were not 
closed under intersection, and that f, g were two concepts in F n u O  such that fng is not in F, ,u0 .  Now, 
surelyfng f 0, and hencefng is not in F,,. Place the probability distribution that is uniform on fng and 
zero elsewhere on Cn-, and run the learning algorithm A for h = 2"+l. At each call of EXAMPLE, a 
randomly chosen element of fng will be returned. Since fng is not in F,,, A must fail to learn with 
one-sided error. To see this, suppose that A outputs some concept e €  F .  Now, since A claims to learn 
with one sided error, e n d ,  iffwere the concept to be learned. Similarly, e,,tzg, since g could well be the 
concept to be learned. Hence, e,,ang. But since h=1nn+l, en must be fng, which contradicts the 
assumption thatfng is not in F,,. By arguments similar to those of our proof of Theorem 1, we can show 
that F must be of polynomial dimension. An alternate proof is presented in [Natarajan, 19861. Hence the 
claim. 0 

This completes the proof. 

We now exhibit a curious property of the well-ordered families. Specifically, we show that each 
concept (except the empty set) in a well-ordered family has a short and unique "signature". 

For a well ordered family F ,  define the operator Mn2p-+ F,, as follows. 

leastfe F,, such that S d ,  if suchfexists 
undef'n o he is is sirnplyfbe teapsef in F,, consistent with S. 

Propositlon 1 : M,, is idempotent, i.e., 

M,,(M,,(S)) = M,,Q 
Proof: By the definition of M,,,M,(S) is the least conceptfE F,, such that S d .  Surely, M,V) =fand hence 
the proposition. 

Proposition 2: ForArBECn-, if M,,(A) and MJB) are both defined, then 



12 

M,,(A) E M,,(B). 
Proof: By the definition of M,,, B zM, , (B) .  Since A E B ,  A cM,,(B). Hence, MJA) EM,,(B), by Proposition 
1. 

Proposition 3: For A , B  cZ*, if MJA) and M,,(B) are defined, 

M,(AUB) = M,,(M,,(A)UM,,(B)) 

Proof: Since AcM,,(A),  B sM, , (B) ,  AuB s M,(A)uM,,(B). Whence it follows from Proposition 2 that, 
M,,(AuB) c M,,(M,,(A)uM,,(B)). And then, since A GAUD, we have by Proposition 2 

M,W G M,,(AUB) 

M,@) s M J A W  

M,,(A)UM,(B) G M,,(AUB) 

Mn(Mn(A)UM,(B)) E Mn(Mn(AUB)) 

and similarly 

Hence, 

Applying Proposition 2 again, we get 

Applying Proposition 1 to the right-hand side, 

Mn(Mn(A)UMn(B)) E Mn(AuB). 
Hence, the proposition. 

With these supporting propositions in hand, we can show that every concept in F has a small 
"signature". 

Proposltion 4: If F is well-ordered, then for everyfc F,, f#@ there exists S'sF-, IS) s dim(F,), 

such that f= M,,(Sr>. 

Proof: Letf E F,, and let Sf be a set of minimum size such thatf= M,,(Sf). Consider any two distinct 
subsets S,, S, of S' We claim that Mn(S1) # Mn(S2). To prove this, we will assume the contrary and arrive 
at a contradiction. Suppose Mn(SI)  = Mn(S2) for S, f S,. Without loss of generality, assume IS,I I IS& 
Now, 

+= (SfS2)US, 
Applying M,, to both sides, 

Applying Proposition 2 to the right-hand side, we get 

Since Mn(S2> = M,(S,), 

Applying Proposition 2 again, 

Mn(S') = M~((++$JS~) 

Mn(Sf) = M~(M~<S~S~>UM~(S~>) 

Mn(Sr> = M~(M~(S'S~)UM~(SI 1) 

M,(SjJ =f = M,,((Sfs,)uS,) 
But I(S'S2)uS,I < IS), 

which contradicts our assumption that Sf was a set of minimum size such that f = M,(S'). Hence, each 

distinct subset of Sf corresponds to a distinct f E F,,. (Notice that we have really shown that Sj is 
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shattered by F,,. ) Which in turn implies that 

IFJ 2 21s. 
or 
dim(F,,) 2 IS) 

Hence the proposition. 

Conversely, we can show that Proposition 4 is tight in the following sense. 

Proposltlon 5: If F is well-ordered, there existsfc F,, such that 
f =  M,,(S) implies IS1 2 dim(F,)/(n+l). 

Proof: A simple counting argument. There are at most 2”+l distinct examples. If everyfe F,, were 
definable as the least concept containing some set of d examples, then 

2 IFJ or 

Hence, the proposition. 
(n+l)d 2 dim(F,,) implying d 2 dim(F,,)/(n+l). 
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4. Time-Complexity Issues in Learning Sets 
Thus far, we concerned ourselves with the information complexity of learning, i.e.,, the number of 

examples required to learn. Another issue to be considered is the time-complexity of learning, Le., the 
time required to process the examples. In order to permit interesting measures of time-complexity, we 
must specify the manner in which the learning algorithm identifies its approximation to the unknown 
concept. In particular, we will require the learning algorithm to output a name of its approximation in 
some predetermined naming scheme. To this end, we define the notion of an index for a family of 
concepts. 

In order for each concept in a family F to have a name of finite length, F would have to be at most 
countably infinite. Assuming that the family F is countably infinite, we define an index of F to be a 
function I:F + 2r such that 

For each f E F ,  Iy) is the set of indices forf. 
V f,g E F ,  f # g implies I ( f )n f (g )  = 0. 

We are primarily interested in families that can be learnt efficiently, Le., in time polynomial in the 
input parameters n, h and in the length of the shortest index for the concept to be learned. Analogous to 
our definition of learnability, we can now define polynomial-time learnability as follows. Essentially, a 
family is polynomial-time learnable, if it is feasibly learnable by a polynomial-time algorithm. 

Defn; A family of concepts F is polynomial-time learnable in an index I if there exists a deterministic 
learning algorithm A such that 
(a) A takes as input integers n and h. 

(b) A runs in time polynomial in the error parameter h, the length parameter n and in the length of 
the shortest index in I for the concept to be learned f. A makes polynomially few calls of 
EXAMPLE, polynomial4 in n, h. EXAMPLE returns examples for f chosen randomly according to 
an arbitrary and unknown probability distribution P on Z*. 

(c) For all concepts f in F and all probability distributions P on P-, with probability (1-l/h) the 
algorithm outputs an index ig E I@)  of a concept g in F such that 

We are interested in identifying the class of pairs (F, I ) ,  where F is a family of concepts and I is an 
index for it, such that F is polynomial-time learnable in I .  To this end, we define the following. 

Defn: For a family F and index I ,  an ordering is a program that 
(a) takes as input a set of examples S = ((x17yl), (+y2), ...(x i,yi..) such that 

(b) produces as output an index in I of a concept f E F that is consistent with S, i f  such exists. i.e., 

x17+ A+.. E C*,andy,,y,.. E (OJ). 

outputs 9 E I y )  for some f E F such that 

v k y )  E s, y =Ax). 

4Alternatively, we could permit A to make as many calls of EXAMPLE as possible within its time bound. This will not change our 
discussion substantially. In the interest of clarity we will not pursue this alternative. 
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Furthermore, if the ordering runs in time polynomial in the length of its input and the length of the 
shortest such index, we say it is a polynomial-time ordering and F is polynomial-time orderable in I .  

With these definitions in hand, we can state the following theorem. 

Theorem 3: A family of concepts is polynomial-time learnable in an index I (1) if it is of polynomial 
dimension and is polynomial-time orderable in I .  (2) only if F is of polynomial dimension and is random 
polynomial time orderable in 

Proof: (If) Let Q be a polynomial-time ordering for F in I .  The following is a polynomial time learning 
algorithm for F in I .  

Learnlng-Algorithm A, 

Input: n, h 
begin 
call EXAMPLE h(dim(F,) + log@)) times; 
let S be the set of examples seen; 
output Q8; 
end 

Given Theorem 1, we know that A,  learns F, and only need bound its running time polynomial. Now, 
Q runs in time polynomial in the size of its input and the length of the shortest index of any concept 
consistent with S. Since the concept to be learned must be consistent with S ,  surely Q runs in time 
polynomial in n, h and in the length of the shottest index of the the concept to be learned. Hence, A, runs 
in time polynomial in n, h and in the length of the shortest index for the concept to be learned. Therefore, 
F is polynomial-time learnable in I .  

(Only if) Assume that F is polynomial time learnable in an index I by an algorithm A. Since A calls for 
polynomially few examples, F must be of polynomial dimension by Theorem 1. It remains to show that 
there exists a randomized polynomial-time ordering for F. The following is such an ordering. 
Ordering 0 
Input: S:set of examples, n:integer; 

begin 
place the uniform distribution on S ;  
let h = ISI+l: 
run A on inputs n, h, and 
on each call of EXAMPLE by A 
return a randomly chosen element of S. 
output the index output by A. 
end 

Letfbe a concept consistent with S, whose index length is the shortest over all such concepts. Now, 
with probability (1-l/h) A must output the index of a concept g that agrees with f with probability greater 

5A randomized algorithm is one that tosses coins during its computation and produces the correct answer with high probability 
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than (1-l/h). Since the distribution is uniform and h > ISI, g must agree with f on every example in S. 

Hence with high probability, g is consistent with S. Furthermore, since A is a polynomial-time learning 
algorithm for F ,  our ordering 0 is a randomized polynomial-time ordering for F in I .  To see this, notice 
that A runs in time polynomial in n and h, and I ,  the length of the shortest index off. By our choice of h,  ii 
follows that A runs in time polynomial in n, LSI and 1. Hence, 0 runs in time polynomial in n, h and I ,  and is 
a randomized polynomial-time ordering for F in I .  

This completes the proof. 

We can state analogous results on the time-complexity of learning with one-sided error. Specifically, 
an ordering for a well-ordered family wouM be an ordering as defined earlier with the exception that it 
would produce the least concept consistent with the input. Also, we can modify our definition of 
polynomial time leamability to allow only one-sided error. We can then state and prove the following. 

Theorem 4: A family F is polynomial-time learnable with one-sided error; (1) if it is of polynomial 
dimension, well-ordered and possesses a polynomial time ordering; (2) only if it is of polynomial 
dimension, well-ordered and possesses a random polynomial time ordering. 

Proof: A straightforward extension of earlier proofs. 
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5. Learning Functions 
In the foregoing, we were concerned with learning approximations to concepts or sets. In the more 

general setting, one may consider learning functions from C to C. To do so, we must first modify our 
definitions suitably and generalize our formulation of the problem. 

Defn: We define a family of functions to be any set of functions from C to C .  For anyfE F,,, the 

projectionf,:C"+C" offon Cn is given by 

f,(x) = { m], if vpl=n 
n- engt prefix of x ,  otherwise 

Defn: The n%ubfamily F, of F is the projection of F on F, i.e, 
F , =  ~ , V E  F ) .  

The above two definitions are the analogues of the corresponding definitions for sets. The notion of 
the projectionf, of a function fattempts to capture the behaviour of fon strings of length n. If for some 
XE Cn-,f(x) is not of length at most n, it is truncated to n characters. 

An example for a function f is a pair ( x y ) ,  x y  E I7 such that y =Ax). A learning algorithm (or more 
precisely a learning function) for a family of functions is an algorithm that attempts to infer approximations 
to functions in F from examples for it. The learning algorithm has at its disposal a subroutine EXAMPLE, 
which at each call produces a randomly chosen example for the function to be learned. The examples 
are chosen according to an arbitrary and unknown probability distribution P in that the probability that a 
particular example (%fix)) will be produced at any call is P(x). 

As in the case of sets, we define learnability as follows. 

Defn: A family of functions F is feasibly learnable if there exists an algorithm A such that 
(a) A takes as input integers n and h, where n is the size parameter and h the error parameter. 

(b) A makes polynomially few calls of EXAMPLE, polynomial in n and h. EXAMPLE returns 
examples for some function f, E F,, chosen according to an ahitrary and unknown probability 
distribution P on F-. 

(c) For all functions f, E F,  and all probability distributions P on F-, with probability (1-l/h), A 
outputs a a function gE F such that 

Our definition of dimension in this setting is exactly the same as the one given earlier for concepts. 
We can now generalize the notion of shattering as follows, 

Defn: Let F be a family of functions from a set X to a set Y. We say F shatters a set SEX if there 
exist two functionsf, g E F such that 
(a) for any s E S,f(s) # g(s). 

(b) for all S ,  E S ,  there exist e E F such that e agrees with f on S, and with g on S-S,. i.e., 
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V s E S , :  e(s) =As) 

V s E S-S,: e(s) = g(s). 

We can now generalize our shattering lemma for functions as follows. 

Lemma 2 (Generalized Shatterlng Lemma): If F,  is of dimension d, F ,  shatters a set of size 
ceiling(d/(3n+3))). Also, every set shattered by F,, is of size at most d. 

Proof: The upper bound part of the lemma can be proved exactly as the corresponding part of 
Lemma 1. To see that this upper bound can be attained, we simply need to consider a family F, of 
(0,l )-valued functions. 

The lower bound part of the lemma is proved through the following claim. 

Claim: Let X and Y be two finite sets and let H be a set of functions from X to Y .  If k is the size of 

the largest subset of X shattered by H, then 

WI I (rXl )~( lYp.  

Proof: By induction on KI. 

Basis: Clearly true for KI = 1, for all IYI. 

Induction: Assume true for IXI = 1, In= m and prove true for 1yI = I+1, IYI = m. Let X = ( x , ,  x 2 . .  ., xl )  and 
Y = (y,, y2 . .  ., y r )  . Define the subsets Hi of H as follows. 
Hi = (f I f €  H,f(xl) = y;) . 

Also, define the sets of functions HQ and Ho as follows. 
fori#j:Hi=(fIfE H i , 3 g  E Hjsuchthatf=gonX-(x,) ). 

Ho = H - ui+)-19 

Now, 

WI = &,I + IUi&j I lHol + c 'Hii'. 
i + j  

We seek bounds on the quantities on the right-hand side of the last inequality. By definition, the functions 
in H, are all distinct on the m elements of X - ( x , ) .  Furthermore, the largest set shattered in H, must be of 
cardinality no greater than k. Hence, we have by the inductive hypothesis, 

And then, every Hii shatters a set of cardinality at most k-1, as otherwise H would shatter a set of 
cardinality greater than k. Also, since the functions in HQ are all distinct on X - ( x , ) ,  we have by the 
inductive hypothesis, 

W,l I 1kIn2k. 

Fori # j ,  WJ I Ik-'m2(k-1). 
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Combining the last three inequalities, we have 

I mk-'P(rn+l) I (m+l)kP. 

Which completes the proof of the claim. 

Returning to the lemma, we have X = Y = P-, and hence 1 = m = 2"+'. If k is the cardinality of the 
largest set in Cn- shattered by F,, we have by our claim, 

IF,I I (2n+yOn+1)2 
5 2k(3"+3). 

Taking logarithms, 
log(lF,)I = dim(F,) = d I k(3n+3) 

Hence, k 2 d/(3n+3), which is as desired. 0.  

Using this lemma, we can prove the following theorem. 

Theorem 5: A family of functions is feasibly learnable if and only if it is of polynomial dimension. 

Proof: Similar to the proof of Theorem 1, except that we need use the generalized notion of 
shattering and the corresponding generalized shattering lemma. 0 

Analogous to our development of time-complexity considerations for concept learning, we define the 
following . 

For a family of functions F of countable cardinality, we define an index I to be a naming scheme for 
the functions in F, in a sense identical to that for a family of concepts. 

We say a family of functions F is polynomial-time learnable in an index I ,  if there exists a 
deterministic learning algorithm A such that 
(a) A takes as input integers II and h. 

(b) A runs in time polynomial in the error parameter h, the length parameter n and in the length of 
the shortest index in I for the function to be learned f A makes polynomially few calls of 
EXAMPLE, polynomial in n, h. EXAMPLE returns examples forf, chosen randomly according to 
an arbitrary and unknown probability distribution P on Cn. 

(c) For all concepts f in F and all probability distributions P on P, with probability (1-l/h) the 
algorithm outputs an index ig E I @ )  of a function g in F such that 

P(x) 5 l/h 
fn(4 f g "(4 

We are interested in identifying the class of pairs (F, 0, where F is a family of concepts and I is an 
index for it, such that F is polynomial-time learnable in I .  To this end, we define the following. 

Defn: For a family F and index I ,  an ordering is a program that 
(a) takes as input a set of examples S = ((xl,yl), (3, y2), ..., (xi,yi) ...). Let n be the length of the 

longest string among the xi and yi. 
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(b) produces as output an index in I of a conceptf E F that is consistent with S, if such exists. Le., 
outputs $ E Iv> for some f E F such that 

v k Y >  E s. y =f,W. 
Furthermore, if the ordering runs in time polynomial in the length of its input and the length of the shortest 
such index, we say it is a polynomial-time ordering and F is polynomial-time orderable in I .  

With these definitions in hand, we can state the following theorem. 

Theorem 6: A family of functions is polynomial-time learnable: (1) if it is of polynomial dimension 
and polynomial-time orderable; (2) only if it is of polynomial dimension and is orderable in random 
polynomial time. 

Proof: Similar to that of Theorem 3. 



21 

6. Finite Learnability 
Thus far we explored the asymptotic learnability of families of sets and functions, that is to say, we 

considered the asymptotic variation of the number of examples needed for learning with increasing values 
of the size parameter. We will now investigate a different notion of learnability, one that asks whether the 
number of examples needed for learning is finite, i.e, varies as a finite-valued function of the error 
parameter, without regard to the size parameter. We call this notion of learnability "finite learnability" as 
opposed to the notion of asymptotic learnability. 

For the case of families of sets, [Blumer et al., 19861 present conditions necessary and sufficient for 
finite-learnability. Their elegant results rely on the powerful results in classical probability theory of 
[Vapnik and Chervonenkis, 19711. In the following we review their results briefly and then go on to 
present learnability results for families of functions, relying in part on the same results of [Vapnik and 
Chervonenkis, 1971 1. 

Defn: Let F be a family of sets on Rk, where R is the set of reals and k is a fixed natural number. 
We say F is finitely learnable if there exists an algorithm A such that 
(a) A takes as input integer h, the error parameter. 

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls may depend on h. 
EXAMPLE returns examples for some functionfin F ,  where the examples are chosen randomly 
according to an arbitrary and unknown probability distribution P on R. 

(c) For all probability distributions P and all functionsfin F ,  with probability (1-l/h),  A outputs g e  F 

Jf*ddP l lh  

The following theorem is from [Blumer et al., 19861. 

Theorem 7: [Blumer et al., 19861 A family of sets F on Rk is finitely learnable if and only if F shatters 
only finite subsets of Rk. ([Blumer et al., 19861 refer to the size of the largest set shattered by F as the 
Vapnik-Chervonenkis dimension of the family F ) .  

Let us now formalize the notion of finite learnability of families of functions on the reals. 

Defn: Let F be a family of functions from Rk to Rk, where R is the set of reals and k is a fixed natural 
number. We say F is finitely learnable if there exists an algorithm A such that 
(a) A takes as input integer h, the error parameter. 

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls may depend on h. 
EXAMPLE returns examples for some functionfin F ,  where the examples are chosen randomly 
according to an arbitrary and unknown probability distribution P on Rk. 

(c) For all probability distributions P and all functionsf in F,  with probability (1-l/h),  A outputs g e  F 
such that 

We need the following supporting definitions. Letfbe a function from Rk to Rk. We define the graph 
off, denoted by gruph(n, to be the set of all examples forf. That is, 
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g ~ w h v )  = ( (X.Y)l  Y =f(n>). 
Clearly, gruphv) E RkXRk. Analogously, for a family of functions F ,  we define gruph(F) to be the set of 
graphs for the functions in F. That is, 

gruph(F) = (gruphv)lf E F). 

We now state the main theorem of this section. The theorem is not tight in the sense that the 
necessary and sufficient conditions do not match. (In [Natarajan, 19881, a tight version of the theorem 
was reported, on the basis of an incorrect proof.) Indeed, we will identify a finitely learnable family of 
functions that sits in the gap between these conditions. 

Theorem 8: A family of functions F from Rk to RA is finitely learnable 
(a) If there exists a bound on the size of the sets in R k R A  shattered by groph(F). (simple shattering 

(b) Only if there exists a bound on the size of the sets in RA shattered by F. (Generalized shattering 

as defined in Section 2.) 

as defined in Section 5.) 

Proof: (If) This direction of the proof follows from the convergence results of [Vapnik and 
Chervonenkis, 19711 exactly as shown in [Blumer et al., 1986). Essentially, the "if" condition implies that 
the family graph(/) is finitely learnable. Whence it follows that the family F is finitely learnable. 

(Only if) This direction of the proof is identical to the asymptotic case of Theorem 4, which in turn 
followed the arguments of Theorem 1. 

While Theorem 8 is not tight, it appears that tightening it is a rather difficult task. Indeed we 
conjecture that the Tcondition should match the "only if" condition as stated below. 

Conjecture: A family of functions F from RA to RA is finitely learnable if and only if there exists a 
bound on the size of the sets in RA shattered by F .  

To give the reader a flavour of the difficulties involved in tightening Theorem 8, we give an example 
of a family F of functions that lies in the gap between the necessary and sufficient conditions of Theorem 
8, i.e 
(a) F shatters sets of size at most one. 

(b) gruphQ shatters arbitrarily large sets. 

(c) F is finitely learnable. 

Example: Let N be the natural numbers in binary representation. For any a~ N, define the function 
fu:N + N as follows. 

fa(X) = { a, if the dh bit of a is 1. 
0 otherwise 

Define the family F as follows. 
F =  &la E N). 
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Clalm: F shatters sets of size at most one. 

Proof: Suppose F shatters a set of size greater than one. Then F must shatter a set of size 2. Let 
S = ( a b )  be such a set. By definition, there exist three functionsf, g, e in F such thatf(a)#g(a),f(b)#g(b) 
and e(o) =flu), e(b) = g(b). Since, f(a)+g(a), one of them must be zero and the other non-zero. Without 
loss of generality, assume thatflu) is non-zero. Now, by the definition of the functions in F , f ( a )  = e(a) # 0 
implies thatf= e. This contradicts the assumption that e(b) = g(b) #Ab), and hence the claim. 

Claim: graph(F) shatters arbitrarily large sets. 

Proof: Let S, be any arbitrarily large but finite subset of N. Consider S = Slx(0). It is easy to see 
that graph(F) shatters S, as for any subset S, of S, there exists a set f E F such that f n S = S,. To see 
this, notice that for any subset S, of S, we can pick an integer a~ N, such thatf, n S = S,. Since S was 
picked to be arbitrarily large, the claim is proved. 0 

Claim: F is finitely learnable. 

Proof: The following is a learning algorithm for F.  

Learning Algorithm A,  
Input h;  

begin 
call for hlog(h) examples. 
if any of the examples seen is of the 

form ( x y ) .  Y +o 
then outputf,, 
else outputf,. 

end 

It is easy to show that the probabilities work out for algorithm A above. Suppose the function to be 
learned weref,, for some a#O. Then, if 

with probability (1-l/h), in hlogh examples there must be an example of the form (x,a). In which case, the 
algorithm will output fa, implying that with probability (1-lh), the algorithm learns the unknown function 
exactly. Hence the claim. 

The interesting thing about the functions in F is that each function differs from the base functionf, on 

finitely many points, and on these points, the value of the function is the name of the function. Hence, if 
the learning algorithm sees a non-zero value in an example, it can uniquely identify the function be 
learned. 0 

Thus far, we considered functions on real spaces, requiring that on a randomly chosen point, with 
high probability the learner’s approximation agree exactly with the function to be learned. This requires 
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infinite precision arithmetic and hence is largely of technical interest. But then, if all the computations are 
carried out only to some finite precision, Theorem 5 would apply directly. Alternatively, we could require 
that the learned function approximate the target function with respect to some predetermined norm. In 
the following, we consider the case of the square norm, for a single probability distribution P .  

First, we limit the discussion to families of "normalized" functions. Let E(a,6) denote the euclidean 
distance between any two points a and 6. Let F:Rk+Rk be a family of functions such that for every[€ F 

and XE Rk,EV(x),@ I 1, where d( is the origin in Rk. Then, we fix the probability distribution P .  

Defn: We say that F is finitely learnable with respect to the square norm and a distribution P on Rk, 
if there exists an algorithm A such that: 
(a) A takes as input an integer h, the error parameter. 

(b)A makes finitely many calls of EXAMPLE, though the exact number may depend on h. 
EXAMPLE returns examples for some function f in F ,  where the examples are chosen according 
to the distribution P .  

(c) For all functions f E F ,  with probability h, A outputs a function g E F such that 

5,, R k ~ c f ( x ) & ? ( X ) ) @  1lh. 

Before we can state our result in this setting, we need the following definition, adapted from 
[Benedeck and Itai, 19881. 

Defn: For small positive 6: K E F  is a &cover with respect to the square norm and distribution P if, for 
any[€ F there exists gE K such that, . 

Theorem 9: A family of functions is finitely learnable with respect to the square norm and a 
distribution P ,  if and only if for all positive 6, there exists a finite &cover for F .  

Proof: The details of the proof are identical to that of the main theorem of [Benedeck and Itai, 
19881. A learning algorithm A for F can be described as follows: on input h, A constructs an llh-cover of F 

of minimum size. A then calls for sufficiently many examples to permit it to pick one of the functions in the 
knot with sufficiently high confidence. 0 
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