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ABSTRACT

This paper proposes a method for derermining the depth of
points in a three-dimensional scene. The concept is to we two
spheres wuh highly specular swfaces W obtain two differen:
perspectives of the scene. Both spheres are viewed by a single
stationary camera, and each sphere reflects the world around it
into the camera. Correspondence berween points on the two
spheres is established by matching feasures such as edges and
image intensities, as in rtraditional stereopsis. Depth is
recovered from each pair of corresponding points by
riangulation. The we of a single fixed camera avoids the
undesirable complexities that characterize the stereo calibration
procedure. The measurable range of the system is greatly
enhanced by the we of specular spheres and is not limited by the
field of view of the camera. Experiments were conducted to
determine the accuracy in depth measurement and the feasibility
of practical implemensation, The technique presented in this
paper has been named “SPHEREQ”as it wes two SPHeres,
rather than two cameras, 2o emulate stEREOpsis.

1 INTRODUCTION

Three-dimensional object recognition is currendy an active
area of vision research, In many vision applications. the
limitations of two-dimensional analysis have been realized. For
example, in a typical bin picking operadon, the position and
shape of an object mBt be determined in three-dimensional
space to enable the robot to securzly grasp the object. Shape
extraction is an essential part of a three-dimensional recognitien
system. Any ambiguity in the physical shape of an object
geaerally renders the recognition problem more difficult. Hence,
the advent of three-dimensional vision systems has created
considerable interest in the development of high quality depth
Sensors,

Stereo is a popular technique for depth perception. It has
generated much interest in the research community due to its
stong resemblance to the mammalian approsch to depth
perception. In stereopsis, images of the scene arc recorded from
two different perspectives. The two perspectives are obtained by

using two cameras to observe the Scene. Features, such as edges,
are extracted from both camera images and, on the basis of the

featurs values. a point-—point correspondence is established
between the two imager Range ar depth is recovered from each
pair of corresponding points by wiangutadon. The passive nature
of stere0psis makes It an atractive depth pereeption method. It is
suited to nost applications,unlike “active”sensing methads such
as radar, laserranging. and structured light.

Stereo systems are posed with the acute problem of
calibration. Corresponding points in the two Images are

projections df a single point in the three-dimensional scene. In
order to tiangulate and determine the three-dimensional
coordinates Of the scene point, the parameters of the two cameras
must be known. Therefore. for a given configuration of the
cameras, it is necessary to calibrate the inmnsic and extrinsic
parameters of the cameras. Many researchers have studied the
stereo calibration problem. One approach is to independently
calibrate the two cameras by using a set of points at known
locationsin a common frame of reference. An alternative method
does not rely on knowing the locations of the calibration points,
but rather the correspondence between the points in the images.
Gennery [3] proposed performing the calibration by a
generalized least-squares adjustment. Errors are formulated by
using the epipolar constraint.  Minimizing the errors results in
estimates of the camera parameters. Faugeras and Toscani [2]
have suggested a recursive estimation of the camera parameters
by using extended Kalman filtering.

The complexity of the calibration procedure has limited the
applicability of stereo systems. Since it is computationally
inefficient to perfomm the calibration on-tine, the relative
positions and ofientations OF the cameras need 1 be rigidly fixed.
In addition to the calibration problem, stereo systemns are often
limited by a small field of view. The depth of a point can be
measured only if the point is seen by both cameras. Thmfore,
the field of view of a stereo system is the intersection of the
fields of view of the two cameras.

ThiS paper describes "sphereo™ as a new approach to stereo
vision. Two sphereswith highly reflectve surfaces are placed in
the view of a single camera. Reflections of the three-dimensional
scene are recorded in the image of the spheres. Hence, a single
camera image includes two different perspectives of the three-
dimensional scene. These O perspectives are equivalent to
images obtained from two different camera locations in
stereopsis, The stereo calibration problem is avoided by using a
single cammera. However, the position of the two spheres must be
known to recover depth by tiangulation. TO this end, a simple
calibration procedure is presented in this paper that determines
the location of the two spheres on-line. Each camera image
contains information regarding the positions of the spheres and
the depth of points in the scene a the same instant in time. The
positions of the spheres are first determined and then used to
compute the coordinates of points in the scene.

The field of view of a spherzo system is a great improvement
over ftat of stzreo systems. The use of specular sphms enables
the system to measure depth outside the camera’s field of view.
The surface of a sphere completely spans the gradient space.
Therefore, points in all directions are reflected by the spheres
into the camera, and the camera is used only to observe the
surfaces of the spheres. Such an imaging geometry, makes it
possible to measure depth of points both inside and outside the
camera’s field of view.



Experiments were conducted to demonstrate the practical
feasibility of the sphereo concept. Point sources of light were
positioned at known locadons in the scene, and a sphmo set-up
was used to determine the three-dimensional coordinates of the
sources. The measurement accuracy was estimated by comparing
the experimentally determined source positions with the actual
positions.  The sphereo approach does not simplify the
correspondence problem associated with stereo vision. This
paper does not address the comspondence problem posed by
complex scenes but focuses on the merits of a new approach to
stereo imaging.

2 SPHEREO

2.1 Concept

The geomemy of a sphm is completely defined by its radius.
The sphere also possesses the property that no two points on its
surface have the same surface nommal. Figure (1) shows the
reflection of light from a point source, Off the surface of a
specular sphere. In the case of specular reflection, the angle of
incidence i equals the angle of reflection e. Let US assurme an
onhographic camera model; all light rays observed by the
camera are paratlel and are in the direction v. Under the above
stated constraints, only a single point A on the surface of the
sphere is capable of reflecting light franthe point source into the
camera. An alternative interprewtion of this effect is as follows:
if the position of the center of the sphere and its radius are
known, then a bright point in the image can be projected out of
the camerato intersect the surface of the sphere at the point A.
The surface normal n & the surface point A is unique and is
determined by the position of the sphae. Given the viewing
direction v and the surface normal n, we can fird the source
directions by using the specular reflectance model.

Spherzo USES two specular spheres of known radii and center
positions, each reflecting the world in the direction of the
camera. Figure (2) shows the two spherss illuminated by a point
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Figure 1. The specular sphere reflects light from the point
source into the camera.
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source. The resulting image has two discrete bright points,
namely, I, and /,. Lines perpendicular to the image plane are
projected from I, and /, to intersect the spheres S, and S, at the
points P and Q, respectively. The surface normal vectors n, and
n, at points P and Q are computed by using the known radii and
center locations of the spheres. Since the spheres are separated
by a distance D, the surface normal vectors n, and n, differ in
direction. Given n, ,n,, and the viewing direction v, the source
directions s; and s, are computed by using the specular
reflectance model. The point source lies on the line L, passing
through the point P in the directions,. The point source also lies
on the lire £, passing through the point Q in the direction s,.
Therefore, the point source location W is found at the point of
intersecdon of the two lines L, and L,. The point source has been
used in the above discussion to explain the principle underlying
the sphereo method. In practice, however, candidates for
matching are not confined to bright image points and may also
be characterized by fearures such as discontinuities in image
intensity.

Image
1, ! P'a~e

Figure 2: Sphereo: determining the position of a point using two
specular spheres,

2.2 Finding the Spheres

Depth measurement using s p h m is based on the knowledge
of the radii and positions of the specular spheres. We will
assume tet the radii of the sphaes are known. The position of
the spheres with respect to each other and the camera may be
determined by a simple calibradon procedurs. Figure (3) shows
the spheres Sy and §, placed on the x-y plane of the world frame.
The z coordinate OF the center of each sphere is equal its radius r.
However, the x and y coordinates of the center need to be
determined. FoUr point sources PS,,FS,, £S,, and PS, are
syrametrically positioned about the optical axis -0’ of the
camera. The point sources are coplanar and each source is at a
distance ¢ from the optical axis. Consider either of the two
spheres S, and S,. The distance d of the sphere center from the
optical axis is small compared to the height 4 of the four sources
from the x-y plane and the distance ¢ of each source from the
optical axis. Each point source produces a highlight in the image
of the sphere. Let (X,Y,) te the center of mass of the highlight
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Figure 3. Calibradon: point sources PS,, PS, PS, and PS, arc
used to find the spheresS, ad S, in the camera image.

comsponding to point source PS,. The centroid O(X..Y,) of the
four highlights may be determined &s:
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Under the distant source assumption, the image point O(X_.Y,) is
the projection oF the center of the sphere onto the image. In
practice, it is not necessary to use exactly four sources for the
calibration. Any number of sources may be used as long as they
are coplanar and their centroid lies on the optical axis.

The next step is to find the world coordinatesC(x..y,.z.) of the
sphere center from its image coordinates O(X,Y.).
Transforrmatons between the world and the image are
determined by the inmnsic and extrinsic pararmmeters oF the
camera. iy the process of image formation, a point P(x,y,z)
in the world is projected onto the point /(X,Y) in the image. The
canera parameters may be used D determine /(X,Y) fran
P(x,y,z). However, it is not possible to recover a warld point
from an image point. FOr each image point /(X,Y), the camera
pararneters can only determine the equation ofa line in the world
on which the point P(x,y,z) lies. Therefore. the center oF the
sphere lies on the line:

x. =az +b, 2

y.=cz. +d,
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where the transformation parameters a. b, ¢, and d are
determined by the camera parameters and the image coordinates
X, and Y. Since the sphere is placed on the x-y plane. z, = r.
Hence, the world coordinates (x_.y.,2.) of the center are uniquely
determined from equation(2). The radiusof a sphere is measured
in pixels in the image and inches in the world frame. The
spheres S, and S, have radii R, and R, in the image and ~, and 7,
in the worid. The centers of the spheres villl be referrzd to as
O0y(X,.Y,)) and Ox(X5,Y 5) in the image, and Cy(X.yYe1r2:)) and
Cy(x2.¥2:2.2) in the world.

The simplicity of the calibration procedure described in this
section makes it feasible for it to be performed on-line. If the
calibration light sources are always active, each camera image
obuained describes the positions of the spheres and the scene at
the same instant in time.

2.3 Correswndence

Prior to computing the depth of scene points, the spherzo
system is rzquired to solve the well-known comspondence
problem: the task of determining which point in the image of one
sphae corresponds to a particular point in the image of the other
sphere. Features, such as edges, are extracted fion the two
circular sections in the image thek correspond to the projections
of the spheres $, and §,. A feature value at the image point
A(X,Y) may be expressed as F(A(X,Y)}. If the image points
1,(X,,Y,) and I(X,,Y,;) consttute a pair of corresponding points.
they must lie on different spheres and have matching feature
values:

F [lg(xpy|)) =F [lz(xzyyz)]v (3)
where:
11,-0,1 <Ry,

|I,=0,1 < R,.

24 Triangulation

Depth values are recovered fron pain of corresponding
image points by triangulation. Consider the image points 1, and
1, in Figure (2). Since both points are reflections of the same
point in the scene, they sadsty the constraints given in equation
(3) and thus constitute a pair of corresponding points. The point
1,(X,,Y,) is the projection of the point P(x,,y,,z,). We know that
P(x,,y,,2,) lies on the line:

x=az+b, 0]

nw=cz +d,

where a, b, ¢, and d are determined by the camera parameters
and the image coordinates X, and Y,. The point P(x,,y,,z,) also
lies on the surface of sphereS, Therefore,

(x, - d)’*‘(yl-y,,)z**(z‘-zc, P = ’12- &)

Equatdon (4) may K used toeliminate x; and y, in equation (5).



This results in a quadratic equation in z,. As shown in Figure (3).
the camera is positioned in the positive z direction and thus the
point P lies on the upper hemisphere of S,. Therefore, z, is the
higher of the two roots of the quadratic ¢quatien. The x, and y,
coordinates of P arc then computed by using equation (4). At
point P, the unit vector v, in the viewing direction is determined
fran equation (4) as:

Y
v, = == (6)
AA
where:
V, =(a,b,1)

The unit surface normal vector n, at the point P on the sphere S;
is computed as:

P-c,
n

)

n =

In order to find the location of the point Win Figure (2). we need
to determnine the direction of W as seen from point P. Let the unit
vector in this direction be s,. For specular reflections on the
surface of the sphm . the angle of reflection equals the angle of
incidence. This specwlar constraint may be used to relate the
tree vectors s, ny, and v,:

(n.v]m; :v,;s,_ ®

The source direction s, is determined by rewridng equation (8) in
the form:

s, =2(n .y )n ~v,. )

On the same lines, source direction s, is computed from the
image point /,. A line is projected from |, to intersect sphere S,
at the point Qfx,,y,.2,). The source direction 8, is computed by
using the specufar constraint. The line L, in Figurs (2) passes
through point P in the direction s,. The line L, passes through
point Q in the direction s, The point W is found at the
intersection Of lines L, and Z,.

The accuracy of a sphereo system is related to the resolution
of measured depth. As in the ¢ase Of stzreo, depth resolution is
related to pixel resolution in the camera image. Figure (4)
Nustrates triangulation uacertainty in the two dimensions of the
image plane. The pixels A and B are projections of the same
scene point W and thus constitute a pair of matching image
points. Uncerainity in the location of the point W is representad
by the shaded region. Therefore, errors in triangulation result
from image quantization; due to finite resolution in the image,
the location of the point W can lie anywhere in the shaded region
around the actual location. The area of the uncertainty region
tends to increase with the distance of point W from the two
spheres. The line joining the ¢enters of the two spheres is called
the sphm baseline. The area and shape of the uncertainty
region are also dependent on the baseline magnitude D and the
baseline orientation 8. In three dimensionsthe uncertainty region
is a volume bounded by a polyhedron.
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Figure 4 Spherso miangulation uncertainty in two dimensions.
Due to image quantization, the location of the point W can lie
anywhere in the shaded region.

Factors such as finite pixel resolution and image noise, cause
inaccuracies in the positons of extracted features. Consequently.
triangulation in three dimensions may not result in the
intersection of the projection lines £, and £, shown in Figure (2).
The two lines may only pass each other in close proximity
without actually intersecting. Rather than attempting to intersect
the lines £, and L,, a more practical approach is to determine the
common normal £, between the lines L, and L,, as shown in
Figure (5). The unit vector sy in the direction of L, is computed
&

s’ = —s,_, (10)

18,1
where:

S; =8, xs,.

The lre L, intersects lines L, and L, at the points U(x,y,z) and
V(xy.2), respectively, Let £, |, and m be the distances between
the points U and P, V and Q. and U and V, respectively. We can
express the coordinates of points U and V &s:

U=P+ks,, amn
V=0+Is,,
V=U+ms,.

The parameters &, /, and m can be determined by eliminating U
and V in the above set of equations:



Figure 5. Triangulation in three dimensions. The mid-point W of
the common normal L, is considered to be the best estimate of
the point of intersection of linesZ, and L..

ks, -1s,-ms, = Q-P. (12)

Depth is computed only at points that have a high measure of
riangulation. The triangulation measure is formulated as a
functionof the length m of the common normal and the distances
k and / of the common normal from the spheres S, and S,
respectively, In the current spherso implementation, a suceessful
match or intersection is found between corresponding image
points when:

kel > T, 13)
2m

where T is an empirically determined threshold level. For a
successful match. the point of intersection W is defined as the
mid-point of the common normal:

W= ﬂzi/ , (14)

2.5 Search Space

Though corresponding points have matching feature values,
triangulation of all pain of matching image points is
unnecessary. As in stereo, the imaging geometry may be used to
impose. th’SlC&l constramts on the posidons of 4
potnts in the These constraints considerably reduce the
search space forcom:spondmg points. Consider a carmera image
of the two spheres, as shown in Figure (6). The projecdon of
each sphere is a circular section in the image. Each point inside
the circular section is the projection of a point on the spherz's
surface. We shall denote the image sections corresponding to the
spheres S, and S, by CS, and CS,, respectively. If constraints arc
not used while finding comsponding points, the features
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computed at each point in CS, have to be compared with features
at all points in CS,. Therefore, the search space for the point in
CS, that corresponds to a point in CS, is the entire two-
dimensional section CS,.

Consider the sphereo imaging geometry shown in Figure (2).
The image point 1, is the projection of the point W by sphm S,.
Given the point I,, we know from the camera model and the
specular conseaint that W must lie on the line L, . Therefore, the
point /, that correspoads to I, must lie on the image projection of
the line Z, by the sphere S,. This is the epipolar constraint. The
image prOJectlon of line L, by sphere S, is called the epipolar
cwrve, As shown in Figure (6). the search space for the point I,,
that corresponds to the point 1,, is reduced from the two-
dimensional section CS, to a one-dimensional epipolar curve AB.
If a feature match is determined between a point in €S, and a
point on its epipolar curve in CS,, then a high measure of
triangulation is ensured.

Epipolar curves for each point in the section CS, can be pre-
commputed and stored in memory. Consider, for example, the
epipolar curve corresponding to the image point I, in CS,. As m
the case of triangulation, the line L, is determined from l,.
point & on L; may be expressed as:

U(k) = P +ks,. (15)

where k is the distance of U fromP. The point Q() on sphere S,
that reflects Urk) into the camera is determined by using the
specular constraint and by assuming an onhographic camera
projection. The point Q(4) is then projected to the point /,(k) in
the image plane, by using the camara parameters. The epipolar
curve for |, is thus determined by computing /,(k) for all k in the
interval 0 c k ¢ &, where & is greatest distance of a
measured point from sphere S, The image coordinates of points
on the epipolar curves arc stored in memory. Matches for a point
in CS, are obtained by comparing its feature value with those on

itsepipolar curve in Cs,.

|lm.go Plane

Figure 6 The epipolar consmaint. The point I, in C$, that
corresponds to the point I, in CS, lies on the epipolar curve AB.



26 Field of View

The field of view of a typical stereo system is shown in
Figure (7). Depth can be measured only at those points that can
be Seen in both the camera images. Therefore, the field of view
of a stem system is the intersection of the fields of view of the
two cameras. A large field of view can be obtained by
minimizing the daseline D and keeping the viewing directions of
the two cameras almost equal. Such an arrangement, however.
results in lower depth resolution. A high depth resolution is
obtained by making the viewing directions of the two cameras
orthogonal to each other. Honever, this configuration drasdeally
reduces the field of view of the stereo system

A

Figure 7: Field of view of a stereo system.

The field of view of a sphereo system is a grza: improvement
over that of stereo systems. This is priraarily due to the use of
specular spheres for stereo imaging. The surface of a specular
sphere may be thought of as being constructed by an infinite
number of small planar mirrors. Since no two pointson a sphere
have the same surface normal. each planar mirror faces in a
unique direction. Also, the complete St of mirrors span the
surface normal space. Consider a specular sphere placed in the
view of a camera.  Under the assumption of orthographic image
projection, the viewing direction is constant over the entire field
of view of the camera. Any non-occluded point in space would
e reflected in the direction of the camera by a single point on
the surface of the sphm. Thmfore. the field of view of a
sphmo system consists of all points that can e refluxed onto
the image plane by both spheres. Both spheres ar= placed in the
focal plane of the cameraand therefore the image projection of
points in the scene is not affected by a limited depth of field of
the camera. On the other hand, in stereo, objects must be placed
clox to the focal planes of both cameras to avoid the blurring of
image features.

Figure 8: Field of view of the sphereo system.

In Figure (8), the shaded region denotes the sphereo field of
view. The measurable range is not confined to the field of view
of the camera Points in regions A and 8 are not reflected into
the camera by spheres S, and S, respectively. Points in region C
are occluded by S, and thus are not reflected into the camera by
S,. Similarly, points in region D are occluded by S, and are nor
reflected into the camera by S;. Region & consists of points that
arc occluded by the camera and arc not visible to either sphere S,
or S,.

3. EXPERIMENTAL RESULTS

Experiments were conducted © demonsoate the practical
feasibility of the sphmo concept. Figure (9) shows a photograph
of the apparatus used for the current implementation. Two steel
ball oearings, each 1 3/8 inches in diameter, arc used as specular
spheres. The surface of each sphere is highly specular in
reflection. A CCD Panasonic camera with a 510 x 492 pixel
resolution is used to observe the two spheres. The physical
resolution of the camera and the optical system is 0.011 inches
pa image pixel. Four 1/4 WAL, 5 Volt bulbs are mounted on the
careralens and arc used by the calibration procedure to find the
location of the two spheres in the image. Individual images are
digitized and processed using a vision system based on a SUN
work-station.

The spherso concept was described by assuming an
orthographic cameraprojection model. More accurate results are
obtained by determining the extrinsic and intrinsic parameters of
the camera. The current implementation of sphereo uses the
single-camera calibration technique developed by Tsai(7).
Tsai’s calibration algorithm is structured © determine the value
of each parameter rather thanjust a ransformation from image to
scene and vice-versa. The parameters are computed in well-
defined stages, thus making it easy to code during software
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Figure 9: Photo of a prototype spherso set-up. Four calibration
lights arc mounted on the camera lens and two specular steel
balls ar= placed in the camera's view.

implementation. The computed parameters produced excellent
msults for wansformadons between the image plane and the
world frame.

The soeagth of a spherzo S&tam lies in its ability to
determine the location of the two specular spheres by using a
simple calibration. The four light bulbs mourtted on the camera
lens preduce four highlights or bright points on the surface of
each sphere.  Under the distant source assumption. the
configuration. or relative positions, of the four highlights in the
image of each sphere is the same as the configuration of the four
light bulbs in the plane in which they lie. Also, the highlight
configuration on each sphere is independent of the position of
the sphere in the image. Once the four lights an rigidly fixed on
the camera lens, the configuration of the four highlights is
known. By using a template of four bright points in the expected
configuration. we can determine the positions of the two sets of
four highlights in the image. As explained in section 2, the
centroid of each set of four highlights determines the centers of
the spheresin the image.

Figure (10) shows an image of the two spheres resulting from
the four-point illumination used for calibration. The centroids of
the two sets of highlights were computed and the circles drawn
around the centroids represent the boundaries of spheres. The
centroids for the spheres were projected into the world by using

Figure 10: Photo of a camera image of the two spheres
illuminated by the four calibration point sources. The centers of
the spheres in the image are determined and circles are drawn
around the centers to show the boundaries of the spheres in the
image.

the camera parametzrs, and the locations of the centers of the
two sphms were determined by the system to be within a

distance of 0.01 inches from their actual positions.

The aiangulation accuracy of the sphereo system wes
estimated using point sources, Low powered miniature lamps
were placed at known locations in the world frame and the
system was used to measure the coordinatesof the lamps in three
dimensions. Each lamp produces a single highlight in the image
of each sphere. An image of the spheresis digitized by a frame-
grabber and binarized by using a threshold. The highlights
appear as &right blobs in the binary image, and the center-of-
gravity (COG) of each blob is computed. The use of point
sources greatly simplifies the ¢orrespondence problem as
highlightsan the only featrures ek need to be extracted from the
image. Corresponding pairs of highlight COGs that satisfy the
epipolar constaint an triangulated to dtain position estimates
in three dimensions, Figure(11) shows an incandescent light
bulb used to generate a highlight on each of the two spheres. The
pre-computed epipolar curve comsponding to the highlight
COG on the left sphere is plotted on the right sphere. The
¢pipolar curve is a reflection of the line that passes through the

Figure 11: Highlights 0N th¢ two spherss resuldng from an
incandescent lamp. The epipolar curve for the highlight point on
the left sphere is plotted on the right sphere. As expected, the
highlight on the right sphere lies on the epipolar curve.
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highlight point on the left sphere and the location of the light
bulb. An image projection of this line is displayed in Figure (11).
As expected. the highlight on the right sphere lies on the ¢pipolar
curve corresponding to the highlight on the left sphere.
Therefore. sphereo triangulation of the two highlights would
result in an intersection at the location of the lamp.

The reliability of the matching process was tested by using a
light display. The light display was constructed by mounting six
light emitting diodes (LED)on a circuit board. Figure (12)
shows the highlights on the two spheres rzsuldng from the light
display. The LEDS of the light display lie outside the camera’s
field of view ad thus are not visible in the image shown in
Figure (12). The circles represent the pre-dstermined boundaries
of the two spheres. . The COGs of the highlights resulting firom
the light display were determined and pain of highlight COGs
were triangulated. World coordinates were computed for for
COG npairs that produced high measures of aiangulation. The
triangulation results for the image in Figure (12) are shown in
Figure (13). The actual LED locations and the measured
positions are both shown to illustrate the accuracy of the current
implementation. The camera and the two specular spheres are
also shown to give an idea of the relative positions and Sires of
the spheres. the light display. and the camera. In Figure (13), the
x, y. and z world coordinates of the LEDS determined by the

system were found to be within 3.5% of the actual coordinates.

Figure 12: Sphereo image of a light display made of six LEDS.

The non-linear nature of the depth resolution grid, shown in
Figure (4), makes it difficult to specify the accuracy of the
spherso system. An important measure of performancs is the
sensitivity of the 9,5tEm to the distance of the measured point
fion the two sphaes. Trk N errors w=r= computed for
point source locations along a straight line starting from the
origin of the world frame and moving in a particular direction,
Figure (14) shows the percentage errors recorded for source
locations on the x-axis of the world frame, and for the sphere
locations shown in Figure (13) . By measurernent error we refer
to the Euclidean distance of the measured position from the
actual position. As expected, the wiangulation errors increase
with the distance of the measured point from the sphms. The
measursd locations were found to be within 4% of the actual
location. for points that are less than 3 feet fran the world frame
origin.
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Figure 13: Positions of the sources on the light display were
computed from the spnerso image shown in Figure (12). The
measured and actual locations of the sources are plotted in the
world coordinate frame.
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Figure 14: Percentage error in measured position of a scene
point is plotted as a function of the actual distance of the scene
point fram the origin of the world reference frame.
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Figure 15: Psrcentage € M in measured position of a Scene
Bointl_is plotted as a function of the magnitude D of the sphmo
aseline.

The accuracy of a sphereo system is also dependent on the
sphmo baseline D and its orientation & shown in Figure (4). As
the two spherss are brought closer to each other. the baseline
decreases and the reflectons of the world on the two spheres
become less distinguishable. The view linesZ, and Z, in Figure
(5) become almost parallel to each other and the measurements
arc prone to greater errors. ThIS effest is Seen in Figurs (15)
where the triangulation errors arc plotted as a function of the
baseline magnitude for a constant point source position of x =
10.6inches, y = 123 inches. ad z = 4.3 inches. FOr the same
source location and baseline D = 2.34 inches, the measurement
errors are also plotted for different baseline orientation values. as
shown in Figure (16). As the baseline orientation is varied from
0 degrees to 180 degrees, the measurement error varies like a
sine function between 0.8% and 1.4%.

The experimental apparatus was set Up using comumersially
available and inexpensive hardware to demonstrate the ease of
implementation OF sphereo systems. From the sxperiments, it
was realized that a few changes in the cumrent system would
yield considerable improvement in measurement accuracy.
Cameras with higher image pixel resolution, then the one used
for the experiments, are Nnow commercially available. A higher
pixel resolution would improve the sensitivity of a sphmo
system Spheres with greater surface specularity and lesser shape
imperfecdons than ball bearings would produce mors reliable
results. As explained eartier on, point sources were used to
Simplify the comespondence problem. However, the use of
miniature lamps as point sources comes with the cost of
imperfect highlights in the image. The shape of a highlight is
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Figure 16: Percentage € m in measured position of a scene
point is plotted as a function of the orientation & of the spherco
bascline.

dependent on the shape of the filament of the lamp that caused
the highlight, the pixel resolution in the image, and noise levels
in the camera output. The size of a highlight is related to the
filament size and the sharpness of surface specularity of the
spheres. In the experiments disoussed above, no attention was
given to the shape of highlights. and each highlight was simply
represented by its centerof-gravity. More consistent highlight
shapesmay be obtained by using miniature arc lamps rather than
incandescent lamps.

¢ CONCLUSIONS

Spherso has been presented as a new approach to stereo
imaé:]ing. A prototype sphereo system Was implemented and
used to measure the positdon OF point sources located in its field
of view. The main advantages of sphereo, over conventional
stersopsis, are the simplicity of the calibration procedure and the
considerable improvement in field of view. The current
implementation USES two spheres to obtain different perspectves
of the warld. Betier estimates of depth may be obtained by
placing more than rwo spheres in the camera’s field of view. The
results obtained from the experimens conducted wilh point
sources are promising and provide motvaton to apply the
sphereo method to compkex scenes.
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