Sphereo: Determining Depth using Two Specular Spheres and a Single Camera

Shree K. Nayar
The Robotics Institute, Carnegie Mellon University. Pittsburgh, Pennsylvania 15213

Abstract

This paper proposes a method for determining the depth of points in a three-dimersional scene. The concept is to we two spheres wuh highly specular surfaces w obtain two different perspectives of the scene. Both spheres are viewed by a single stationary camera, and each sphere reflects the world around it into the camera. Correspondence between points on the two spheres is established by matching fearures such as edges and image intensities, as in traditional stereopsis. Depth is recovered from each pair of corresponding points by riangulation. The we of a single fixed camera avoids the undesirable complexities that characterize the stereo calibrarion procedure. The measurable range of the system is greatly enhanced by the we of specular spheres and is not limited by the field of view of the camera. Experiments were conducted to determine the accuracy in depth measurement and the feasibility of practical implementarion. The technique presented in this paper has been named "SPHEREO"as it wes two SPHeres, rather than two cameras, 20 emulate stEREOpsis.

1. INTRODUCTION

Thre-dirrensional object reognition is currendy an active area of vision research. In many vision applications. the limitations of two-dimensional analysis have been realized. For example, in a typical bin picking operadon, the position and shape of an object must be deternined in three-dimensional space to enable the robot to tourely grasp the object. Shape extraction is an essential part of a three-dimensional recognition system. Any ambiguity in the physical shape of an object generally renders the recognition problem thore difficult. Hence, the advent of thre-dimensional vision systems has crealed considerable interest in the development of high quality depeh sensors.

Serso is a popular technique for depth prepodion. It has generated much interest in the researh community due to its strong resemblance to the mammalian aporoseh to depth perception. In stereopsis, images of the scene arc recorded from ruo ditierent perspectiyes. The 5wo propectives are obtained by using two cameras to obsere the scene. Features, such as edges, are extracted from both camera images and, on the basis of the featre values. a point--point correspondence is established between the two imager Range ar depin is recovered from each pair of comesponding points by riangulacion. The passiye nature of steroopsis makes it an amactive depth perceotion method. It is suited to most applications, unlike "active"sensing methods such as radar, laser ranging. and structured light.

Stereo systems are posed with the acute problem of calibration. Corresponding points in the two images are
projections $\boldsymbol{\mathscr { f }}$ a single point in the three-dimensional scene. In order to riangulate and determine the three-dimensional coordinates of the scene point the parameters of the two cameras must be known. Therefore. for a given configuration of the cameras, it is necessary to calibrate the inmnsic and extrinsic parameters of the cameras. Many researchers have studied the stereo calibration problem. One approach is to independently calibrate the two cameras by using a set of points at known locations in a common frame of reference. An alternative method does not rely on knowing the locations of the calibration points, but rather the correspondence between the points in the images. Gennery [3] proposed performing the calibration by a generalized least-squares adjustment. Ertors are formulated by using the spipolar constaint. Minimizing the srom results in estimates of the camera parameters. Faugeris and Toscani [2] have suggested a recursive estimation of the camera parameters by using extended Kalmar filcring.

The complexity of the calibration procedure has limited the applicability of stero systerns. Since it is computationally inefficient to perform the calibration on-tine, the relative positions and oriencarions of the cameras need to be rigidly fixed. In addition to the calibration problem, stereo systems are often limited by a small field of view. The depth of a point can be measured only if the point is by both cameras. Thmfore, the field of view of a stere system is the intersection of the fields of view of the two cameras.

This paper describes "shereo" as a new approach to stereo vision. Two spheres with highly reflectye surfaces are placed in the view of a single camera. Reflections of the three-dimensional scene are recorded in the image of the spheres. Hence, a single camera image includes two different perspectives of the three. dimensional scene. These two perspectives are equivalent to images obtained from two different camera locations in stereogsis. The stereo calibration problem is avoided by using a single cartert. However, the position of the two spheres must be known to recover depth by tiangulation. To this end, a simple calibration procedure is presenced in this paper that determines the location of the two spheres on-line. Each camera image contains information regarding the positions of the spheres and the depth of points in the scene at the same instant in time. The positions of the spheres are frs: deternined and then used to compute the coordinates of points in the scene.

The field of view of a sphereo systert is a grat improvement over that of systems. The use of specular sphms enables the system to measure depth ousside the camera's field of view. The surface of a sphere completely spans the gradient space. Therefore, points in all directions are reflected by the spheres into the camera, and the camera is used only to observe the surfaces of the spheres. Such an imaging geometry, makes it possible to measure depth of points both inside and outside the carrera's field of view.

Experimenus were conducted to demonstrate the practical feasibility of the sphereo concept. Point sources of light were positioned at known locations in the scene, and a sphmo set-up was used to determine the three-dimensional coordinates of the sources. The measurement accuracy was estimated by comparing the experimentally determined source positions with the actual positions. The sphereo approach does not simplify the cortespondence problem associated with stereo vision. This paper does not address the comspondence problem posed by complex scenes but focuses on the merits of a new approach to stereo imaging.

2 SPHEREO

2.1 Concept

The geomery of a sphm is completely defined by its radius. The sphere also possesses the property that no two points on its surface have the same surface normal. Figure (1) shows the reflection of light from a point source, off the surface of a specular sphere. In the case of specular reflection, the angle of incidence i equals the angle of reflection e. Let us assurne an onhographic camera model; all light rays observed by the camera are parallel and are in the direction v . Under the above stated constraints, only a single point \boldsymbol{A} on the surface of the sphere is capable of reflecting light from the point source into the camera. An alternative interpreation of this effect is as follows: if the position of the center of the sphere and its radius are known, then a bright point in the image can be projected out of the camera to intersect the surface of the sphere at the point \boldsymbol{A}. The surface nomsal n at the suriace point \boldsymbol{A} is unique and is decernined by the position of the sphae. Given the viewing direction v and the surface normal n , we can find the source direction s by using the specular reflectance model.

Sphereo uses two specular spheres of known radii and center positions, each renecting the world in the direction of the camera. Figure (2) shows the two spineres illuminated by a point

Figure 1: The specular sphere reflects light from the point source into the camera.
source. The resulting image has two discrete bright points, narrely, I, and I_{2}. Lines perpendicular to the image plane are projected from I, and I_{2} to intersect the spheres S, and S_{2} at the points \boldsymbol{P} and \boldsymbol{Q}, respectively. The surface normal vectors $\boldsymbol{n}_{!}$and \boldsymbol{n}_{2} at points \boldsymbol{P} and \boldsymbol{Q} are computed by using the known radii and center locations of the spheres. Since the spheres are separated by a distance D, the surface normal vectors n_{1} and n_{2} differ in direction. Given $\mathbf{n}_{3}, \mathbf{n}_{\mathbf{2}}$, and the viewing direction \mathbf{v}, the source directions s_{1} and s_{2} are computed by using the specular reflectance model. The point source lies on the line L_{1} passing through the point \boldsymbol{P} in the direction \mathbf{s}_{1}. The point source also lies on the line L_{2} passing through the point \boldsymbol{Q} in the direction \boldsymbol{s}_{2}. Therefore, the point source location \mathbf{W} is found at the point of intersection of the two lines L_{1} and L_{2}, The point source has been used in the above discussion to explain the principle underlying the sphereo method. In practice, however, candidates for matching are not confined to bright image points and may also be characterized by feanures such as discontinuities in image intensity.

Figure 2: Sphereo: desermining the position of a point using two specularspheres.

2.2 Finding the Spheres

Depth teasurement using s phmis based on the knowledge of the radi and positions of the specular spheres. We will assume that the radii \boldsymbol{f} the sphaes are known. The position of the spheres with respers to each other and the camera may be determined by a simple calibration procedure. Figure (3) shows the spheres S_{1} and S_{2} placed on the $x-y$ plane of the world frame. The z coordinate of the center of each sphere is equal its radius r. However, the \mathbf{x} and \boldsymbol{y} coordinates of the center need to be determined. Four point sources $P S_{1,}, P S$, , $P S_{3}$, and $P S$, are symmerically positioned about the optical axis 0.0^{\prime} of the camera. The point sures are coplanar and each source is at a distance q from the optical axis. Consider either of the two spheres S_{1} and S_{2}. The distance d of the sphere center from the optical axis is small compared to the height h of the four sources from the $x-y$ plane and the distance q of each source from the optical axis. Each point source produces a highlight in the image of the sphere. Let $\left(\boldsymbol{X}_{i}, Y_{i}\right)$ be the center of mass of the highlight

Figure 3: Calibration: point sources $P S_{1}, P S$,, $P S$,, and $P S$, arc used to find the spheres S, and S_{2} in the camera image.
comsponding to point source $P S_{i}$. The centroid $O\left(X_{e}, Y_{c}\right)$ ©f the four highlights may be detronal

$$
\begin{align*}
& X_{c}=\frac{1}{4} \sum_{i=1}^{4} X_{i} \tag{1}\\
& Y_{c}=\frac{1}{4} \sum_{i=1}^{4} Y_{i} .
\end{align*}
$$

Under the distant source assumption, the image point $O\left(X_{c}, Y_{c}\right)$ is the projection of the center of the sphere onto the image. In practice, it is not necessary to use exactly four sources for the calibration. Any number of sources may be used as long as they are coplanar and their centroid lies an the optical axis.

The next step is to find the world coordinates $C\left(x_{c}, y_{c}, z_{c}\right)$ of the sphere center from its image coordinates $O\left(X_{\sim} Y_{\Delta}\right)$. Transfomations between the world and the image are determined by the inmnsic and extrinsic parareters of the carnera. During the process of image formation, a point $P(x, y, z)$ in the world is projected onto the point $l(X, Y)$ in the image. The camera paranters may be used to determine $I(X, Y)$ from $P(x, y, z)$. However, it is not possible to recover a world point from an image point. For each image point $J(X, Y)$, the camera parame ters can only determine the equation ofa line in the world on which the point $\boldsymbol{P}(\boldsymbol{x}, \mathbf{y}, \mathbf{z})$ lies. Therefore. the center of the sphere lies on the line:

$$
\begin{aligned}
& x_{c}=a z_{c}+b, \\
& y_{c}=c z_{c}+d,
\end{aligned}
$$

where the transfommation parameters a. b, c, and d are determined by the camera parameters and the image coordinates \boldsymbol{X}_{s} and $\boldsymbol{Y}_{c^{*}}$ Since the sphere is placed on the $\boldsymbol{x}-\boldsymbol{y}$ plane. $\boldsymbol{z},=\boldsymbol{r}$. Hence, the world coordinates $\left(x_{c}, y_{c}, z_{c}\right)$ of the center are uniquely determined from equation(2). The radius of a sphete is measured in pixels in the image and inches in the world frame. The spheres S, and S_{2} have radi R, and R, in the image and r_{1} and r_{2} in the worid. The centers of the spheres will be refered to as $O_{1}\left(X_{c 1}, Y_{c 1}\right)$ and $O_{2}\left(X_{c 2}, Y_{c 2}\right)$ in the image, and $C_{1}\left(X_{c 1}, Y_{c 1}, z_{c 1}\right)$ and $C_{2}\left(x_{c 2}, y_{22}, z_{c 2}\right)$ in the world.

The simplicity of the calibration procedure described in this section makes it feasible for it to be performed on-line. If the calibration light sources are always active, each camera image obmined describes the positions of the spheres and the scene at the safre instant in time.

2.3 Correswndence

Prior to computing the depth of scene points, the sphereo system is rquired to solve the well-known comspondence problem: the task of determining which point in the image of one sphae corresponds to a particulas point in the image of the other sphere. Features, such as edges, are extracted from the two circular sertions in the image that correspond to the projections of the spheres S_{1} and S_{2}. A feature value th the image point $A(X, Y)$ may be expressed as $F(A(X, Y)\}$. If the image points $I_{1}\left(X_{1}, Y_{1}\right)$ and $I_{2}\left(X_{2}, Y_{2}\right)$ constinte a pair of corresponding points. they must lie on different spheres and have matching feature values:

$$
\begin{equation*}
F\left(I_{1}\left(X_{1}, Y_{1}\right)\right)=F\left\{I_{2}\left(X_{2}, Y_{2}\right)\right\} \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \left|I_{1}-O_{1}\right|<R_{1} \\
& \left|I_{2}-O_{2}\right|<R_{2}
\end{aligned}
$$

2.4 Triangulation

Depth values are recovered from pain of corresponding image points by triangulation. Consider the image points \boldsymbol{I}, and $\boldsymbol{I}_{\mathbf{2}}$ in Figure (2). Since poth poirts are reflections of the same point in the scene, they sacisty the consuains given in equation (3) and thus constitute a pair of corresponding points. The point $I_{1}\left(X_{1}, Y_{1}\right)$ is the projection of the point $P\left(x_{1}, y_{1}, z_{1}\right)$. We know that $P\left(x_{1}, y_{1}, z_{1}\right)$ lies on the line:

$$
\begin{align*}
& x_{1}=a z_{1}+b, \tag{4}\\
& y_{1}=c z_{1}+d,
\end{align*}
$$

where a, b, c, and d are determined by the camera parameters and the image coordinates X, and Y,. The point $P\left(x_{1}, y_{1}, z_{1}\right)$ also lies on the surface of sphereS, Therefore,

$$
\begin{equation*}
\left(x_{1}-x_{c 1}\right)^{2}+\left(y_{1}-y_{c 1}\right)^{2}+\left(z_{1}-z_{c 1}\right)^{2}=r_{1}^{2} . \tag{5}
\end{equation*}
$$

Equation (4) may \mathbf{k} used to eliminate x_{1} and y_{1} in equation (5).

This results in a quadratic equation in \boldsymbol{z}_{1}. As shown in Figure (3). the camera is positioned in the positive \mathbf{z} direction and thus the point P lies on the upper hemisphere of S_{1}. Therefore, z_{1} is the higher of the two roots of the quadratic equation. The x_{1} and y_{1} coordinates of P arc then computed by using equation (4). At point \boldsymbol{P}, the unit vector \mathbf{v}_{1} in the viewing direction is determined from equation (4) as:

$$
\begin{equation*}
\mathbf{v}_{1}=\frac{\underline{Y}_{1}}{\left|\mathbf{V}_{1}\right|} \tag{6}
\end{equation*}
$$

where:

$$
\mathbf{V}_{1}=(a, b, 1) .
$$

The unit surface normal vector \boldsymbol{n}_{1} at the point \boldsymbol{P} on the sphere S_{1} is computed as:

$$
\begin{equation*}
n_{1}=\frac{P-c}{r_{1}} \tag{7}
\end{equation*}
$$

In order to find the location of the point Win Figure (2). we need to determise the direction of W as seen from point P. Le: the unit vector in this direction be \boldsymbol{s}_{1}. For specular reflections on the surface of the sphm . the angle of reflection equals the angle of incidence. This specular constraint may be used to relate the inree vectors $\boldsymbol{s}_{1}, \boldsymbol{n}_{1}$, and $\boldsymbol{v}_{\mathbf{1}}$:

$$
\begin{equation*}
\left[n_{1} \cdot v_{1}\right] n_{1}=\frac{v_{1}+s_{1}}{2} \tag{8}
\end{equation*}
$$

The source direction s_{i} is determined by rentiting equation (8) in the form:

$$
\begin{equation*}
s_{1}=2\left(n_{1}, v_{1}\right) n_{1}-v_{1} \tag{9}
\end{equation*}
$$

On the same lines, source direction $\mathbf{s}_{\mathbf{2}}$ is computed from the image point I_{2}, \mathbf{A} line is projected trom I, to intersect sphere S_{2} at the point $Q\left(x_{2}, y_{2}, z_{2}\right)$. The source direction s_{2} is computed by using the specular constraint. The line L_{1} in $F 1$ groe (2) passes through point P in the direction s_{1}. The line L_{2} passes through point \boldsymbol{Q} in the direction \boldsymbol{s}_{2}. The point \boldsymbol{W} is found at the intersection of lines L_{1} and L_{2}.

The accuracy of a sonereo system is related to the resolution of measured depth. As in the sace of stereo, depth resolution is related to pixel resolution in the camera image. Figure (4) illustates triangulation unceraincy in the two dimensions of the image plane. The pixels A and B are projections of the same scene point W and thus constitute a pair of matching image points. Uncertainity in the location of the point W is represented by the shaded region. Therefore, errors in triangulation result from image quantization; due to finite resolution in the image, the location of the point W can lie anywhere in the shaded region around the actual location. The area of the uncertainty region tends to increase with the distance of point W from the two spheres. The line joining the centers of the two spheres is called the sphm baseline. The area and shape of the uncerainty region are also dependent on the baseline magnitude D and the baseline orientation θ. In three dimensions the uncertainty region is a volume bounded by a polyhedron.

Figure 4: Sphereo criangulation uncertainty in two dimensions. Due to image quantization, the location of the point W can lie anywhere in the shaded region.

Factors such as finite pixel resolution and image noise, cause inaccuracies in the positions of extracted features. Consequently. triangulation in three dimensions may not result in the intersection of the projection lines L_{1} and L_{2} shown in Figure (2). The two lines may only pass each other in close proximity without actually incersecting. Racher than attempting to intersect the lines L_{1} and L_{2}, a more practical approach is to determine the common normal L_{G} berween the lines L_{1} and L_{2}, as shown in Figure (5). The unit yeetor s_{3} in the direction of L_{3} is computed as:
where:

$$
\begin{equation*}
s_{3}=\frac{S_{3}}{\left|S_{3}\right|} \tag{10}
\end{equation*}
$$

$$
S_{3}=s_{1} \times s_{2}
$$

The line L_{3} intersers lines L, and L_{2} at the points $U(x, y, z)$ and $V(x, y, z)$, resperively, Les k, I, and m be the distances between the points U and P, V and Q. and U and V, respecively. We can express the coordinates of points U and V as:

$$
\begin{align*}
& U=P+k s_{1} \tag{11}\\
& V=Q+l s_{2} \\
& V=U+m s_{3}
\end{align*}
$$

The parameters k, l, and m can be determined by eliminating U and \mathbf{V} in the above set of equations:

Figure 5: Triangulation in three dimensions. The mid-point W of the common normal L_{3} is considered to be the best estimate of the point of intersection of lines L_{1} and L_{2}.

$$
\begin{equation*}
k s_{1}-l s_{2}-m s_{3}=Q-P \tag{12}
\end{equation*}
$$

Depth is computed only at points that have a high measure of triangulation. The triangulation measure is formulated as a functionof the length \boldsymbol{m} of the common normal and the distances k and l of the common normal from the spheres S_{1} and S_{2}; respectively. In the current sohereo implementation, a successful match or intersection is found between corresponding image points when:

$$
\begin{equation*}
\frac{k+l}{2 m}>T \tag{13}
\end{equation*}
$$

where T is an empirically decermined threstold level. For a successful match. the point of intersection W is defined as the mid-point of the common normal:

$$
\begin{equation*}
w=\frac{u+v}{2} \tag{14}
\end{equation*}
$$

2.5 Search Space

Though cortesponding points have matcing feature values, triangulation of all pain of matching image points is unnecessary. As in stereo, the imaging geometry may be used to impose physical constraints on the positions of corresponding points in the image. These constraints considerably reduce the search space for corresponding points. Consider a cartera image of the two spheres, as shown in Figure (6). The projertion of each sphere is a circular section in the image. Each point inside the circular section is the projection of a point on the sphere's surface. We shall denote the image sections corresponding to the spheres S_{1} and S_{2} by $C S_{1}$ and $C S_{2}$, respectively. If constaints arc not used while finding comsponding points, the feanures
computed at each point in $C S_{1}$, have to be compared with features at all points in $C S_{2}$. Theretore, the search space for the point in $C S_{2}$ that corresponds to a point in $C S_{1}$ is the entire twodimensional section $C S_{2}$.

Consider the sphereo imaging geometry shown in Figure (2). The image point I , is the projection of the point W by sphm S ,. Given the point I, we know from the camera model and the specular constraint that W must lie on the line L, Therefore, the point I_{2} that corresponds to I, must lie on the image projection of the line L_{1} by the sphere S_{2}. This is the epipolar constraint. The image projection of line L_{1} by sphere S_{2} is called the epipolar surve. As shown in Figure (6). the search space for the point I ,, that corresponds to the point I , is reduced from the two dimensional section $C S_{2}$ to a one-dirnensional epipolar curve $\boldsymbol{A B}$. If a fearure match is determined between a point in $C S_{1}$ and a point on its epipolar curve in CS_{2}, then a high measure of triangulation is ensured.

Epipolas curves for each point in the section $C S$, can be precompuled and stored in memory. Consider, for example, the epipolar curve corresponding to the image point I, in $C S_{1}$. As in the case of triangulation, the line L, is determined from I, . A point U on L_{1} may be expressed as:

$$
\begin{equation*}
U(k)=P+k s \tag{15}
\end{equation*}
$$

where k is the distance of U from P. The point $Q(k)$ on sphere S_{2} that reflects $U(k)$ into the camera is determined by using the specular constraint and by assuming an onhographic camera projection. The point $Q(k)$ is then projected to the point $I_{2}(k)$ in the image plane, by using the carma parameters. The epipolar curve for I, is thus determined by computing $l_{2}(k)$ for all k in the interval $0 \subset k \subset k_{\text {du }}$, where $k_{-\infty}$ is greatest distance of a measured point from sphere S.r The image coordinates of points on the epipolar curves arc stored in mewory, Matches for a point in $C S_{1}$ are obtained by comparing its fearure value with those on its epipolar curve in $C S_{2}$.

Figure 6 The epipolar constraint. The point I, in $C S_{\text {? }}$ that corresponds to the point I, in $C S_{1}$ lies on the epipolar curve $A B$.

26 Field of View

The field of view of a typical stereo system is shown in Figure (7). Depin can be measured only at those points that can be Seen in both the camera images. Therefore, the field of view of a stem system is the intersection of the fields of view of the two cameras. A large field of view can be obtained by minimizing the baseline \boldsymbol{D} and keeping the viewing directions of the two cameras altrost equal. Such an arrangement, however. results in lower depth resolution. A high depth resolution is obiained by making the viewing directions of the two cameras orhogonal to each other. However, this configuration drastically reduces the field of view of the stereo system

Figure 7: Field of view of a stereo system.

The field of view of a sphereo system is a great improvernent over that of stereo systems. This is primarily due to the use of specular spheres for stereo imaging. The surface of a specular sphere may be thought of as being consaucred by an infinite number of small planar mirrors. Since no two points on a sphere have the same surface normal. each planar mirror faces in a unique direction. Also, the complete st of mirrors span the surface normal space. Consider a specular sphere placed in the view of a camera. Under the assumption of athographic image projection, the viewing direction is constant over the entire field of view of the camera. Any non-oceluded point in space would be reflected in the direction of the camera by a single point on the surface of the sphm. Thmfore. the field of view of a sphmo system consists of all points that can refluxed onto the image plane by both spheres. Both spheres are placed in the focal plane of the camera and therefore the image projection of points in the scene is not affected by a limited depth of field of the camera. On the other hand, in stereo, objects must be placed clox to the focal planes of both cameras to avoid the bluring of image features.

Figure 8: Field of view of the sphereo system.

In Figure (8), the shaded region denotes the sphereo field of view. The measurable range is not confined to the field of view of the camera Points in regions \boldsymbol{A} and B are not reflected into the camera by spheres S_{1} and S_{2}, respectively. Points in region C are occluded by S_{1} and thus are not reflected into the camera by S_{2}. Similarly, points in region D are occluded by S_{2} and are nor reflected into the camera by S_{1}. Region ε consists of points that arc occluded by the camera and arc not visible to either sphere S, or S_{2}.

3. EXPERIMENTAL RESULTS

Experiments were conducted to demonstate the practical feasibility of the sph moconsept. Figure (9) shows a photograph of the apparatus used for the current implementation. Two steel ball beasings, each $13 / 8$ inches in diameter, arc used as specular spheres. The surface of each sphere is highly specular in reflection. A CCD Parasonic camera with a 510×492 pixel resolution is used to obserye the two spheres. The physical resolution of the camera and the optical system is 0.011 inches pa image pixel. Four 1/4 Wett, 5 Volt bulbs are mounted on the cameralens and arc used by the calibration procedure to find the location of the two spheres in the image. Individual images are digitized and processed using a vision system based on a SUN work-station.

The spinereo concept was described by assuming an orthographic cameraprojection model. More accurate results are obrained by desermining the extrinsic and intrinsic parameters of the camera. The surrent implementation of sphereo uses the singlenamera calibration technique developed by Tsai[7]. Tsai's calibration algorithm is structured to determine the value of each paramerer racher than just a transformation from image to scene and vice-versa. The parameters are computed in welldefined stages, thus making it easy to code during software

Figure 9: Photo of a protorype sphereo set-up. Four calibration lights arc mounted on the camera lens and two specular steel balls 1 are placed in the camera's view.
implementation. The computed parameters produced excellent msults for tansformations between the image plane and the world frame.

The stengith of a spherso system lies in its ability to determine the location of the two specular spheres by using a simple calibration. The four light bulbs mounted on the camera lens produce four highlights or bright points on the surface of each sphere. Under the distant source assumption. the configuration. or relative positions, of the four highlights in the image of each sphere is the same as the configuration of the four light bulbs in the plane in which they lie. Also, the highlight configuration on each sphere is independent of the position of the sphere in the image. Once the four lights an rigidly $t x e d$ on the cartera lens, the configuration of the four highlights is known. By using a template of four bright points in the expected configuration. we can determire the positions of the two sets of four highlights in the image. As explained in section 2, the centroid of each set of four highlights determines the senters of the spheres in the image.

Figure (10) shows an image of the two sohetes resulting from the four-point illumination used for calibration. The centroids of the two sets of highlights were computed and the circles drapm around the centroids represent the boundaries of spheres. The centroids for the spheres were projected into the world by using

Figure 10: Photo of a camera image of the two spheres illuminated by the four calibration point sources. The centers of the spheres in the image are determined and circles are drawn around the centers to show the boundaries of the spheres in the image.
the partaraters, and the locations of the centers of the two sphms were determined by the system to be within a distance of $\mathbf{0 . 0 1}$ inches from their 3 and positions.

The aiangulation accuracy of the sphereo system was estimated using point sources. Low powered miniature lamps were placed at known locations in the world frame and the system was used to measure the coordinates of the lamps in three dimensions. Each lamp produces a single highlight in the image of each sphere. An image of the spheres is digitized by a framegrabber and binarized by using a threshold. The highlights appear as brighs blobs in the binary image, and the center-ofgravity (COG) of blob is computed. The use of point sources greatly simplifies the sortespondence problem as highlights an the only fearures that need to be extracted from the image. Cortesponding pairs of highlight COGs that satisfy the spipolas constraint an triangulated to dotain position estimates in three dimensions. Figure(11) shows an incandescent light bulb used to generale a highlight on each of the two spheres. The pre-computed epipolar curve comsponding to the highlight COG on the left sphere is ploted on the right sphere. The spipolas curve is a reflection of the line that passes through the

Figure 11: Highlights on the two spheres resulting from an incandescent lamp. The epipolar curve for the highlight point on the left sphere is plotted on the right sphere. As expected, the highlight on the right sphere lies on the epipolar curve.
highlight point on the left sphere and the location of the light bulb. An image projection of this line is displayed in Figure (11). As expected. the highlight on the right sphere lies on the epipolar curve corresponding to the highlight on the left sphere. Therefore. sohereo triangulation of the two highlights would result in an intersection at the location of the lamp.

The reliability of the matching process was tested by using a light display. The light display was constueted by mounting six light emitting diodes (IED) on a circuit board. Figure (12) shows the highlights on the two spheres resulting from the light display. The LED s of the light display lie outside the camera's field of view and thus are not visible in the image shown in Figure (12). The circles represent the pre-decemined boundaries of the two spheres. The COCs of the highlights resulting fram the light display were determined and pain of highlight COCs were criangulated. World coordinates were computed for for COG pairs that produced high ressurs of aiangulation. The triangulation results for the image in Figure (12) are shown in Figure (13). The actual LED locations and the measured positions are both shown to illustrate the accuracy of the current implementation. The camera and the two specular spheres are also shown to give an idea of the relative positions and Sires of the spheres. the light display. and the camera. In Figure (13), the x, y. and z world coordinates of the LEDs determined by the system were found to be within 3.5% of the actual coordinates.

Figure 12: Sphereo image of a light display made of six IEDs.

The non-linear nature of the depth resolution grid, shown in figure (4), makes it difficult to sperify the accuracy of the sphereo system. An importans measure of mionmance is the sensitivity of the system to the distacce of the measured point fram the two sphaes. Triagilation errors cme computed for point source locations along a stright line starting from the origin of the world frame and moving in a particular direction. Figure (14) shows the percentage errors recorded for source locations on the x -axis of the world frame, and for the sphere locations shown in Figure (13) . By reasurement entor we refer to the Euclidean distance of the measured position from the actual position. As expected, the ciangulation increase with the distance of the measured point from the sphms. The creasured locations were found to be within 4% of the actual location. for points that are less than 3 feet frem the world frame origin.

Figure 13: Positions of the sources on the light display were computed from the sphereo image shown in Figure (12). The coensured and actual locations of the sources are plotted in the world coordinate frame.

Figure 14: Percentage entor in measured position of a scene point is plotted as a function of the actual distance of the scene point from the origin of the world reference frame.

Figure 15: Percentage e m in measured position of a Scene point is plotted as a function of the magnitude \boldsymbol{D} of the sphmo baseline.

The accuracy of a sphereo system is also dependent on the sphmo baseline D and its orientation θ shown in Figure (4). As the two spheres are brought closer to each other. the baseline decreases and the reflections of the world on the two spheres become less distinguishable. The view lines L_{1} and L_{2} in Figure (5) become almost parallel to each other and the oreasurements arc prone to greater efrors. This effert is Seen in Figure (15) where the triangulation errors arc plotted as a function of the baseline magnitude for a constant point source position of $x=$ 10.6 inches, $y=123$ inches. and $z=4.3$ inches. For the same source location and baseline $\mathrm{D}=2.34$ inches, the theasurement errors are also plotted for different baseline orientation values. as shown in Figure (16). As the baseline orientation is varied from 0 degrees to 180 degrees, the measurement error varies like a sine function between 0.8% and 1.4%.

The experimencal apparatus was set up using commerially available and inexpensive hardware to demonstase the ease of implementation of sphereo systems. From the experiments, it was realized that a few changes in the current system would yield considerable improvement in measurement aceuracy, Cameras with higher image pixel resolution, than the one used for the experimenc, are now commercially available. A higher pixel resolution would improve the sensitivity of a sphmo system Spheres with greato surface specularity and lesser shape imperfections than ball earings would produce olore reliable results. As explained eartier on, point sources were used to Simplify the correspondence problem. However, the use of miniature lamps as point sources comes with the cost of imperfect highlights in the image. The shape of a highlight is

Figure 16: Percentage e m in measured position of a scene point is plotted as a function of the orientation θ of the spherco bascline.
dependent on the shape of the fiament of the lamp that caused the highlighs the pixel resolution in the image, and noise levels in the camera output. The size of a highlight is related to the filament size and the sharpness of surface specularity of the spheres. In the experiments discussed above, no attention was given to the shape of highlights. and each highlight was simply represented by its centerof-gravity. Mare consistent highlight shapes may be obtained by using miniature are lamps rather than incandescent lamps.

4 CONCLUSIONS

Sphereo has been presenced as a new approach to stereo imaging. A protorype sphereo system was implemented and used to measure the position of point sources located in its field of view. The main advantages of sphereo, over conventional streopsis, are the simplicity of the calibration procedure and the considerable improvement in field of view. The current implementation uses two spheres to obtain different perspecives of the world. Bete estimates of depth may be obtained by placing nore than two spheres in the camera's field of view. The results obrained from the experituencs conducted with point sources ate promising and provide motivation to apply the sphereo method to complex scenes.

ACKNOWLEDGEMENTS

The author would like to thank Arhur Sanderson, Katsushi Ikeuchi. and Takeo Kanade for their valuable comments and suggestions. The author is also grateful to Rachel Levine and Ken Mohnkern for their help in preparing the manuscript.

REFERENCES

1. S. T. Bamard and M. A. Fischler, "Computational
Stem", ACM Computing Surveys, Vol. 14, No. 4, Pp. 553.572, 1982.
2.0. D. Faugeras and G. Toscani, "The Calibration Problem for Stereo". IEEE, 1986.
2. D. B. Gennay, "Stereo-Camera Calibration". Proceeding Image Understanding Workshop, pp. 101-108, November, 1979.
3. D. Marr and T. Poggio. "A Computational Theory of Human Stereo Vision". Proc. Roy. Soc. Lond., Vol. B 204, pp. 301-328, 1979.
5.L Matthies and S. Shafa, "Error modeling in stereo navigation," IEEE Journal of Robotics and Ausomation, Vol. RA-3, No. 3, pp. 239-248, 1987.
4. Y. Ohta and T. Kanade, "Stereo by Inaa- and Inter Scanline Search Using Dynamic Programming", IEEE. Trans. Patsern Analysis and Machine Intelligence. Voi. PAMI-7, No. 2. pp. 139-154, 1985.
7.R. Y. Tsai, "A versatile Camera Calibration Technique for High Accuracy 3D Machine Vision Metrology using Off-the-Shelf TV Cameras and Lenses".IBM Research Report RC 51342, October. 1985.
5. Y. Yakimovsky, R. Cunningham, "A System for Extracting Three-Dimensional Measurements from a Stereo Pair of TV Cameras", Computer Graphics and Image Processing. 7, 195.210.
