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Abstract 

AI1 shape-from-intensity methods assume that points in a scene are only illuminated by sources of 
light. Most scenes consist of concave surfaces and/or concavities that result from multiple objects 
in the scene. In such cases, points in the scene reflect light between themselves. In the presence 
of these interreflections, shape-from-intensity methods produce erroneous (pseudo) estimates of 
shape and reflectance. The pseudo shape and reflectance estimates, however, are shown to carry 
information about the actual shape and Eflectance of the surface. An iterative algorithm is presented 
that simultaneously recovers the actual shape and the actual reflectance from the pseudo estimates. 
The recovery algorithm works on Lambertian surfaces of arbitrary shape with possibly varying 
and unknown reflectance. The general behavior of the algorithm and its convergence properties 
are discussed. Both simulation as well as experimental results are included to demonstrate the 
accuracy and stability of the algorithm. 
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1 The Interreflection Problem 

We address a challenging vision problem that has remained unsolved for the past two decades. 
Surface elements in a scene, when illuminated, reflect light not only in the direction of the sensor 
but also between themselves. This is always the case except when the scene consists of only a singIe 
convex surface. These inrerreflecfions, also referred to as mutual illm’nations, can appreciably 
alter the appearance of the scene. None of the existing vision algorithms reason about, or even take 
into account, the effects of interreflections. Consequently, interreflections often confuse vision 
algorithms and cause them to produce erroneous results. 

A class of vision algorithms that are particularly affected by interreflections are shape-from- 
intensity algorithms, such as, shape-from-shading 171, photomemc stereo 1141, and photometric 
sampling [12]. All these methods, are based on the assumption that points in the scene are 
illuminated only by the sources of light and not other points in the scene; interreflections are 
assumed mt to exist. As a result. existing shape-from-intensity methcds produce erroneous results 
when applied to concave surfaces and concavities that result from multiple objects in the scene. 
As an example, Figure l a  shows a concave Lambertian surface of constant reflectance (albedo = 
0.75), and Figure Ib  shows its shape extracted using photometric stem. The inability to deal with 
interreflections bas in the past limited the utility of shape-from-intensity methods. 

(a) (b) 

Figure 1: (a) A concave surface. (b) Its shape extracted using photometric stereo. 

We identify two separate problems associated with intmeflections; theforward (graphics) 
problem and the inverse (vision) problem. All previous work done in this area is related to the 
forward problem. The forward problem, involves the prediction of image brightness values given 
the shape and reflectance of a Scene. Horn I51 discussed the changes in image intensities due to 
interreflections caused by polyhedral surfaces that are Lambenian in reflectance. Koenderink and 
van Doom [9] formalized the interreflection process for Lambertian surfaces of arbitrary shape 
and varying reflectance (albedo). They proposed a solution to the forward problem in terms of 
the eigenfunctions of the interreflection kernel. Cohen and Greenberg [I] modeled the scene as 
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2 Modeling Interreflections 

Our solution to the inverse interreflection problem is based on the solution to the forward problem; 
modeling interreflections for a surface of given shape and reflectance. Hence, this section will 
serve as background theory for subsequent sections. The interreflection model that we describe 
here is primarily based on the formulation proposed by Koenderink and van Doom [9]. All surfaces 
in the scene are assumed to be Lambertian. We will shortly see that this assumption is necessary 
to obtain a closed form solution to the forward interreflection problem. The Lambertian surface 
can have any arbitrary shape and varying reflectance, i.e. albedo vaIue (p) may vary from surface 
point to surface point. In deriving the interreflection model, we will use radiomemc concepts such 
as irradiance and radiance which are defined in Appendix A.l. 

2.1 Analytic Forward Solution 

Consider the concave surface x(u, v) shown in Figure 3a. We are interested in finding the radiance 
L(x) of the point x due to the radiance L(x’) of the point x’. The point x can be illuminated by the 
point x‘ only if the two points can ”see” each other. The visibility or View function is defined as: 

n . ( - r ) +  I n.(-r) 1 
2 I n.(--r) I 

n ’ . r +  [ n‘.r [ 
2 1 n‘.r [ W e w ( x ,  x’) = 

where n and n’ are unit surface normal vectors at the points x and x’, respectively, and r is the 
vecm from x to x’. The function View(x. x‘) equals unity when the two points can illuminate. each 
other and zero otherwise. The radiance of the point x is related to its irradiance as: 

X 

Figure 3: (a) A concave surface in t k d i m e n s i o n a l  space. (b) Two surface elements that 
are visible to  one another. 
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points on the concave surface have the same reflectance ( p ( x )  = p ) .  a solution to L ( x )  (the forward 
interreflection problem) is given by the Neumann series as: 

where 

The following observations are made with respect to the above solution: 

It is important to note that the above solution is valid only under the Lambertian assumption. 
For Lambertian reflectance, the radiance of a surface point is independent of the vantage 
point. As a result, both L (x) and L (x') are constants in equation 8 and hence a solution can 
be obtained. 

The solution is iterative in nature,; it is an infinite sum of the kernels K,,, that must each be 
evaluated using the previous kernel &,-I. 

0 The solution may be interpreted as a mathematical representation of the "ray-tracing" process 
that is often used in the area of computer graphics. The wfh iteration explicitly represents the 
contribution of the m times intemflectedmys. 

Though the Neumann series is an infinite one, the solution is guaranteed to converge to a 
finite value. This is because p ( x )  < 1 for all surface points, and hence, the series diminishes 
to zero as m approaches infinity. This is consistent with our real-world experience; diffuse 
concave surfaces that exhibit interreflections never appear to be infinitdy bright 

2.2 Numerical Forward Solution 

Discretization of the concave surface leads to a more elegant forward solution than the Neumann 
series. The following solution has been previously used to render discrete images in graphics [l] 
and to compare experimentally obtained image intensities with predicted intensities [3]. Let us 
assume the surface to be comprised of rn facers as shown in Figure 4. The radiance and albedo 
values of each facet i are assumed to be constant over the entire facet and equal to the radiance and 
albedo values at the center point xi'of the facet, i.e. Li = Uxi) and pi = p(xi). Then we can write 
equation 8 as: 

Li = L,; + Lj 1 K ( x i ,  x,)dxj (10) K . .  sj 
JP 
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or: 
( I - P K ) L  = L, (15) 

where I is the identity matrix. Hence, we find that discretization of the surface enables us to obtain 
a non-iterative. closed-form solution to the forward interreflection problem. The kernel and albedo 
mamces are determined by the shape and reflectance of the surface, respectively. The source 
direction and intensity may be used to obtain the source contribution vector L,. Then the radiance 
of the surface facets, L, may be determined using the above equation. 

Equation 14 explicitly describes the radiance of a facet as the sum of its radiance due to 
the source and the contributions of other facets. Loosely speaking, this may be interpreted as a 
weighted averaging of radiance values in the direction of concave curvature that tends to subdue 
the visual conspicuousness of surface concavity. 

We would like to conclude this section with a brief note on the size of individual facets. 
We have assumed that the radiance and albedo are consiant over the facet area. This assumption 
is valid only when the facets are planar and infinitesimally small. While solving the forward 
interreflection problem, we are free to select appropriate (small) facet sizes. In solving the vision 
problem, however, we are limited by the resolution of the sensor used to image the scene. The 
image brightness at a "pixel" location is assumed to be constant over the entire surface facet that 
the pixel represents. From Figure 5, we see that the area h r j  of the facet may be related to the area 
dAj  of the pixel as: 

Figure 5: The facet size is determined by the size of the sensor element (pixel) and the tilt 
of the surface with respect to the viewing direction of the sensor. 
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Since the surface is Lambertian, the source contribution vector 
facet mamx F and the source direction vectors = [sx, s,, &Ir as: 

may be determined from the 

L = ( I  - PK)- 'F .S  (20) 

Now ler us examine the result of applyingphotometric stereo to the surface. Three source directions, 
s,, sr, and sj, are used sequentially to illuminate the surface. We assume thar all three sources are 
visible to all facets on the surface. The three resulting surface radiance vectors LI, L2, and L3 may 
be expressed as: 

[ L 1 , L z , ~ 3 ~  = ( I -  P K ) - ~ F . [ s ~ , s ~ , s ~ I  
Note that the kemel mamx K and the albedo matrix P are both invariant to the source directions 
used to illuminate the surface. The extracted shape and reflectance information is represented by 
the pseudo facer matrix Fp and is computed as: 

Fp = ILI , La, L31. [ S I  , ~ 2 ,  b I-' 

Fp = ( I  - PK)- 'F  

(22) 

From equations 21 and 22 we find that: 

(23) 

The i'" pseudofncer' in Fp may be written as: 

- PPi Npi - -npi 
ir 

where npi and ppi are the pseudo surface normal and the pseudo albedo for h e  facet i and, in the 
presence of interreflections, differ from the actual surface normal and actual albedo of the facet. 
We make a few important observations regarding the pseudo facets: 

From equations 23 and 20. we see that the pseudo facets are also Lambertian in their 
reff ectance! This also impliesthat the extractedpseudo shape andreflectance are independent 
of the source directions used by the shape-from-intensity method to illuminate the object. 

a While the actual albedo values must satisfy the physical constraint pi < I, the pseudo albedo 
values tend to be greater than the actual values and for actual albedo values close to unity, 
the pseudo albedoes may even exceed unity (see experimental results in section 6). 

a The pseudo orientations may be described as a result of the weighted averaging of actual 
orientations in the direction of concave curvature. Qualitatively speaking, for concave 
surfaces the pseudo shape may be viewed as a smoothed version of the actual shape and 
appears to be "shallower" than the actual shape (see Figure 1). 

'These pseudo facets are different from the ones defined by Koenderink and van Doom in [9] 
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reflectance differ from the actual ones. As we described in the previous section, the pseudo 
shape is expected to be shallower (less concave but yet concave) version of the actual shape. 
Hence, the algorithm uses the pseudo shape and reflectance as initial guesses of the actual shape 
and reflectance, to model the interreflections and produce estimates for the albedo matrix P and the 
kernel mamx K. It is important to note that the pseudo shape and reflectance serve as conservative 
initial estimates, in that, they produce interreflections that are greater than zero but less than in the 
case of the actual shape and reflectance. The estimated P, K, and the pseudo facets Fp are then 
inserted in equation 23 to obtain the next estimate of the actual facets. This estimate of the surface 
is expected to be more concave than the previous estimate and is used in the next iteration to obtain 
an even "better" estimate. The algorithm may be written as: 

FC" = ( I  - PK*)F, (25) 

where = Fp 

In the above equation, P' = P (F*) and K' = K (F'). Note that each set of estimates of the 
surface facets provides estimates of borh shape and reflectance. With each iteration, more accurate 
estimates of shape and reflectance are obtained and the result finally converge at the actual shape 
and reflectance estimates. The convergenceproperties of the algorithm will be discussed Iuter. We 
now state a few assumptions and observations related to the above algorithm. 

The surface is assumed to be continuous. Note that the interreflection kernel depends not 
only on the orientations of individual facets but also their relative positions. Therefore, 
a depth map of the scene must be reconstructed (by integration) from the orientation map 
computed in each iteration of the algorithm. The continuity assumption is necessary to 
ensure integrability of the orientation maps. It appears that discontinuities in the depth of 
scene points can also be handled if this information is provided by a depth measurement 
method, such as, stereo. 

All facets that contribute to the interreflections in the scene must be. visible to the sensor. It 
is easy to see that ifinvisible points affect the radiance values of the visible points, the kernel 
matrix would. in a sense, be incomplete. In such cases, the result produced by the algorithm 
is difficult to predict but would be close to the desired result if the invisible facets do not 
conmbute substantially to the radiance of other facets. 

The proposed recovery algorithm may be used in conjunction with any local shape-from- 
intensity method. The shape-from-intensity method used must be capable of computing 
accurate estimates of both pseudo shape and pseudo reflectance*. The recovery algorithm is 
in no way related to the shape-from-intensity method used to obtain the pseudo shape and 
reflectance. This fact is emphasized by the dotted line shown in Figure 6. 

*We do not include shape-from-shading algorithms in this category as they assume lhat the surface has constant 
albedo and that this aIbeAo Value is known a-priori. 
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Figure 7: Simulation Results: For each surface, the pseudo shape and pseudo reflectance 
are computed from the actual shape and actual reflectance using the forward solution (section 
2.2). The recovery algorithm is applied to the pseudo shape and reflectance to recover the 
actual shape and reflectance. 
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where Nl and N2 are the actual facets and N,, and Np2 are the pseudo facets. A graphical illustration 
of the above relation is shown in Figure 8b. If the recovery algorithm is applied to the pseudo 
facets, the result of the k'* iteration may be expressed as: 

N1'+' = NpI  - pkKkNpz (27) 

Nz'+' = Npz - pkKkNP1 

where p k  and Kk are computed using the intermediate facet estimates N1' and Nz'. Let us focus 
our attention on one of the two facets, namely, NI. Since NpI and Np2 are constant, new estimates 
of N1 result solely from changes in the factor p%'. Since pkK' is a scalar, the facet estimates Nlk 
must lie on the line passing through the vector C (Figure 8b). This line cornmint implies that the 
convergence of N1' may be studied by analyzing the convergence of pkK'. 

We assume that the reflectance estimates p' do not vary substantially from the actual 
reflectance p .  This assumption is based on the observation that the pseudo reflectance results 
from the multiple reflections of light rays between the two facets. This process produces a pseudo 
reflectance, Po, that maybe expressed as an infinite exponential Series in the actual reflectance value 
p .  Since the actual albedo must be less than unity, the higher order terms in the series may be 
neglected and the pseudo albedo is governed by the first few terms. The first term in the series is 
in fact the actual albedo. Therefore, for actual albedo values that are not close to unity (say p < 
0.75), the pseudo albedo may be assumed to be close to the actual albedo. Hence, we make the 
assumption that the pseudo albedo and all intermediate estimates of albedo in the recovery process 
do not vary substantially from the actual albedo value, i.e. p" rz p. Therefore, variations in the 
factor pkKk are dominated primarily by variation in Kk.  

From the geometry shown in Figure 8a, we see that the orientation of the two facets may be 
determined by the tilt angle 0,. The interreflection process, in a sense, tends to make the orientation 
of each facet more like that of the other facet. In other words, as shown in Figure 8b, the pseudo 
facets are guaranteed to have a smaIIer tilt angle than the actual facets. Further, the interreflection 
kernel K is a monotonic function of the tilt angle e,,. This is shown in Figure 9, where K is plotted 
as a function of 0, foT different values of the facet separation distance r. The first estimate of the 
kernel, namely, KO, is less than the actual kernel K but yet greater than zero. Equivalently, the facet 
estimate N1' has a greater tilt angle than the previous estimate but less than that of the actual facet. 
With each iteration, therefore, the kernel estimates increase in value and approach the actual kernel 
value, i.e. 5 K' 5 Kk+' 5 K. Consequently, the facet estimates, NI', start from N,, and move 
along the vector C to finally converge at N1. 
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Figure 10: (a) Convergence map for actual facets N1. r = 1. (b) Convergence m p  for 
pseudo facets N p l .  r = 1. 
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6.1 Translational Symmetry Case 

Figure 11 and Figure 12 show the results for objects with translational symmetry in a single 
direction. Each object was painted with dull white paint to give it a matte (Lambertian-like) 
reflectance. In each case, a photo of the object is shown and the horizontal line in the photo 
represents the surface points that were used by the recovery algorithm. The cross-sectional shape 
(actual shape) of the surface was determined from the known shape of the object. Due to the 
wo-dimensional nature of the problem, only two light source directions were needed to extract 
pseudo shape and reflectance estimates by photomemc stereo. The extracted pseudo albedo value 
of each facet is represented by a circle in the reflectance graph. The discrete two-dimensional 
kernel for the translationd symmetry case (Appendix A.2) was used by the recovery algorithm to 
obtain the actual shape and reflectance from the pseudo ones. The intermediate shape estimates are 
numbered according to the iteration that produced them. For all surfaces in Figures 11 and 12, the 
shape estimates converge to reasonably accurateestimates within 7 iterations of the algorithm. For 
each surface, the mean orientation error 8; (section 4.2) was computed after 25 iterations and was 
found to be less than 2.5 degrees. Note that the albedo estimates converge simultaneously with the 
orientation estimates, and are represented by the small dots in the reflectance graphs. 

Figures 12b shows a convex surface. Note that for a convex surface the pseudo shape and 
reflectance estimates are equal to the actual ones. Since no two facets on this surface are visible to 
one another (View = 0). the algorithm converges at the pseudo shape and reflectance estimates. 

6.2 General Case 

Figures 13 shows a photo of an inverted pyramid. Again, the surface is painted and has a matte 
finish . In this case, three light source directions were used to extract pseudo shape and reflectance 
estimates and the general form of the discrete kernel (equation 17) was used by the recovery 
algorithm to extract the actual shape and reflectance. Figures 14a and 14f illustrate isometric and 
front views of the structure of the inverted pyramid in Figure 13. Figures 14b and 14g show the 
isometric and front views of the pseudo shape of the inverted pyramid extracted by photometric 
stereo. The pseudo shapes are followed by a few intermediate estimates of the shape produced by 
the recovery algorithm. The convergence graph for the inverted pyramid is shown in Figure 15. 
The shape estimate converges in about 6 iterations with a mean orientation error e; = 3 degrees. 

6.3 Discussion 

From the above experiments we see that the recovery algorithm performs in a stable manner for 
a variety of surface shapes. All the surfaces used in the experiments have high albedo values 
(approximately 0.9) and thus exhibit stronginterreflections. Though surface albedo was not known 
a-priori, the algorithm was successful in extracting fairlyaccurateeshates of shape andreflectance 
from the pseudo estimates. Errors in the recovered shape and reflectance estimates are caused by 
the following factors: 
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Figure 13: Photo of an inverted pyramid. 
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Figure 15: Convergence graph for the inverted pyramid shown in Figure 13 
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A Appendix 

A.l  Radiometric Definitions 

source 

Figure 16: Basic geometry used to define radiometric terms. 

We present definitions of radiometric terms that are useful in the analysis of intemflections. 
Detailed derivations and descriptions of these terms are given by Nicodemus et al. [13]. Figure 16 
shows a surface element illuminated by a source of light. The irradiance E of the surface is defined 
as the incident flux density (Wlrn-’): 

where d@i is the flux incident on the area dA of the surface element. The rudiunce L of the surface 
is defined as the flux emitted per unit fore-shortened area per unit solid angle (W/m-2.sr-1). The 
surface radiance in the direction (O,, #,) is determined as: 

d@r L =  dA cos& dw, 

where dz@, is the flux radiated within the solid angle dw,. The Bi-Directional RefIecrance Dis- 
tribution Function (BRDF) of a surface is a measure of how bright the surface appears when 
viewed from a given direction, when it is illuminated from another given direction. The BRDF is 
determined as: dL f = -  

dE 
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A Appendix 

A.1 Radiometric Definitions 

SOUTCB 

X' 

Figure 16: Basic geometry used to define radiometric terms. 

We present definitions of radiometric terms that are useful in the analysis of interreflections. 
Detailed derivations and descriptions of these terms are given by Nicodemus et al. [13]. Figure 16 
shows a surface element illuminated by a source of light. The irradiance E of the surface is defined 

~ 

as the incident flux density (W/m-'): 
d@i E = -  
dA 

where d@i is the flux incident on the area dA of the surface element. The radiance L of the surface 
is defined as the flux emitted per unit fore-shortened area per unit solid angle (W/m-'.sr-'). The 
surface radiance in the direction (e,, #r) is determined as: 

where d2@, is the flux radiated within the solid angle dw,. The Bi-Directional Reflectance Dis- 
tribution Funcrion (BRDF) of a surface is a measure of how bright the surface appears when 
viewed from a given direction, when it is illuminated from another given direction. The BRDF is 
determined as: .~ 

dL f = -  
dE 
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A.2 Kernel for Single Translational Symmetry Case 

Figure 17: Cross-sectional view of two planar h t s  that are infinite in the z direction. 

Forsyth and Zisserman [3] have derived the discrete interreflection kernel for the special case of a 
three-dimensional surface that has uanslational symmetry in a single direction. Figure 17 shows 
a cross-sectional view of two facets that are infinite in the x direction. The kernel Kij is derived 
[3] by integrating along thex direction the contribution of all points on facet j to the radiance of a 
point on the facet i: 

U'=b I u*=a 

(31) 
c + u*coscr K.. = _ _  

(c2 + zcu'coscy + u * y z  
'I 

where a is the angle between the surface normal vectors of the two facets and the parameter u* 
respresents the cross-sectional length of the facetj. Since both facets are infinite in length, the 
same kernel value is valid for all points on the facet i. Therefore, under the translation symmetry 
assumption, the kernel is two-dimensional in that it need only be evaluated for points along the 
cross-section of the surface. Note that the above kernel is valid only for surfaces that are infinite in 
the direction of symmetry. However, the kernel serves as a good approximation [3] for points that 
lie around the middle of surfaces that are long though finite in the direction of symmetry. 
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