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Abstract

In this paper an approach combining the metric and topolog-
ical paradigm for simultaneous localization and map build-
ing is presented. The main idea is to connect local metric
maps by means of a global topological map. This allows a
compact environment model which does not require global
metric consistency and permits both precision and robust-
ness. The method uses a 360 degree laser scanner in order to
extract corners and openings for the topological approach
and lines for the metric localization. The approach has been
tested in a 30 x 25 m portion of the institute building with the
fully autonomous robot Donald Duck. An experiment con-
sists of a complete exploration and a set of test missions.
Three experiments have been performed for a total of 15 test
missions, which have been randomly defined and completed
with a success ratio of 87%.

1. Introduction

Research in simultaneous localization and automatic map-
ping has diverged into different approaches leading promis-
ing results. However solutions for precise and robust
localization and mapping in unmodified, dynamic, real-
world environments have not been found yet. The problem is
highly complex due to the fact that it requires the robot to be
localized with respect to the portion of the environment that
has already been mapped in order to build a coherent map.

Metric, topological or hybrid navigation schemes have
been proposed and studied. Metric approaches are defined
here as methods, which permit the robot to estimate its

 position, while topological are those where the po-
sition is given by a location without metric information. Ap-
proaches using purely metric maps are vulnerable to
inaccuracies in both map-making and dead-reckoning abili-
ties of the robot. Even by taking into account all the relation-
ships between features and the robot itself, in large
environments the drift in the odometry makes the global con-
sistency of the map difficult to maintain. Landmark-based
approaches, which rely on the topology of the environment,
can better handle this problem, because they only have to
maintain topological global consistency, not metric. Howev-
er these approaches are either less precise than fully metric
approaches, due to the discretization of the localization

space, or computationally intractable for fully autonomous
robots, when fine grained grids are used. More recently, ap-
proaches combining the topological and the metric paradigm
(mainly grid-based) have shown that positive characteristics
of both can be integrated to compensate for the weakness of
each single approach.

This paper proposes an integration of both the metric and
topological paradigms, to gain the best characteristics of both
universes. This includes that the precision for the metric ap-
proach has only to be bounded by the quality of the sensors
and not by the approach itself. The model used here, embod-
ies both a metric and a topological representation. The metric
model consists of infinite lines that belong to the same place.
These places are related to each other by means of a topolog-
ical map that is composed of nodes and edges between nodes.
Connections between a node and a place are a special case:
Traveling along these edges causes a switch from the topo-
logical to the metric paradigm. The effectiveness of this
method has already been shown in [18]. In this paper the ap-
proach is extended to include automatic mapping.

For the metric approach an extended Kalman filter (EKF)
is used. This approach has already proven its strength for lo-
calization [2]. Map building can therefore be done with the
stochastic map [15]. Topological navigation uses a partially
observable Markov decision process (POMDP) [3] for state
estimation. This permits efficient planning in the large, has
an advantageous symbolic representation for man-machine
interaction and is robust due to its multi hypothesis tracking.

2. Environment Modeling

The environment is described by a global topological map,
which permits moving in the whole environment. However
the environment model is characterized by two different lev-
els of abstraction (fig. 1):
• Places are defined as a local metric map which allows

navigation within the neighbourhood.
• To go from one place to another, the system moves metri-

cally in the start place, then topologically after leaving
that place and switches back to metric when reaching the
goal place.

In order to switch from topological to metric, a detectable
metric feature is needed to determine the transition point and
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to initialize the metric localization (i.e. relocation). This is
the only specific requirement for this approach. Given this
transition feature, a metric place can be defined everywhere
in the environment.

Leaving a metric map and switching to topological reduces
to a metric navigation to the initialization position for the
current local place where the robot restarts its topological
navigation.

2.1 Global Topological Map
For the topological model the landmarks are:

• Corners, which are characterized by their orientation.
• Openings, which are also used for model transition.

The topological map can be viewed as a graph. Topologi-
cal locations are represented by nodes containing the infor-
mation about the way to reach the connected topological
location/metric place. Furthermore the list of the landmarks
lying between two locations is represented as a list between

the two nodes. In fig. 2 the graph representing the topologi-
cal model is viewed for a portion of the environment.

The corner extractor returns a set of  parameters
representing the position and orientation of the corners and
an extraction confidence parameter  for each corner.

Openings are either large steps perpendicular to the direc-
tion of motion in hallways or transitions from rooms to hall-
ways. They can either be a transition between an hallway and
a room or between two perpendicular hallways. This charac-
teristic will be used for the map building strategy (3.1).

Note that, because the sensor used is a 360 degree laser
scanner, an observation contains many landmarks which are
transformed in a graph compatible to the environment mod-
el, as shown in fig. 3.

2.2 Local Metric Maps

The features used for metric environmental representation
are infinite lines. They are less informative than line seg-
ments, but have a better probabilistic model with analytical
solution and permit a very compact representation of struc-
tured geometric environments (i.e. long hallway represented
by only two infinite lines) requiring only about 10 bytes per

. In fig. 4 a typical office is shown with the lines used for
its local metric map. The line model is 

(1)

where  is the raw measurement and  the mod-
el parameters.  is the angle of the perpendicular to the line,

 its length. The used extraction algorithm has been de-
scribed in [1]. Its result is a set of  parameters with
their 2 x 2 covariance matrix, which results by propagating
the uncertainty from the laser measures.

Figure 1: The environment is represented by places given
by their metric maps and nodes representing topological
locations. When travelling from a node to a place, the sys-
tem switches from topological to metric and vice-versa.
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Figure 2: (a) A portion of an hallway with the extracted
corner and opening features. (b) The topological map is
represented by a graph. It contains nodes connected to each
other with the list of corner features lying between them.
Openings (topological nodes) can either be a transition to a
room or be a connection to another hallway. The colour of
the corners helps distinguishing between corners with dif-
ferent orientation.
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Figure 3: (a) Laser data and the extracted features. (b) The
resulting observation graph. Different colours represent dif-
ferent corner orientation.
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Figure 4: An office of the institute (a) and the lines repre-
senting it in the local metric map(b). The black segments
permit to see the correspondence between the two figures.
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3. Localization and Map Building

Both environment models require a different navigation
method with different characteristics. The metric approach
permits a very precise positioning at the goal point [2]
whereas the topological method [3] guarantees robustness
against getting lost due to the multimodal representation of
the robot’s location.

3.1 Map Building Strategy

As explained in section 2, the environment model is com-
posed of a global topological map and a set of local metric
maps. Given a metric transition feature, local metric maps
can be everywhere in the environment. Therefore a suitable
strategy has to be adopted.

For many possible application scenarios it can be expected
that the robot will have to be very precise in the rooms,
where most of its tasks have to be executed (e.g. docking for
power recharging; manipulation tasks with objects on a ta-
ble; human-robot interaction). While navigating in the large
(i.e. hallways), precision with respect to the features is less
important, but robustness and global consistency take an im-
portant role. Because of this, the two different levels of ab-
straction are used in combination of the different type of
environmental structures:
• While navigating in hallways the robot firstly creates and

then extends the global topological map
• When it enters a room, it creates a new local metric map
These two environmental structures are differentiated by

means of the laser sensor: Thin and long open spaces are as-
sumed to be hallways, while other open spaces will be de-
fined as rooms.

3.2 Exploration Strategy

The proposed exploration strategy is simple: The robot
first explores all the hallways in a depth-first way. It then ex-
plores each room it encounters in the same way. Note that, in
general, for each hallway the room exploration reduces to a
linear list traversal. Rooms with multiple openings cause two
special cases, which are treated in the following sections.

Rooms with opening to another room: In this case the ro-
bot continues building the current metric map. However this
can lead to the next case if the neighbor room has an opening
to a hallway.

Rooms with opening to a hallway: Due to the metric navi-
gation mode during room exploration, the robot knows the
direction of the opening and can therefore deduce if it opens
to the same hallway, a known one or a new one. In the case
of known hallways, the robot simply goes back to the hall-
way it was coming from and continues its exploration. This
could cause having two metric maps for the same metric
place, one for each opening. In the case of a new hallway, the
exploration continues in a hallway depth-first way.

3.3 Topological Localization and Map Building

The current experimental test bed is a part of the institute
building. This environment is rectilinear and mainly com-
posed of offices, meeting rooms and hallways. Therefore
only four directions of travel are employed: N, E, S, W.
However this limitation is not an inherent loss of generality
because it is not a general requirement of the algorithm.

Position Estimator: Given a finite set of environment states
S, a finite set of actions A and a state transition model T, the
model can be defined by introducing partial observability.
This includes a finite set O of possible observations and an
observation function OS, mapping S into a discrete probabil-
ity distribution over O.  represents the probability
that the environment makes a transition from state s to state

 when action a is taken.  is the probability of
making an observation o in state s. The probability of being
in state  (belief state of ) after having made observation
o while performing action a is then given by the equation:

(2)

where  is the belief state of s at the last step, 
is the belief state vector of last step and is a
normalizing factor. The observation function OS is made ro-
bust by the fact that an observation is composed of many
landmarks (fig. 3), rising its distinctiveness.

Heading Estimator: Because the position estimator does
not take into account the heading of the robot, this is done
separately like in [9]. The orientation is estimated by a
weighted mean of each observed line that is either horizontal
or vertical with respect to the environment. The success of
this method is guaranteed by the fact that, in general, lines
given by the environmental structures are either parallel or
perpendicular to the direction of travel. Infinite lines are
matched by means of the validation test

, where prediction  is
directly the odometry state vector variable . In this case,

 is a number taken from a  distribution with 
degrees of freedom. This can be interpreted as a Kalman fil-
ter for heading only.

Control Strategy: Since it is computationally intractable to
compute the optimal POMDP control strategy for a large en-
vironment [3], simple suboptimal heuristics are introduced.
For the system presented here the most likely state policy has
been adopted: The world state with the highest probability is
found and the action that would be optimal for that state is
executed. However it can happen that the robot is not sure
about its current state. This is calculated by mean of the un-
confident function , which is the entropy of the
probability distribution over the states of the map. The
POMDP is confident when
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(3)

where  is determined by experience by performing
tests allowing to see at which level of unconfidence state es-
timates are effectively false. When the robot is unconfident,
it follows the hallway in the direction where it expects to
found more information (landmarks). What has to be avoid-
ed at any cost is to switch from the multimodal topological
navigation to the unimodal metric navigation when the robot
is unconfident about its location, otherwise it could enter a
false local metric place and therefore be lost.

Map Building: Instead of using a complex scheme for mod-
el learning like in [10] and [17], where an extension of the
Baum-Welch algorithm is adopted, here the characteristics
of the observation graph are used. When the robot feels con-
fident about its position, it can decide if an extracted land-
mark is new by comparing the observation graph to the node
in the map corresponding to the most likely state. This can
happen either in an unexplored portion of the environment or
in a know portion, where new landmarks appear due to the
environment dynamic. As explained in section 2.1, land-
marks come with their extraction confidence . This char-
acteristic is firstly used to decide if the new landmark can be
integrated in the map. Furthermore, for each integrated land-
mark, the confidence is used to model the probability of see-
ing that landmark the next time . When it is re-
observed, the probability in the map is averaged with the
confidence of the extracted one. If the robot does not see an
expected landmark the probability  is used instead.

(4)

where, (5)

When the confidence  decreases and is below a min-
imum the corresponding landmark is deleted from the map.
This allows for dynamics in the environment, where land-
marks that disappear in the real world, will be deleted from
the map too.

When an opening landmark is integrated in the map, a new
state node is created (fig. 2).

3.4 Metric Localization and Map Building

This section describes briefly the main characteristics of
the stochastic map approach [15], which permits using an
extended Kalman filter [6], [13] for localization.

With this approach both the robot position 
and the features  are represented in the system
state vector:

 (6)

This represents the uncertain spatial relationship between
objects in the map, which is changed by three actions:
• Robot displacement
• Observation of a new object
• Re-observation of an object already existing in the map

Robot Displacement: When the robot moves with an uncer-
tain displacement u given by its two first moments ,
which are measured by the odometry, the robot state is up-
dated to . The updated position and uncertainty of
the robot pose are obtained by error propagation on g:

(7)

(8)

where  is compounding operator and G is the Jacobian of
g with respect to  and u. 

New Object: When a new object is found, a new entry must
be made in the system state vector. A new row and column
are also added to the system covariance matrix to describe
the uncertainty in the object’s location and the inter-depen-
dencies with the other objects. The new object 
can be integrated in the map by computing the following
equations of uncertainty propagation:

(9)

(10)

(11)

Re-Observation: Let  be the new observation in the ro-
bot frame. The measurement equation is defined as:

(12)

 is temporarily included in the state to apply the ex-
tended Kalman filter. However if prediction  satisfies the
validation test

(13)

where ,  is a
number taken from a  distribution with  degrees of
freedom and  is the level on which the hypothesis of pair-
ing correctness is rejected, then  is a re-observation of

.

Extended Kalman Filter: When a spatial relationship is re-
observed, the updated estimate is a weighted average of the
two estimates calculated by means of an Extended Kalman
filter. It permits to update a subset of the state vector while
maintaining the consistency by means of the covariance ma-
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trices. A measurement equation ...  is consid-
ered as a function of m relationships included in x. All of the
n estimates  of the state vector x are updated by a value
that is proportional to the difference  between the
ideal measurement z and the actual measurement :

(14)

 (15)

 (16)

where  is the Jacobian matrix of h with respect to .
The variance and covariance  are also updated:

(17)

4. Experimental Results

For the experiments, Donald Duck (fig. 5) has been used.
It is a fully autonomous mobile vehicle running XO/2, a
deadline driven hard real-time operating system. Donald
navigates locally by means of a motion control algorithm,
which plays the role of both position controller and obstacle
avoidance: It reaches the given  or  goal by
planning a collision free path (with respect to the current lo-
cal data), and reacting to the dynamic environment either by
merely replanning the path or by changing heading direction
and replanning when an object appears in front of the robot.

4.1 Experiments 

The approach has been tested in the portion of the institute
building shown in figure 6.

An experiment is structured as follows:
• Explore the whole environment once and construct a

hybrid map
• Evaluate the usability of the map by defining random

generated navigation missions

The environment is closed, so that the exploration proce-
dure is finite. Test missions are defined from a local metric
place to another one. The robot is localized with respect to
the local metric map at the start position. By leaving the
room it switches to topological localization and map build-
ing. When it reaches the goal place, it initializes the Kalman
filter and navigates metrically to the goal point.

4.2 Results

A set of three experiments has been performed. Each map
resulting from a complete exploration has been tested with 5
randomly generated test missions. Donald performed the 15
mission with a success rate of 87%. In two cases the robot
encountered some troubles distinguishing between two loca-
tions where only few landmarks are visible (fig. 6: A): It en-
tered the false office. The precision at the goal is comparable
to the results in [18] with mean error of less than 1 cm.

5. Related Work

Successful navigation of embedded systems for real appli-
cations relies on the precision that the vehicle can achieve,
the capacity of not getting lost and the practicability of their
algorithms on the limited resources of the autonomous sys-
tem. Furthermore the fact that a priori maps are rarely avail-
able and, even when given, not in the format required by the
robot, and that they are mainly unsatisfactory due to impre-
cision, incorrectness and incompleteness, makes automatic
mapping a real need for application like scenarios.

Simultaneous localization and map building research can
be divided into two main categories: Metric and topological.

With the first precise mathematical definition of the sto-
chastic map [15] and early experiments [6], [13], fully met-
ric simultaneous localization and map building have shown
their quality: Highly precise localization, which is only
bounded by the quality of the sensors [2]. However these ap-
proaches also suffer of some limitations. Firstly they rely
strongly on dead-reckoning. For automatic mapping this
makes the global consistency of the map difficult to maintain
in large environments, where the drift in the odometry be-
comes too important. Furthermore they represent the robot
pose with a single probability distribution. This means that
an unmodeled event (i.e. collision) could cause a divergence
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Figure 5: The fully autonomous robot
Donald Duck. Its controller consists of
a VME standard backplane with a
Motorola PowerPC 604 microproces-
sor clocked at 300 Mhz running XO/2.
Among its peripheral devices, the most
important are the wheel encoders, a
360° laser range finder and a grey-
level CCD camera (not used here).

number of missions 15
success rate 87%

number of state estimates 588
unconfident state rate 7%
total travel distance 0.4 km

Table 1: Summary of the experiments. The results
demonstrate the feasibility of this hybrid approach for office
environments.

Figure 6: The test
environment. It is
closed so that the
exploration is finite.
In A the robot had
problems distinguish-
ing between the two
locations (doors). B
and C are detected as
rooms and repre-
sented by a single
local metric map.

A

B
C



between the ground truth and the estimated pose (lost situa-
tion) from which the system is unable to recover. In [4] it has
been shown that the correlations, are very important for the
global consistency, but not sufficient, as confirmed by a re-
cent work [5], where a solution is proposed by extending the
absolute localization to include local reference frames.

On the other hand topological approaches [11] can handle
multi hypothesis tracking and have a topological global con-
sistency, which is easier to maintain. The robustness of such
approaches has firstly been proven by the application of the
state set progression [14], which has then been generalized
to the POMDP approach [3], [9]. In [10] the Baum-Welch al-
gorithm is used for model learning. [12] proposes a topolog-
ical approach, which heavily rely on odometry in order
better to handle dynamic environments. While being robust,
the drawback of these approaches is the loss of precision:
The robot pose is represented by a location without precise
metric information. To face this, the Markov localization [8]
has been proposed: A fine grained grid guarantees both pre-
cision and multimodality. But this approach remains compu-
tationally intractable for current embedded systems. A more
efficient alternative has recently been proposed, but the
Monte Carlo localization [7] has not been extended yet for
automatic mapping.

Metric and topological approaches are converging, like
[5], [7] and [8], to hybrid solutions. Moving in this direction,
in [16] the approach consists in extracting a topological map
from a grid map by means of a Voronoi based method, while
[17] proposes to use the Baum-Welch algorithm as in [10],
but to build a topologically consistent global metric map.

In contrast to the above mentioned approaches, for this
system a natural integration of the metric and topological
paradigm is proposed. The approaches are completely sepa-
rated into two levels of abstraction. Metric maps are used
only locally for structures (rooms) that are naturally defined
by the environment. There, a fully metric method is adopted.
As it has been shown in [4], for such small environments,
where the drift in the odometry remains uncritical, stochastic
map allows for precise and consistent automatic mapping.
The topological approach is used to connect the local metric
maps that can be far away from each other. With this the ro-
bot can take advantage of the precision of a fully metric, Kal-
man based navigation, added to the robustness in the large of
the POMDP approach while maintaining a compactness of
the environment representation that allows the implementa-
tion of the method on a fully autonomous system.

6. Conclusions and Outlook

This paper presents a new hybrid approach for simulta-
neous localization and map building. The metric and topo-
logical parts are completely separated into two levels of
abstraction. Together they permit a very compact and com-
putationally efficient representation of the environment.
Furthermore this combination permits both precision with

the non-discrete metric estimator and robustness by means
of the multimodal topological approach. The success rate
over the 0.5 km of the 15 tests missions is 87%. Only 7% of
the states are unconfident. They are uncritical in the experi-
ments, nevertheless they cause a loss of time when travelling
for gaining further information.

Future work will extend experiments to the whole floor of
the institute building. Moreover the main future goal is to
face the problem of closing loops in large environments [17].
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