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Abatract 

A riiech;tnisrri is t lescritd for ;Lchicving a dcsirctl forco/rnotiori relationship. Thc 

nicc11;~iiisni employs two  hinged arrns wiLh pullcys ant1 springs. In cornprison to active 

force-con trol mcthods, the dcvice is compact, energy saving, and robusl,. The &vice is 

idca.lly suited to rriiriiatiire devices and, in a reccrit application, has h e n  used in ;I mobile 

robot for inspecting pipes. 

T h e  relationship bctwecn the rnotion of the mechanism arid its output force is analyzed 

using both analytical arid approximate techniques to determine the optimum 

configiiration and the dimensions of the various components. In the final design, 

experimental results demonstrate the superiority of non-circular eccentric pulleys over 

conventional pulleys for producing a specified forcelmotion curve. 
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1 .  Introduction 

Coil springs a r c  conirnonly usod in forcc generating mcchamisnis whcn it is necessary to 

OLti~il~ a. force that incrrases with t,he M ~ O U I I  t of cxtcnsion or strotch. llowcver, wlicri the 

dcsired force is no1 dircctly proportional to the amount of extension, the force-generating 

mechanism must be modified [I]. Active servomechanisms may be uscd to control the 

spring extcnsion, resulting in a constant force over a considerable distance. [Towever, such 

mcthods rnakc the force generating mechanism complex and costly. To avoid these 

difficulties, the concept of "force generation by using pulleys and springs" (I'GI'S) has 

been corisidcred [2]. 

The original application for the mechanism described in this paper was a mobile robot 

for inspecting the inside of pipes. The robot presses against the pipe walls for traction 

and, ideally, the pressure should be independent of pipe diameter. Since the inspection 

robot must be quite small (small enough to  fit in a pipe of 65mm inside diameter), it is 

important to find a constant-force mechanism that avoids the complexity of a servo 

system. Figure 4 illustrates the basic mechanism described in this paper. I t  consists of 

two arms hinged at  one end to form a symmetric, collapsable structure. As the arms move 

apart, they drive two pulleys through intermedhte gears. An extension spring is 

connected to cables that run between the two pulleys and resists the separating motion of 

the arms. Both circular and non-circular pulleys were considered for the device. The 

shape of the non-circular pulleys is adapted from a conical fusee as shown in Figure 8. The 

non-circular pulleys are designed so that the pulley radius can be expressed as a linear 

function of angular displacement. Analytical and approximate methods are discussed for 

deriving the desired relationship between the angle and pulley radius. Circular and non- 

circular pulleys have also fabricated and compared in experiments. 

2. Description of Mechanism for Force Generation 

Nomenclature: 

A vertex of mechanism 
B tip of left arm 
C tip of right arm 
D 
F 
H height of mechanism 

mechanism for pulling the arms together 
force against rails m l  and m2 
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IL 

111 l,m2 rails supporting devicc 
0 anglc between arms 

1cngt.h of' arm, AI3 or AC, of rnechanis~n 

Ipigurc 1 shows ;I simplified, two-tfimensiona.l schematic of the dcvice riding between two 

rails, m l  and m2. A wheel is mounted at  the lower tip of each arm and at the vertex, A, of 

the devicc. The goal is to construct a mechanism, D, that  will pull the arms together, 

generating ;L force, I(', that  remains constant, over a wide range of heights, Ii. 

For the solution of this problem, six types of mechanisms, as shown in Figure 2, have 

been investigated. Dots in the figure show pivot joints which rotate freely. All of the 

mechanisms are symmetric with respect to the line bisecting the angle 0.  For calculating 

the relation between the angle 0 and force F, let us suppose that two ends of each spring 

connect directly to free joints. Also, let k stand for the elasticity of a spring and Lo for the 

length of the spring in a no-load condition. Note that the mechanism is in equilibrium 

when the sum of the moments about any point in the system is zero. The relation between 

the angle, 0, and force, F, of each mechanism is obtained as shown in Appendix A, using 

the partial length ro of the two arms and the lengths a, b, and c of subsidiary links in 

Figure 2. 

Figure 3 shows the calculated results of the relation between the distance 

H = h cos(0/2) and force, F, of the linkage types in Figure 1 when the springs are all the 

same in elasticity. It is observed from the figure that for most structures the force, F, 

increases as the distance H decreases. However, in the curves (a), (c), and (e) the force 

tends to decrease as the distance becomes small. A large change of the value of F is 

observed in the curves (a), (d), and (f). The incompleteness of the curves (d) and (f) is due 

to motional limitations of the linkages. We can see that  none of the six curves is linear. 

The curve (e) is the most linear of the six, and thus, the mechanism in Figure 2(e) is 

considered to be the most appropriate to produce a constant force for a range of angles 8.  

However, the mechanism is too complex for actual use. In general we observe that the 

spring stretches too much to keep the force Fconstant. This is caused by the fact that  the 

ends of the spring are connected directly to points on the linkages. For better results, the 

ends of the spring could be connected to a body with an adjustable position or length, 
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instc;d of' a fixcd body. 

fol Io w i ng scc ti on. 

'l'hercforo, wc will corisidcr thc modified nicchanisnls i n  the 

3. Force Generation by Using Pullcys and Spring 
13a.sed on the considerations in  Section 2, we have devised a linkage for the constant force 

device. In the following scxtion, I will explain how it works, and t,hcn analyzc the force 

rncrnbers of the mcchanism to find out relation of the angle between the two ilrIt1s a n d  the 

stretch force. The shape of the pulleys is circular i;i this section. 

3.1. Link Mechanism 

Figure 4 shows the proposed link mechanism for force generation. Two arms AI3 and AC 

connect the ends of two subsidiary links at points D, and D, at a distance ro from the 

point A. The other ends of the links are put together to make a joint J. The partial links 

AD,, AD,, and subsidiary links JD,, JD, are connected with each other using pivot joints 

with rotatinal axes perpendicular to the plane in which the two arms rotate. Therefore, 

the links compose a four-bar linkage mechanism A-D,-J-D,. Since the four links are of 

cqual length, the four points A, D,, J, and D, make a rhombus. The gear G,  located at the 

point D, is fixed to the link JD,, but rotates with respect to link AB. Similarly, the gear 

G, located a t  the point D, is fixed to the link JD,, but  rotates with respect to link AC. 

Therefore, two gears G, and G, rotate about their axes at points D, and D,, with the links 

JD, and JD,, respectively. The gears G, and G, drive the pulleys P, and P, through the 

gears G, and G,. An extension spring, S, joins the two ropes. The other ends of the ropes 

are wound around the pulleys P, and P,. The rotational motions of the pulleys adjust to 

the length of the spring for an optimum tensile force. 

If i t  is required to attach the pulleys P, and P, on the links JD, and JD,, the gears G, 
and G, would be fixed to the links 'AD, and AD,, respectively. Depending on the desired 

relation between the distance H a n d  Force F, we can omit the gears G, and G, arid replace 

the gears G, and G, by the pulleys P, and P,, respectively. That  is, the centers of the 

pulleys are attached to the points D, and D,. We will call such an arrangement a "simple 

mechanism", while the arrangement in Figure 4 becomes a "complex mechanism". The 

major difference between the mechanism in Figure 4 and the one in Figure 2 is that  the 
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critls of the spring arc wound rour i t i  the  pulleys, using flcxiblc ropes. T w o  of tho  links of' 

thc: four-bar lirtkagc ;trc ;tc:tu;tlly sections of thc two arms. No other links arc rcquirctf for 

t h e  rncc:haiiisrn in Figurc 4.  

3.2. Analyses of Motion and Force Members of' t h e  Mcchaniurn 

The mechanism in Figure 4 is valid only if the spring extends as the angle 0 increases. I t  

must now be detcrrriined whether*the spring actually extends when the two arms open. 

Therefore, wc devclop the relation between the angle 0 and thc Icngth of thc spring as 

follows. Let the radii of the gears G,  and G, be r l ,  and those of gears G:, and G, be r,. 

Also, let the radii of the pulleys E', and P, be r3. Now let M be thc minimum length of the 

rope connecting the pulley with the end of the spring, aned W be the length of the rope 

around a pulley. T h e  length Wdepends on the number of turns around the pulley. Hence, 

the total length between the two points where the ends of the ropes meet the pulleys is 

2M+L, where L is the variable length of the spring. We subtract the length, 

2(r0+r1+r,)sin(0/2),  between the centers of the two pulleys from the total length, 2M+L, 
to calculate the length of the rope which is wound round the pulleys P, and P,. 

2(2a-8)r1 .r3 
2 M+L=2( ro+rl +r2) sin( 0 / 2 )  + +Zr3(2n-8/2)+2W 

r2 

We then differentiate L in equation (1) by 0 to yield 

The equation implies that  the value of L becomes large as the angle 0 increases when the 

value of dL/dB is positive. In most cases, the value is positive since the values of r , ,  r,, and 

r3 are smaller than tha t  of ro. The spring must extend to give a large force when the two 

arms open. 

We analyze the relation. between the angle 8 and force F in Figure 4, illustrating the 

force. The force components are exerted on each link of the mechanism. Let Tdenote the 

output force of the spring S, then the gear G, is driven by the force To, 



The  compression force, V,  exertd on the link JD, is obtained by setting the moment about 

the  point D ,  to zero. 

Expressing the moment about the point A for arm AB gives 

hF 
2 { (rO+rl +r2)cos(Q/2)-r3)T=-sin(8/2)+rgUsin8. 

Equations (3), (4), and (5) are combined to give 

2T{ ( ro+rI +r2)cos( 8/2) -r3( 1+2r, / r2) }  

h .~ in (8 /2 )  F= 

Figure 5 shows a geometrical illustration of the mechanism for two different values of 8. 

The symbol Omin denotes the minimum value of 8. When the angle between the links is 8, 

the link JD, is inclined by an amount 7=8-Omin, and the pulley rotates by 

6=(O-8,in)/2. When the links are separated by the angle, Omin, the pulley P, is rotated 

by 4 with respect to the initial configuration; i.e., the total angular shifts of the pulley is 

given by 



where 

t=2( rot-?-, ++in( U7,&&/2) - L&&, 

t is the length of the rope connecting the spring and two pulleys when O=OI,li,l. q l  and v2 
are the lengths of the ropes which unwind from the pulleys P, and P,, respectively. When 

two arms intersect with the angle Ominl we can express the length Lmin by eoLOJ where eo is 

a constant greater than 1. The force Tis  written as 

We obtain the final form by inserting equation (12) into equation (6) 

F=2 k (2(ro+rl +r2) { s i n (  0/2) -sin( Bmi,/2) )+Lo(e0- 1)-2r3+] 

rl 1 

r2 
x I(~o+~1+~2)~~~(e/2)-~3(1+2-)l h. s;n(e/2)* 

In the case that the pulleys are attached on the subsidiary links or arms of the scissors 

structure, Equation (13) should be modified by replacing (rO+r1+r2)with(r0-rl-r2). 
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3. :1. Itcl ; i l , ioI i s l i  i t h; t,wc-cri Force a 1 1  (1 1)c:for r r i ; i t i o n  of t h  6: Mcc1i:iriinrn 

13y rising thc c*clri;ition( I3), wc obtain thc  relation 1)ctwcori t h c  dislancc If and  forco It', 

since tho valuc of ((, c;tti I)c used to m a k c  Ih(% force F cqrial to the idcal force c;! whcn 0 is 

O l l l i , , .  First, wc consider thc "simple rnechanisrri't which uses only the pullays. In this case, 

r and r2 are  zero. 'i'hcrcfore, Equation (13) is simplified as I 

2 k  [2r0{ sin( 0/2)-s in(  0,,;,,/2)} +I.()( Co- 1)-2r.&4 x [r[)cos(O/2)-r:i] 

he sin( 0/2) , p= 

Equation (14) is also valid for the simple mechanism having no subsidiary links; that  is, 

when pulleys are fixed on the two arms. 

Figure 6 shows the calculated results of the relation between H and F depending on 

radius of the pulleys in a complex mechanism combining pulleys and gears as shown in 

Figure 4. For instance, the curve c3 is obtained when r3=6 mm. Figure 7 shows the 

results of the relation between H and F i n  a simple mechanism having no gears. In this 

case, equation (13) applies, with rl=r2=0. The curve c3 shows the result for a pulley of 15 

rnm radius. It is evident that  the curve co changes the force F remarkably. Since no 

pulleys are considered, the curve corresponds to that in Figure 3 (a). 

By comparing the results of the relation between H and F f o r  the complex mechanism 

with those of the simple mechanism, i t  is evident that  the value of r3 is smaller than that 

of the simple mechanism for the same amount of force. Also, the shape of the curves is 

smoother than that of the simple mechanism. Based on these facts, a combination of 

pulleys and gears is desirable. The curves in Figure 6 and Figure 7 imply that  it is difficult 

to make the force F constant over a wide range of the distance H .  However, we can see 

intuitively that there is an appropriate curve between the curves c3 and c4 that  will 

produce a force roughly equal to the ideal force Q. We discuss optimization methods in 



t,lic? rollowing sc:c:t.ion t,o dctertninc dirricnsions for the pullcys that will rosiilt in a n  

ap p r opr i ; L t c  c i i  rvc . 

4. Optimization of' Force Generation Mechanism 
The forw generation mechanism, or more spt:cifica.lly the dimensions of the pulleys, 

should be ex;ict,ly determined to adjust the length of the spring for gcnerathg thc forcc! we 

wish. Wc consider two types of pulleys: One is a circular pullcy which is comrnonly used. 

I he other is ;in eccentric non-circular pulley. In the "cornplex mechanisrri, the 

parameters r ,  and r2 also affect the characteristics of the force generation. However, these 

are out of the scope of this paper. In determining the dimensions of the pulleys, we 

propose analytical and approximate methods. Optimization of the spring elasticity is also 

discussed, once the parameters of the pulleys are given. 

r .  

4.1. Analytical Method 

The force F i s  calculated from equation (13). At this point, we express the radius r3 by 

the term r(p) defining the relation between the radius of the pulley and its angular shift p. 

The force F i s  given by 

where G stands for the term expressing the circumference of the pulley which rotates as 8 

increases from ernin. In this paper, we consider a pulley for which the relation between the 

pulley radius r and angular shift p is linearly expressed as 

T (p)=2ap+b. 

(17) 

The parameters, a and b, are adjusted to determine the shape of the pulley. Evidently, the 

value of b is positive and that of a is zero when the pulley is circular. In such a case if the 
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and 

where q5 is determined from equation (7). 

expression 

Therefore, equation (16) is written by the 

Now we look for a function giving the ideal value, Q for Fsuch that 

Q=fM 

Then, we define the error function EO by the relation 

EO= { Fe-QO}2. 
(22 )  

The values of u and b are determined by making the value of EO minimum in the range of 

8. That  is, to minimize the value calculated by 



Sincc thc  expression of E O  is decomposed into the terms 01’sin’fLOco.s7L0 ( p ,  m, 12 arc 

positive in tcgors), the integration in equation (23) can be performed and exprcssed in 

ternis of a and b (scc Appcndix B for detailed calculation). By differentiating the function 

Z with respect to a and b and equating them to zero, we have two cquations with unknown 

parameters a and b. It is not easy to  solve such simultaneous equations in general. 

However, we notice that we can assign the value of the parameter b. Also, the parameter 

(p=O,d=O), where the should bc given by considering the initial condition 0 = 

valuc of F i s  Qo=f (Omin).  Therefore, from equation (20) 

Then, we can determine the value of a by solving a cubic equation. 

When the shape of the pulley is circular, the calculation process is simple, since the value 

of a is zero and we can determine the value of b by solving the equation obtained by 

differentiating the function 2 in equation (23) with respect to b. The knowledge of b is 

useful in the calculation of a. We can recommend that  the optimum radius of the circular 

pulley be found first, so that the parameter a for the non-circular pulley can be calculated 

by using the value of 6. 

4.2. Approximate Method 

We can determine the optimum dimension of the pulley also by usi g the L st Square 

Method (LSM), as long as the change of the radius of the pulley as a function of angular 

displacement is smooth. Let Q . denote the ideal value of F when 8 = 8 then we have the 

following expression from equation (20) since the equations (19) and (24) are valid: 
3 3’ 
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whcrc J i s  the term of Lo(~c,-l) which is written as 

and 

Subtracting F .  from the ideal value Q .and squaring the result given the absolute error 2. 
3 3 

Several sets of data are used to make the force as close to the ideal force as possible. 

After summing the terms obtained by using these actual data, we differentiate the 

summation, 2, with the parameters a and b. Since the procedures are similar to those 

described in Section 4.1, we can determine the values of a and b, by setting the results of 

the diffcrentiation zero, to make the error minimum. When the pulley is circular, the 

value of a is zero and we can solve for the unknown parameter b 
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(29) 

The tcrrns ZJ . . . . U,,j  are shown i n  Appendix C. 
I .? 

When the pullcy is eccentric and non-circular, we can assign a valur: for 6.  I t  is 

rccoinrncnded to use the solution of a circular pulley for the assignrricrit so that thc value 

of a c;ui be obtitincd by solving a cubic equ a t' ion. 

(30) 

The terms S . . . . S .are shown in Appendix D. 
13 43 

As long as the shape of the pulley is smooth, the spring retracts or extends as the rope 

winds in a spiral around the pulley. If the effective angular range exceeds 2r(rad), the rope 

can turn many times around the pulley by extending the pulley groove to form a fusee as 

shown in Figure 8. The shift of the groove along the axis of the fusee will be negligible 

when the effective angular range is less than 2./r(rad). In this case, we can make flat pulleys 

of non-circular-shape by interpolating radii along the pulley so that the groove makes a 

single smooth loop. 

Figure 9 shows the rope connecting two non-circular pulleys P, and P,. The thick curve 

is the effective groove radius and the broken curve is for the extension of the curve for a 

fusee. For a fusee, the rope detaches from points u, and u, since the groove is not in one 

plane. For flat pulleys, the rope detaches from points v1 and v2. The length between the 

points v, and v, is not equal to the length between the two rotational centers (i.e., E, and 

E,) of the fusee, regardless of the sign of the parameter a. Since the equation (25) is no 

longer applicable we consider a formula for the dimensions of the flat pulleys below. 

Let X denote the angle between the line connecting points E, and u, and the line 

connecting points E, and v,. Also, let w denote positional displacement as shown in Figure 

9. Figure 10 reveals a method for calculating the distance r3 and the displacement w.  The 
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prol'ilc of Itic groovc is wr i t t en  i n  t h t :  coordinato systcrn ( X , Y ' )  ;is 

I f  the v;tlue of n is sniall enough wc can approximate that  

Inserting equation (32) into equation (31), and letting the value of the differential dY/dX 

approach infinity, we have 

-2a 
2ar$+b' X=tan-- l- 

r 3- - d 4 ~ ~ + ( 2 a q 5 + b ) ~ .  

(33) 

(34) 

Given an initial condition, such as q5 = 0, i t  is evident that  T~ is equal to b when a is less 

than or equal to zero. Equation (34) is valid when a is positive. Then, we define r30 for the 

value of r3 in the initial condition. 

b, a -  < o  
r30={d4a2+b2, a > O  

I t  follows that 

w=rjtanh. 

(36) 
The values of X and w are positive when a is positive, and vice versa. 

procedure of equation (25), we obtain the following expression for the force F # : 
Following the 



where 

By assigning an appropriate value to b, the value of r3" is given by equation ( 3 5 ) .  Then 

assuming a small value for a ,  we can obtain the force F .  from equation (37) and determine 

the error 2 by evaluating equation (28 ) .  The form of 2 is too complicated to differentiate 

with respect to a and b. As a result, i t  is difficult to find a unique value of unknown 

parameters a and b. To find out the most appropriate value of a for making the value of 2 

minimum, we can check the value of 2 by adding or subtracting a little to zero. Although 

this process is tedious, we can obtain the optimum value. 

3 

If the dimensions of the pulleys are given, we can optimize the force generation 

mechanism by selecting an appropriate elasticity for the spring. It is easy to extract the 

form to determine the elasticity since equations (25 )  and (37) expressing the force F include 

only the term k . That  is, we subtract equation ( 2 5 )  or (37) from the ideal value Qj and 

square the result to determine the absolute error 2 in equation ( 2 8 ) .  Several sets of data 

are used to make the force as close to the ideal force as possible. After summing up the 

terms which are obtained using actual data, the summation is differentiated with respect 

to k . Equating the results of the differentiation to zero, so that the error becomes 

minimum, we can determine the elasticity, I C ,  of the spring. 
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5. Design of' Piilleys and EsperirncnCsl Results 

7'hc clirriensions of the pulleys are  calculated rising cithcr the malytical or the 

;tp p r ox i r n  ;I tc rri e th od . A ftc r &: te r I ri i n i rig op tirn u I n  sh a pes f o r  c i rcu 1 ;ir I) u I Icy s , and 

eccentric, nori-circul;ir pullcys, in the simple and corriplcx rricchariisrris under the conditions 

that Q is constant and cquations (17) and (24) are valid, the rcsults of the optimization are 

cornparcd to find out which is rnosl accurate. ISxperimental rcsults are given for the 

rclatiori betwccri the  distance, If, arid force, F, to verify the validity of the optimization. 

5.1. Circular Pulley 

We take the condition in equation (24) into consideration and use equation (25). When 

the shape of the pulley has a circular form, the value of a is zero and the radius b is 

obtained by solving a cubic equation. Figure 11 shows the results of the relation between 

the distance ET and Force F when Q = 0.5 Kg. Results for the circular pulleys in simple 

and complex mechanisms are shown by curves (a) and (b). The force from the complex 

mechanism comes closer to the ideal force, Q, than that  from the simple mechanism. 

5.2. Fusee 

Circular pulleys can be used to produce a force, F, which is nearly equal to the indiccted 

force Q. However, the curve expressing the relation between the distance H a n d  Force F i s  

not similar to the curve indicated by the function in equation(21). In fact, the curves (a) 

and (b) in Figure 11 are not satisfactory to determine a constant force over wide ranges of 

0.  Therefore, we have to consider pulleys of non-circular-shape. The dimensions of the 

fusees are determined by finding the parameters a and b which make the value of 2 in 

equation (28) minimum. We suppose tha t  the displacement of the groove along the axis of 

the pulley is small enough to be neglected. Figure 11 (c) shows the result of the relation 

between the distance H a n d  Force F o f  the pulley for the simple mechanism and Figure 11 

(d) shows the result for the complex mechanism. It is evident that  not only the force but 

also the shape of the curve becomes similar to that of the curve given by the function Q. 

The curve (d) is almost parallel to the horizontal axis. 
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5.3.  I? I:it I’ 11 1 Icy Y of‘ Now Ci rcu I ar-S t i  ape 

Wc dcsigriod f’ht piilleys hiivirlg eccen tric rion-circu1:tr sh:~.pcs by using thc itcra.tivc 

nicthod w h i c h  was discusscti in tlic I a t t r r  tialf of Section 4.2. ‘rhc ciirv(: in  IGgurc 1 1  ( c )  

shows lhc results o f  Lhc relationship be1,wcen tlic distance I1 and force I’ for the siirlplc 

mcc.h;tnisni. Figure I1 (f) shows the result for the complex mechanism. The shapes of 

these curvcs are found to be similar to thoso of the fusees. 

5.4. I~Cxpcrinicrital Itcsultu 

In the actual design, the size of the pulley is an important factor. Since the size of the 

pulley in the simple mechanism tends to become large, the complex mechanism is 

recorrirnendcd to kcep the force generation mechanism compact. In addition, a mechanism 

that has a large value of r1 + r2 and a smaller value of r l / r 2  is recommended for obtaining 

a large force F. However, smallness of r l / r 2  makes r3 large and prevents fabrication of 

compact device for the force generation. Therefore, a complex mechanism was adopted for 

the equipment shown in Figure 12. The physical dimensions of the mechanism are 

k=O. 14Kg/mm, h=95mm, ro=35mm, rl=7.5mm, r2=5mm, Q =0.5Kg, 4O0<8<1OO0. 

For these dimensions, circular pulleys and flat pulleys of non-circular-shape were made. 
3 

The circular pulleys have a diameter of b=6.9mm. The curve (a) in Figure 13 shows the 

calcuated relation between H and F, and dots show the experimental data  for the circular 

pulley used with the complex system. The optimized parameters of the flat pulley of non- 

circular-shape are a=-0.66 and b=8.5mm. These values are obtained by considering the 

position where the rope detaches from the groove of the flat pulley. The curve (b) in 

Figure 13 shows the calculated result and the cross marks show the measured result. The 

curves (a) and (b) in Figure 13 correspond to those of (b) and (f) in Figure 11, respectively. 

The relationship between H and Ffor  the simple mechanism are shown in Figure 14. The 

curves (a) and (b) in Figure 14 correspond to those of (a) and (e) in Figure 11, respectively. 

The fact that  the calculated and measured results are close indicates that the analysis for 

calculating the force F a r e  valid. We can confirm that the eccentric non-circular shape in 

the flat pulley makes it possible to generate a force closer to the designated force &, than 

the pulley of circular shape can achieve. 

Figure 15 illustrates a profile of the groove and the characteristics of the p versus G of 
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the flat, piillcy. Thc pullcy is cl'fectivc: only in the r;tngc! 0°<~<1200 for which cast 

40"<~<100". 'I'ho radii of' the unuscd area of thc pulley a.rc intcrpolilletf so th:it the sh;tp~ 

of the pulley bctcomes snioolh. l'he profile of the groove and the ctiaractcrislics of p vcrsus 

G for the frrsccs are almost the samt: as those of thc flat, pulleys. 

The rcsult of the approximate method is almost the same as that  of the ;tnalytical 

method when thc curve expressing Lhc function f (0) is smooth. Thus, in a case whcre the 

value of Q is constant, thc approximate method is shown to be effective for practical use in 

reducing the amount of computation. 

6. Conclusion 
The design and optimization of a force generating mechanism have becn discussed. The 

mechanism has been applied to a mobile robot for inspecting pipes that  vary between 90 

mm and 120 mm in diameter [3]. A major advantage to the mechanism is that  it makes 

servo control unecessary. The mechanism uses an extension spring and a pair of specially 

designed pulleys to achieve a desired force/motion trajectory. As the mechanism opens 

and closes, (adapting to the inside.diameter of the pipe) a linkage drives a pair of gears 

which rotate a pair of pulleys. The pulleys are deigned with a non-circular shape. As 
they rotate, they stretch an extension spring. The rate of extension is determined so that  

the mechanism exerts a nearly constant force against the inner walls of the pipe. Exact 

and approximate methods are considered for determining the optimum relationship 

between pulley radius and angle of rotation. The approximate methods can be used 

effectively as long as the desired force/motion relationship is a smoothly varying function. 

In the final design, the pulleys are driven by intermediate gears which permit the use of 

smaller pulley diameters. 
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Appendix A 

llclations bctwecn I;'a.nd 0 ;ire as follows: 

(4 
2 kr, e 

p=- ,( L-Lo)cot (5) where  L=2rosin ( 0 / 2 ) .  h 

(4 
8ka2 e 

F=- hL (L--Lo)cos (i), where  L={r 20-4a(ro-a)cos 2 (8 /2 ) } ' / 2 .  

(4 
krO 

F=-( L-L0)cot( 8/2), where  L=( ro-2a)sin( 0 /2 ) .  h 

where  p ={a 2 +n-rosin 2 ( 8 / 2 ) }  1/2 , 
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Appendix B 

De 11 o tc J pi' ~ i n ' ~ 0 c  o s ' i ~ t i ~  by J [  m , n, p ]  . 
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Then, we have 

where 
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Appendix D 

Let thc ~yrribols g , ,  g2, g:{, g4, g5, and  go have the sirnilar cxpressiorls as shown in 

Appendix C .  T h e n ,  we have 

where 
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Figure 1 : Basic  mechan i sm for obtaining t h e  s t re tch  f o r c e  

Figure 2: Various kinds  of mechanisms for genera t ing  t h e  force 
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Figure 3: Calculated results of the relation between H and F under such 
condilions that h = ro = 1 OOmm, k = 0.1 Kg/mm and 30' I 8 
I 100'. The value of a in (b), (c), (d), (e) and (f) are 
3/5ro, 2/5ro, 3/4ro, 1 /6ro and 2/3ro, respectively. 

Parameters b and c are 1 /3ro and 3/4r0. 

h 

Figure 4: Proposed mechanism for the force generation 
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Figure 5: Geometrical illustration for analyzing equilibrium 
of the mechanism in force 

0 L c . 6  I I I 

60 70 80 90 

Figure 6: Calculated relation between H and F when circular pulleys are used 
in the complex mechanism under such conditions that h = Sfimm, ro = 35mm, 

r, =7.5mm, r2=5mm,Lo=19.05mm, k=0.14Kg/mm,Q=0.5Kgand40° 
I 8 I 100'. The curve co is obtained under 

r3 = 0. The curves c, to c4 increase r3 with the increment 2mm 
in this order. 
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- 

++ 
60  7 0  80 90  

Figure 7: Calculated relation between H and F when circular pulleys are used 
in the simple mechanism under the same conditions to those used in the 
complex mechanism. The curve co is obtained under r3 = 0. The curves 

c, to c4 increase r3 with the increment 5rnm in this order. 

Figure 8: Fusee 
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Figure 9: Connection of a couple of non-circular pulleys by ropes 
through a spring 

Figure 10: Profile of the groove in the coordinate system (X,Y) 
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b / 
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I 1 I C  

60 70 80 90 

Figure 1 1 : Optimized relation between H and F. The curves (a) and (b) are the 
results of circular pulleys for the simple and complex mechanisms. The 

values of b are 18mm and 6.9mm, respectively. The curves (c) and (d) are the 
results of fusees of non-circular shape for the simple and complex mechanisms. 

The values (a,b) are (-0.69, 18.0) and (-0.60, 8.54, respectively. The 
curves (e) and (f) are the results of flat pulleys of non-circular shape for 

the simple and complex mechanisms. The values (a,b) are (-0.60, 17.25) and 
(-0.66, 8.5), respectively. 

Figure 12: Overview of force measurement by the fabricated mechanism 
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Figure 13: Relationships between F versus H of the complex mechanism. Curves a 
and b are the calculated results relating to tlie circular and non-circular 

pulleys. Dot and cross marks are the experimental results relating to those 
pulleys, respectively. 

0.7 ,A 

0.6 - 
0.5 - 
0 .4  - 
0.3  - 

H h m J  
I I I +  

60 70 80 90 

Figure 14: Relationships between F versus H of the simplt? riiectianism. Ccrvzs a 
and b are the calculated results relating to tlie circular and non-circular 

pulleys. Dot and cross marks are the experimental results relating to those 
pulleys, respectively. 
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(bl  

Figure 15: Fabricated piilleys which are used to obtain the curve b in Fig. 13; 
(a) profile of the groove, (b) characteristics of the p versus G. 


