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Abstract 

In this paper, a modified LQG technique is proposed for the solution of the robotic visual tracking problem 
(eye-in-hand configuration). The problem of mbotic visual tracking is formulated as a problem of 
combining control with computer vision. A crosstorrelation method provides the object's motion 
measurements which are used to update the system's measurement vector. These measurements arc fed 
to a discrete steady state Kalman filter that calculates the estimated values of the system's states and of the 
exogenous disturbances. Then, a discrete LQG controller computes the desired motion of the robotic 
system. Experimental results are presented to show the effectiveness of the approach. 

1. Introduction 
One of the most desirable characteristics of a robotic manipulator is its flexibility. Flexible robots 
can quickly adapt to the evolving requirements of an unknown task, and can properly react to 
sudden changes in the environment. Flexibility and adaptability can be achieved by incor- 
porating vision and generally, sensory information in the feedback loop. This sensory infor- 
mation enhances the robot's capability by continuously updating the robot's view (or model) of 
the world and the task. The completeness and accuracy of this view depends on the existence of 
a framework for the integration of sensory information with the other components of a robotic 
system. 

Research in computer vision has traditionally emphasized the paradigm of image understand- 
ing which focuses on the static analysis of one image. Recently, more emphasis has been given 
to the dynamic analysis of a sequence of images 111. This sequence of images is produced either 
by a moving camera that captures views of a static environment, or by a static camera that 
captures views of a moving object. A characteristic example of the second category is the motion 
analysis area where vision information is used for tracking moving objects [2,3,4]. Little 
research [5,6] has been conducted in using vision information in the dynamic feedback loop 
(moving camera and target). Particularly, in the motion analysis research, Roach and Agganval 
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[7] have presented a scheme for tracking rigid convex polyhedra. Their scheme was based on 
image segmentation which is time-mnsuming. A stereo system for tracking known 3-D targets 
was presented by Gennery 141. Wallace and Mitchell [3] have used complex Fourier series for 
obtaining a solution to the same problem. Hunt and Sanderson 181 have presented algorithms 
for visual tracking based on mathematical prediction of the position of the object's centroid. Lee 
and Wohn [91 have used image differencing techniques to track a moving object. 

This paper addresses some of the issues associated with the use of vision information in the 
dynamic feedback loop. In particular, we deal with the problem of robotic visual tracking of a 
moving target (eye-in-hand configuration). To achieve our tracking objective, we combine 
computer vision techniques, for detection of motion, with a simple LQG control strategy. A 
crosscorrelation technique (SSD optical flow) is used for computing the vector of discrete 
displacements in real-time. The paper is organized as follows: In Section 2, we review the 
definition of the optical flow and present methods for computation of the vector of discrete 
displacements. The mathematical formulation of the visual tracking problem is described in 
%ion 3. The LQG controller in conjunction with the Cartesian robotic control schemes are 
discussed in Section 4. The hardware configuration of our experimental testbed (DD Arm 11) 
and some experimental results are presented in Section 5. Finally, in Section 6, the paper is 
S U m m a r i z e d .  

2. Optical How 
This Section will present an outline of our vision techniques in order to illustrate their charac- 
teristics (noise, computational complexity, quantization errors). We assume a pinhole camera 
model with a frame R, attached to it. In addition, we assume a perspective projection and the 
focal length to be unity. A point P with coordinates (X,.Y,.Z,) in R, projects onto a point p in the 
image plane with image coordinates ( x .  y) given by: 

Let us assume that the camera moves in a static environment with a translational velocity 
T = (T, , Tr , T2)T and with an angular velocity R = (R, , R, ,R2)T with respect to the camera frame R,. 
The optical flow equations are given by: 

Ti Ti 
v=[yZ;- - - z, 1 + [(l +~)R,-xyRy-xR,l 

where u=iand v = j  Values u and v are also known as the optical flow measurements. Instead of 
a static object and a moving camera, if we were to assume a static camera and a moving object 
then we would obtain the same result as in equations (2) and (3) except for a sign reversal. The 
computation of u and v has been the focus of much research and many algorithms have been 
proposed [lo, 111. For accuracy reasons, we use a modified version of the matching-based 
technique [11 J also known as the Sum-of-Squared Differences (SSD) optical flow. For every 
point pA=(xA, yA) in image A, we want to find the point pB= (xA + u ,yA + v) to which the point pA 
moves in image B. It is assumed that the intensity values in the neighborhood L of pA remain 
almost constant over time, that the point pB is within an area S of pA, and that velocities are 
normalized by time T to get the displacements. Thus, for the point pA the SSD algorithm selects 
the displacement d = (u , v) that minimizes the SSD measure: 



where u , v  E S, N is an area around the pixel we are interested in, and fAt fB are the intensity 
functions in images A and B, respectively. The different values of the SSD measure create a 
surface called the S S D  surface. The accuracy of the measurements of the displacement vector can 
be improved by using multiple windows. The selection of the best measurements is based on 
the confidence measure of each window. Efficient confidence measures for the selection of the 
most accurate measurements are described in 1121. The next step of our algorithm involves the 
use of these measurements in the visual tracking process. These measurements should be trans- 
formed into control commands to the robotic system. Thus, a mathematical model for this 
transformation must be developed. In the next Section, we pment a mathematical model for the 
visual tracking problem. 

3. Mathematical Model For The 2-D Visual Tracking Of An Object 
Consider a target that moves in a plane with a feature, located at a point P, that we want to 
track. The projection of this point on the image plane is the point p. Consider also a neigh- 
borhood S, of p in the image plane. The problem of 2-D visual tracking of a single feature point 
can be defined as: "find the camera translation (Tx,T,,) with respect to the camera frame that 
keeps S, stationary in an area So around the origin of the image frame". It is assumed that at 
initialization of the tracking process, the area S, is brought to the origin of the image frame, and 
that the plane of motion is vertical to the optical axis of the camera. The problem of visual 
tracking of a single feature point can also be defined as 121: "find the camera rotation (Rx,Ry) 
with respect to the camera frame that keeps S, stationary in an area So around the origin of the 
image frame". Assume that the optical flow of the point p at the instant of time kT is 
( u ( k Q . v ( k 7 ) )  where T is the time between two consecutive frames. It can be shown that at time 
(k+ 1) T, the optical flow is: 

K ((k+ 1)7) = K (k 7)+ K~ (kT) , v ((k+ 1)T) = v (k 7 )  + v,(kQ (5)  
where u,(kT) ,vc(k7) are the components of the optical flow induced by the tracking motion of 
the camera. Equations (5) are based on the assumption that the optical flow induced by motion 
of the feature does not change in the time interval T. Therefore, T should be as small as possible. 
To keep the notation simple and without any loss of generality, equations (5) will be used with k 
and (k+ 1) instead of k T  and (k+ 1) T respectively. If the camera tracks the feature point with 
translation Tx(k) and Ty(k) with respect to the camera frame, then the optical flow that is 
generated by the motion of the camera with Tx(k) and Ty (k) is: 

We assume that for 2-D visual tracking the depth 2, remains constant. The same model can be 
used for keeping the feature point stationary in an area S, different from the origin. 

Consider a target that moves in a plane which is vertical to the optical axis of the camera. The 
projection of the target on the image plane is the area S, in the image plane. The problem of 2-D 
visual tracking of a single object can be defined as: "fkd the camera translation (T,,Ty) and 
rotation (RJ with respect to the camera frame that keeps S, stationary". It is assumed that the 
target rotates around an axis Z which at k=O coincides with the optical axis of the camera. The 
mathematical model of this problem in state-space form is (a formal derivation is given in 1131): 

(7) 

where A=H=I,*', B = E = T  I,, x(k) E R3, u,(k) E R3, d(k) E R3/ and v(k) E R3. 

x (k  + 1) = A X  (k)+B U, (k)  + E d (k) + H ~ ( k )  

The vector 
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x (k )  = (x  (k) , y (k), 8 (k))T is the state vector, uc (k) = (u, (k) , vc (k) , Rz (k))* is the control input vector, 
d (k) = (u (k) , v (k) , w (k))T is the exogenous disturbances vector, and v (k) = (vl (k) , v2(k ) ,  v3 (k))T is 
the white noise vector. x(k) ,  y(k), 8 (k) are now the X, Y and roll component of the tracking error, 
respectively. The measurement vector y (k) = (y, (k) .y2 (k) , y, (k))T is given by: 

(8) 

where w (k) = (wl  (k) , w2 (k) ,w3 (k))T is a white noise vector (w (k) -N(O,W)) and C = I,. The 
measurement vector is obtained by using the SSD algorithm. First, the tracking error of the 
projections of the two different feature points on the image plane is computed. Then, an al- 
gebraic system of four equations (two tracking error equations per point) is formulated. The 
solution of the system is the X, Y and roll component of the tracking error. If the projections of 
the two feature points on the image plane are not the same, it is guaranteed that the system of 
equations has a solution. It is assumed that each oneof these features at time i = O  is located at its 
desired position. The LQG control strategy that keeps the target stationary is discussed in detail 
in the next Section. 

y (k)  = c x ( k )  + w (k) 

4. LQG Controller 
A useful control technique for this type of problem is the LQG (Linear Quadratic Gaussian) 
control scheme. Neglecting for the time being the white noise terms of our system, we will 
consider the more general problem of determining the matrices G and G ,  in the linear control 
law: 

(9) 
The reason it is necessary to separate the exogenous variables from the process state vector x(k) ,  
rather than deal directly with the metastate vector x i ( k ) = ( x T ( k ) , d T ( k ) ) ,  is that in developing 
the theory for the design of the gain matrix we assume that the underlying rocess is control- 

by using the controllability matrix, that the new system is uncontrollable. Thus, we should work 
with the form of the system (Eq. (7) and (8)) that was developed in Section 3. One can observe 
that the matrices E and B are equal, so equations (7) and (8) can be rewritten as: 

(10) 
(1 1) 

where u,(k)=u, (k) + d (k). A performance criterion that can be minimized for the selection of the 
optimum gain matrix G is: 

U, ( k )  = - G ~ ( k )  - G,d (k) .  

lable. If we try to create a new system with metastate vector x; (k)= ( x T ( k ) ,  d 7 (k)),  we can show, 

x (k + 1) = A X  (k)+B U ,  (k) + H v (k) 
y (k) = c x ( k )  + w (k) 

OD 

J =  [ x T W  Q x (k) + uZ(4 R u, Wl (12) 

where Q = QT 2 0 where R = RT > 0. The performance criterion contains a quadratic form in the 
state vector x ( k )  plus a second quadratic form in the vector u,(k). Physically, the first quadratic 
form represents a penalty for the tracking error and the second corresponds to a modified cost 
of control. The performance criterion is minimized by selecting an appropriate gain matrix G. 
Taking into consideration the white noise terms of our system, the controller becomes an LQG 
controller and the control law is: 

k = O  

U, (k) =- G k ( k )  

U, (k) = - G $ (k)- A (k) 

(1 3) 

(14) 

where k ( k )  is the estimated value of the state vector x ( k ) .  Thus, u,(k) is given by: 

whew 2 (k) is the estimated value of the disturbance vector d(k). The performance criterion now 



is the expected value of J. The optimal control gain matrix G is G=(BTPB+R)-lBTPA with P 
being the unique symmetric positive definite solution of the matrix algebraic Ricatti equation: 

ATP-PB(BTPB+R)-IBTP]A+Q=P. (1 3 
The design parameters are the elements of the matrices Q ,R. By selecting these, one can obtain 
the desired gain matrix G. There is no standard procedure for the selection of the elements of 
these matrices. One technique [141 is the optimization approach. The next step in our algorithm 
is the computation of the vectors C ( k )  and i ( k ) .  We design an observer for the estimation of the 
metastate vector x,(k).  The statcspace model of equations (7148) can be rewritten as: 

(16) xM ( k  + 1) = A, xM (k)+B, U, (k )  + H, vM (k) 

A, = 

' 1 0 0 T 0 0  

O l O O T O  

O O l O O T  

0 0 0 1 0 0  

0 0 0 0 1 0  

0 0 0 0 0 1  

- 

- 

(17) 

. B =  M 

and 

O O O O T O .  1 1 0 0 0 0 0  O O O T O O  

0 1 0  0 0 O ] , H L =  [ 0 0 1 0 0 0  0 0 0 0 0 T  

As it was mentioned before, the measurement vector consists of the measured translational 
components of the tracking error x(k),  y(k) and of the roll component of it, e#). A steady state 
Kalman filter 1151 can be designed for the estimation of the metastate vector x M ( k ) .  The as- 
sumptions are that a = E [ v M ( k ) v & ( k ) l ,  R,=E[w(k) wT(k)l, xMo=E[xM(O)] and E[v,(k) w*Q]=O 
for all k .j .  The state update equation is: 

2, (k + 1) =A, ;IM (k) + B, U, (k)  + K, 01 (k) - C, C (k)) 
where 

K, = A, P, CL [C, P, C& + Re]-' 
and P, satisfies the matrix algebraic Ricatti equation 

A, [I- P, CL (CM P, CL+ Re)-' C,] P, ATM+ HM Q,HL= P, . (20) 
The time-invariant steady state Kalman filter can be implemented easily and does not require a 
large number of calculations. In addition to the steady state Kalman filter, we use the time- 
varying discrete Kalman filter which constantly updates the Kalman gain matrix K,. This 
improves the performance of our observer but it is computationally more expensive than the 
time-invariant K a h n  filter. The state update equation of the new state observer is the same as 
(18) while the other equations are: 



where ^x,,=E[xM(0)] and P,(0)=E[(xM(O)-~Mo)(xM(O)-%Mo)Tl. The performance of the observer 
depends on the selection of the Q and Re matrices. We should mention that the white noise 
model is only an approximation to the actual noise model of the camera. Thus, the selection of 
the Q, and R, matrices is done empirically and a search for the best set of noise variances is 
conducted. The initialization of the vectors %(k) and A(k)  is given by: 

%(l)=y(l) , A ( l ) = r ' ( y ( l ) - O ) .  (23) 
The next step of our algorithm is the calculation of the triple (T,(k) .T (k) ,R,(k)) .  The calculation 
of the T,(k) and T (k) is done by using equations (6) which require tie knowledge of the depth 
2,. R, (k)  is given &ectly as the computed control signal. The knowledge of the depth 2, can be 
acquired in two ways. The first way is direct computation by a range sensor or by stereo 
techniques I l l .  The use of stereo for the recovery of the depth is a difficult procedure because it 
requires the solution of the correspondence problem. A more effective strategy that requires the 
use of only one visual sensor is to use adaptive control techniques. The control law is based on 
the estimated on-line values of the model's parameters that depend on the depth. More details 
about our adaptive control schemes can be found in 1161. After the computation of the trans- 
lational T(k) and rotational R(k) velocity vectors with respect to the camera frame R,  we 
transform them to the end-effector frame R ,  with the use of the transformation ,T,. The trans- 
formed signals are fed to the robot controller. We experimented with a Cartesian PD robot 
control scheme with gravity compensation. The mathematical model of the robot's dynamics is: 

(24) D (9) q + c (q 1 q>+g (9) = 
where q is the vector of the joint variables of the robotic arm, D is the inertial acceleration 
related matrix, c is the nonlinear Coriolis and centrifugal torque vector, g is the gravitational 
torque vector and z is the generalized torque vector. The model is nonlinear and coupled. The 
PD control scheme assumes that all velocities in the dynamics equations are zero. This implies 
that q=J = c (q , q) = 0 ( J  (q) is the manipulator's Jacobian). Thus, the actuators' torque vector z is 
given by: 

(25) 7 =JT(q) F + g (9) 

F =  SAX + Xd-J (9) 4 1 + r(, (26) 
where F is the generalized force vector, hT=(*,AxZ) is the position and orientation error 
vector, and K, and are diagonal gain matrices. The subscript d denotes the desired quan- 
tities. In our experiments, kd is selected to be zero. 

5. Hardware And Some Experimental Results 
A number of experiments were performed on the CMU DD Arm I1 robotic system. This robotic 
system consists of: a) a Sun 3/260 host system on a VME bus, b) Multiple Ironics M68020 
boards, c) a Mercury 32000 Floating Point Unit, d)  an IDAS/150 image processing system, d) a 
Panasonic industrial CCD color camera, Model GP-CDlH, e)  six Texas Instrument TMS320 DSP 
processors, each controlling one joint of the CMU DD Arm I1 system, 0 sensors such as a tactile 
sensor and a force sensor, and g) a six degrees of freedom joystick. The IDAS/150 contains a 
Heurikon 68030 board as the controller of the vision module and two floating point boards, each 
one with computational power of 20 Mflops. The software is organized around 3 processes: a) 
Vision process which does all the image processing calculations and has a period of 150 ms, b) 
Interpolation process which reads the data from the vision system, interpolates the data and 
sends the reference signals to the robot Cartesian controller, and c) Robot controller process 



which drives the robot and has a period of 3.33 ms. During the experiments, the camera is 
mounted on the end-effector and has a focal length of 7.5mm. The objects (books, toys, pencils) 
are moving on a plane (average depth ZS=68Omm).  The user, by moving the mouse around, 
proposes to the system some of the object’s features that he is interested in. Then, the system 
evaluates on-line the quality of the measurements, based on the confidence measures described 
in 1131. Currently, four f e a m  are used and the size of the attached windows is 10x10. The 
experimental results are plotted in Fig. 1 and 2 where the dotdashed trajectories correspond to 
the trajectories of the center of mass of the moving objects. The vector Mez-I‘ represents the 
position of the end-effector in the world frame. The simple PD produces oscillations around the 
desired trajectory. In this example, along with the translational motion, the object performs a 
rotational motion around an axis that passes through the center of mass of the object. Even with 
noisy measurements, the LQG seems to perform well. This becomes obvious, when one reduces 
the number of the windows which are used (increased noise in the measurements), and the 
LQG controller continues to keep the target at the desired position. 

6. Conclusions 
In this paper, we considered a LQG approach to the robotic visual tracking problem (eye-in- 
hand configuration). We formulated the problem as a control and vision problem and dis- 
cussed the issues related with this formulation. A cross-comlation technique (SSD Optical 
Flow) was used to provide accurate measurements of the object’s motion parameters. An LQG 
regulator in conjunction with Cartesian robotic controllers were studied as possible solutions to 
the robotic visual tracking problem. The vision and control techniques were tested on a mal 
robotic environment, the CMU DD Arm 11. Experimental results show that the methods are 
quite accurate, robust and promising. Their most important characteristic is that they can be 
implemented in real-time. Future research efforts should be focused on the extension of the 
techniques to the 3-D robotic visual tracking problem, the explicit use of the target model in the 
whole mathematical formulation, the solution of the problem of vanishing features, and finally, 
the direct integration of the robot dynamics in the feedback loop. 
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Figure 1: LQG controller in conjunction with a Cartesian PD robotic controller with gravity 
compensation. 
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Figure 2: Roll trajectory of the robot endeffector and the object in the previous example. 


