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Abstract

This paper add the problem of robotic visual servoing (eye-in-hand configura-
tion) around a static rigid target. The objective is Wo move the image projections af
ceruin feature points of the static rigid arget to some desired image positions. The
cye-in-hand coafiguration contists of 1+ CCD camen mounted on the end-effector of

the robotic manipulstor 10 provide visual of the of the target’s
fum%vﬁmdmmhwmumﬁmMWSD
optical flow. The model introd [} ber of p that must be

muuhxudlmwmﬂdgmmwfclthm
and the compuational delays which are introduced by the time- ng vision
algarithms. Suhhtyuwadcng with mwmgd&mn@ed
required feature points are d ed. Exp 1 are p d 1o verify the
validity and the efficacy of ﬂxepnpo-edalgomhm.

1. Introduction

One of the biggest challenges of robotic visual servoing is the extension of
robotic visual control 1o 3-D tasks. We choose to desl with a subproblem in
this area, called robotic servoing around a sustic target (Fig. 1). This
problem can be defined as “move the manipulator (the camera being
mounted on the end-effector) such that the image projections of certain
feature points of the target reach some desired image positions.” Contrary
1 previous research effons (1], we assume only partial knowledge of the
inverse perspective transformation. In this paper, we address a problem
which is an example of the controlled active vision paradigm that was
introduced in {2). This paradigm states that a controlled and not accidental
moton of the camera can maximize the performance of any active vision
algorithm. In order 10 achieve the objective of robotic visual servoing,
computer vision techniques for the detection of motion are combined with
appropriate control strategies. The result is the computation of the actuating
signal for driving the manipulator. The problem is formulasted from the
systems theory point of view. An advantage of this approach is that the
dynamics of the robotic device can be taken into account without changing
the basic stucture of the system. In order 0 circumvent the need 10
explicitly compute the depth map of the target, adaptive control techniques
are proposed. In other words, the adaptive contral algorithms compensate
for the partially unknown inverse perspective transformation. Experimental
results are presented to show the strengths and the weaknesses of the
proposed approach.

The organization of this paper is as follows: Section 2 describes the
mathematical formulation of the visual servoing problem. Section 3 gives
an outline of the vision techniques (optical flow) used for the estimation of
the positions of the featsres’ image projections. The control and estimation
strategies are discussed in Section 4. The experimental results are presented
in Section S. Finally, in Section 6, the paper is summarized.

2. Modeling of the Visual Servoing Problem

W e assume a pinhole camera model with a frame R, auached to0 it, and s
perspective projection. Consider a static target with a feature loceted a1 a
point P with coordinates (X,,Y,,Z) N R,. The projection of this point on
the image plane iS the point p With image coordinates (x, y) given by
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Figure 1: Task Of Visual Servoing Around a Static Target.
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where £ is the focal length of the camers and 3,5, are the dimensions
(mm/pixel) of the camera's pixels. In addition, it is assumed that Z >>f,
and that the camena moves in a static envirooment with a translational
velocity T=(7,.T,. T)" and with an angular velocity R=(R R R
wuhmspeawmecnmmfmnek 'meopualﬂowequanonum[:i]
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y
umdvmahoknownulheqmalﬂowmrunmu. If we assume

:x=:’=j= 1, equations (2)~(3) become:
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In order 10 keep the notation simple and without any loss of genenility, in
the mathematical analysis that follows, we use only the relations described
by (4)45). Consider now a ncighborhood S_ of p in the image plane.
Assume that the optical flow of the point p at time kT is (u(kT), v (kT))
where T is the time between two consecutive frames. It can be shown that
at ime kT, the optical flow is:



wkT)=u (kD) ©

v@&D=v (&D )
where u_(kT),v_(kT) arc the components of the optical flow induced at
the time instant & T by the servoing motion of the camera. Without any loss
of genenlity, equations (6) snd (7) will be used with & instead of kT.
Equations (6) and (7) do not include any computational delays that arc
associsted with the computation and the realization of the servoing motion
of the camena If we inciude these delays in the model, equations (6) and
(7) will be transformed 10:

u(ky=q **'u_(k) (8)

v(k):q""v‘(k) )
where d is the delay factor (d € (1,2,...]) From the previous
analysis, u_(k) and v_ (k) are given by:
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In addition, it is known [3] that:
x(k+1)=x(k)
T

k+ 1)—y(k
v(ﬁ):Z_(_"_T)._’(_) a3)

If we substitute (k) and v (k) in (8) and (9) with their equivalent expres-
sions from (12) and (13), then equations (8) and (9) can be written as:

ulk)= (12)

ke 1) =x(k)+ T u (B) (14)

yk+ D) =y®)+Tqg¥ v () 1%
Further, if we model the inaccuracies of the model (neglected accelerations,
inaccurate robot control) as white noise, (14) and (15) become

sk+ D=x(®))+Tq 4* 1w () +v, (k) (16)

yk+ D)=y +Tq Ly )+ v, (B an
where v, (k), v, (k) are zero-mesan, mutually uncorrelsted, siationsry ran-
dom vaniables with variances cl’ and czz, respectively. The above equa-
lions can be written in the state-space form as:
X (ke )mA ()X, () +B, (k=d+ D (k=d+ 1)+ H () v, (D) as)
where AL () =Hy ())=L, x, (k) € R% u(k) € R%, and v, (%) € RZ The
matrix B (k) € R¥*Sis:
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rs ° T Ay@  -Qedon
La T ‘ :
-4 @)

C Tm Im QeyOD  -sM -1@)

The wvector X, ()= ®K),y®) is the sae  vector,
u ()=, ®).T, (0).T,(0).R_(B).R (%).R, (X)) is the control input vec-
tor, and vp. (k) = (v ), vz(k))rumewhncnmseveuor The measurement
vector ¥ (k)= (v, (&), y, (1)) for this featare is given by:

Yp (k) = Cpxp (k) + wp (k) (19)
where we (k)= (w, (k) w, (K)) is a white noise vector (w,, (k) ~N(O,W))

nndC,.lz.The vector is computed uging the SSD algo-
rithm which is described in Section 3.

One feature point is not enough for the calculation of the control input
vector u (k) due to the fact that the number of outputs is less than the
number of inputs. Thus, we are obliged 10 consider more paints in our
model To make the number of inputs equal 10 the number of cutputs, we
should consider three feature points which are not collinear. The reason for
the noncollinearity will be investigaied in Section 4. Having more than
three feature points will result in a larger number of outputs than inputs.
Without additional constraints (knowledge of the 3-D model of the targes
etc.), it will be impossible 10 control the system so that all the outputs can
track arbitrary desired values in the steady-state. In our approach, the

robot-camera system is not required 10 take a certain pose with respect 10
the static rigid target. The only objective is 1o move a cenain number of
featres to some desired positions on the image plane. Additional objec-
tives such as a predefined pose require at least four feature points [1]. In
our formulation the depth parsmeter of cach one of the featre points is
estimated on-line by an adaptive estimator, and thercfore, the relative
position of the object with respect to the robot-camera system can be
computed.

The state-space model for three feamre points can be writien as:
s+ D ARXE)+BRk~-d+Duk~d+1)+H(X) Y (k) (20)
where A (h)=H (k) =1, x(k) € RS, and v (k) € RS. The mauix B (k) €
R6*Sis:
[ B, (k)

B (k) B, D)

Brm(k)

The superscrit (j) denotes each one of the fesmre points

(De ((1D).@).6G))) The vector x(k)=@xM ),y Mk), xP k),
Yy PR, xNW),y k)Y is the pew sute  vector, and

v(k) 0@V E Y PE P )., D ®), v, O W) is the new

white noise vector. ‘nuc new  measurement vector
10=0,"®.0"® .7 P®.7,P®) .7 P ® .7, @) for three

features is given by:

YR)=Cx(k)+w k) Q1
where w (k) = (w, D (&), w, D (&), w, P &), w, @ (), w,; D (&), w, @ (&))"
is the new whm: noise vector (W(k) -N(OVV)) and C= l Mom feature
points can be integrated in our model by sugmenting the block matnix B (k)
and the measurement, state, and white noise vectors.

We can combine equations (20)<(21) into a MIMO (Multi-Input Mulu-
Ourput) ARX (AutoRegressive with eXtemal input) model. This model
consists of six MISO (Maulti-Input Single-Output) ARX models. In ad-
dition, the model’s equation is:

A®A-¢Ny®=B k-d)uk-d)+n®) @)
where n (k) is the white noise vector. The new white noise vector a (k)
corresponds to the measurement noise, modeling errors, and noise intro-
duced by inaccurate robot control. In the next section, we will examine the
way we obtain the position of the features’ projections on the image plane.

3. Update of the Features’ Image Projections

The continuous extraction of the positions of the features’ projections on
the image plane is based on optical flow techniques ( « and v are the optical
flow components). For accuracy reasons, we use a modified version of the
matching based technique (4] also known as the sum-of-squared dif-
ferences (SSD) optical flow. For every point P =(x,.y,) in image A, we
want 1o find the point py =(x, +#,y, + v) to which the point p, moves in
image B. huumedmndnmmyvdnammenughbahoodLopr
rummdmonemmtoverume.lhulhcpmmp.uwuhmmuuSof
Pa. and that velocities are nommalized by the time period T to get the
displacements. Thus, for the point p, the SSD estimator selects the
displacement d =(u, v)!hnmnnmmsmeSSDmeum

«p,.d)= z (1‘0‘4-5."0.)-[.(3‘ﬂu«.yAunv))‘ (23)
mne N
where 4, v € S, N is an area around the pixel we are interested in, and /,,

I are the imensity functions in images A and B respectively. Variations of
the previous technique are used in our experiments. In the first variation,
image A is the first image (k= 0) acquired by the camera while image B is
the current image (k # 0). Thus, for the point p, the SSD estimator selects
the displacement d = (u, v) that minimizes the SSD measure:

«p,. 0= 2 Uiz, em.y, +a)-1 0 01-0-0-_,‘0.0'0")]' (4)

mae N
where su and sv are the sums of the all the previously measured
displacements and defined as:



j=k-] J=k-|
su= Z w(j), sv= 2 v(j) @9
J=1 =1

This variation of the SSD technique is sensilive 10 large rotations and
changes in the lighting. Another variation of the SSD is the one that
updates image A every u images. This SSD measure is similar to the onc
previously mentioned (Eq. (24)) except for the fact that su and sv are
differently defined. The terms su and sv have the following definiton:
Jj=k-1 j=k=-1
su= z u()), sv= z v(j), and I=Lk/p} 6)
j=ulrl =i+l
The most efficient variation of the SSD in terms of accuracy and computa-
tional complexity proved 10 be the last one. The continuous computation of
the displacement vectors helps us 1o continuously update the coordinates of
the image projections of the feature points.

The next step in our algorithm involves the use of these measurements in
the visual servoing process. These measurements should be transformed
into cartesian conrol commands for the robotic system.

4. Control, Estimation, and Stability

The control objective is W move the manipulator in such a way that the
projections of the selected features on the image plane move o some
desired position (Fig. 1). This section presents the control strategies that
realize this motion, the estimation scheme used to estimate the unknown
parzmeters of the model, snd the stability analysis of the proposed visual
servoing algonithms,

Since the depth information is not directly available, adaptive control
techniques can be used for visually servoing around a satic objea.
Adaptive control techniques are used for the recovery of the components of
the iransiational and rotational velocity vectors T (k) and R (k) respectively.
These adaptive control techniques are based on the estimated and not the
actual values of the system’s paramcters. This approech is often called
certainty equivalence adaptive control {S]. A large number of algorithms
can be generated, depending on the choice of a parameter estimation
scheme and the control law. The rest of the section will be devoted to the
detailed description of the control and estimation schemes.

4.1. Design of the Controller

The control objective is 1o move the featres' projections on the image
plane to some desired positions. The repositioning of the projections is
realized by an appropriate motion of the camera. A simple coatrol law can
be derived by the minimization of a cost function that indudes the control
signal:

Jkedmyk+ )~y (k+ D) Qly (ke D=y (ke )] +u" (W LuR) N

The vector y° (k) represents the desired positions of the projections of the
three features on the image plane. In our experiments, the veaor ¥° (k) is
known a priori and is consuant over time. By weighting the control signal,
we place some emphasis on the minimizaton of the control signal in
addition to the minimization of the servoing error. The response of the
system is slower than having L =0 but the control input signal is bounded
and feasible This is in agreamnent with the structural and operational
chanacteristics of the robotic system and the vision algorithm. A robotic
system cannot track signals that command large changes in the feamres’
immage projections during the sampling interval T. In addition, the optical
flow algorithm cannot detect displacements larger than 15 pixels per
sampling interval T. The control law which is derived from the minimiza-
tion of the cost function (27) is:

u)=-BTWQBW+LI"BTMQ{ (k)-y (k+d)] +
m=d-1
. Z B (k-m)u (k=m) } 28)
m=1
The design parameters in this control law are the elemnents of the matrices

Q and L. If the matnx B (k) is full rank then the matrix
(BT (k) QB (k) + L) is invertible. On the other hand, the matrix B (k) is

singular when the three feature points art collinear {6]. Therefore, in order
for the matrix B (k) to be nonsingular, the three feature pownts should not
sausfy the following equalities:

PR AICEY 10
y‘m k)~ y.('l) &) x.m ) - x'(l) (k) Z'O) k) — Z‘(I) (k)

- - 29
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or
FZO®W«ZO®
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In addition, B (k) becomes singular if Z{ (k))=Z® (k)=Z/ (k) and at
least one of the feature points has a projection on the image plane with
coordinates xP(K)=yP k=0 (() € ((1),(2).(3)}). A mathematical
proof of the fact that the previous conditions make B (k) singular can be
found in [7]. In addition, [7] illustrates some additional conditions that
make B (k) singular.

By selecting L and Q, one can place more or less emphasis on the control
input and the servoing emror. There is no standard procedure for the
selection of the clements of these matrices. One technique (8) is the
optimization approach. Asnnnelhlleu(i:l,...&)istheduimd
maximal servoing error y,(k)—y (k) which cormresponds 0 the i-
component of the y (k) vector and T___, T, TMRMR,_‘,M

: 2 yomar’
R_‘mlhemlmaleaumlunphmdaofT‘.T,.T,.R‘.R’.dex
respectively. Then, we can choose Q=diag (]2, ... .2 } and

L=diag (T2 T2 . ... JR2). In this way, the constraints that the
robotic device imposes on the maximal control amplitudes are included in
the control law. It is not possible to have infinite maximal control
amplitudes. The same is true for the servoing errors. As the positions of the
projections of the features on the image plane are measured direcily by the
SSD algorithm, there is a cenain range of values that can be measured. If
we want 10 include the noise of our model and the inaccuracy of the B (k)
matrix in oor control law, the coatrol objective (27) will become:

Jk+d)=E{ly (k+d)-y" (k+ DT Qly (k+d) -y (k+d)] +

+u’ ()Lu(NF,) @an

where the symbal £{X) denotes the expected value of the random vanable
X and F, is the sigma algebra generated by the past measurements and the
past control inputs up to time k. The new control law is:

w®)=-(BTEOQBE®+LITB WQ{ (0 -y k+d)l +

m=d—-1
+ Z Bk—m)uk-m) ) (32)
m=]

where B (k) is the estimated value of the matrix B (k). The matrix B (k) is
dependent on the estimated values of the feawres' depth Z(9 (k)
{(Q) € {(1).(2).(3)}) and the coordinates of the featres’ image projec-
tions. In particular, the matrix B (k) is defined as follows:

r B.P®
B)= | Bp? (k) .,
l_ ﬁr( 3 (k)
where B, (7 (k) is given by:
o1 @)
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4.2 Estimation Techniques

The estimation of the feamre’s depth Z!/ (k) with respect 10 the camera
frame can be done in multiple ways. In this section, we present some of
these algorithms. Let's define the inverse of the depth Z{/ (k) as { (2 (k).



Then, the equations (18)-(19) of udn feawre point can be rewritien as
(ag? (k) =N (0,N 9 (k)):
3, CW=A0%- 1)y, %@ )L Pa-aB, CE-DT*-d+
.8, CETORA-D+nOW) (65)
where By, % (k) and B, (9 (k) are given by:
-1 0 x(D (k)
B, (=T [ ,
0 -1 ).(J) k)
2Py Py -1+ 2@ y Py
B, M ()=T .
I+ N -x Py P® ~xP(p)
By defining u®(k) and uwP(k) as u® B=Bn PWT®) and
u® ())=By, D (k) R (k), respectively, cquation (33) is transformed into:
L 0W=A,2¢-1)y, k-1 +{ P k-Du Y-+
+uP@k-d)+n, D (k) G4
A lant transformation of equation (34) is done by using the vector
Ay, O (k) which is defined as:
Ay W=y, W)=y, P k-1)-uP (k-
The new fonm of the equation (34) is:

Arp AW =L D (k=-dyu, P (k- +m, P (1) 33)
The vectors 4y, (k) and u, ¥ (k~d) are known every instant of time,
while the scalar { {7 (k) is continuously estimated. It is sssumed that an
initial estimate {$7(0) of {{P(0) is given md pP(0)=E(( {2 (0)
-C“"(O)lzl is & positive scalar p;. p @ (0) can be interpreed as a measure
of the confidence that we have in the initial estimate C"l’ (0). Accurate
knowledge of the scalar { (/) (k) correspands 10 a small covariance scalar
Py In our examples, NO (k) is s constant predefined matrix. In addition,
for simplicity in notation, h (k) is used instead of u, ¥ (k).

The estimation cquations are (the superscript ‘=’ denotes the predicted
value of a varisble while the superscript “+ denotes its updated value) [9]:

LO®="{ P k-1) 36)
PR ="p D (k=1)+ 5D (k-1) an
POW=1PP®) " +nT k- INOW) k- (39)
KT (®)="p ()) b7 (k- a) (N @ ()} 69

CAW=C P W+kTWA1 O O-CO W) @0)

where s O (k) is a covariance scalar which corresponds to the white noise
that chamcterizes the transition between the siates. The depth related
pa:mw(.‘”(k)isatime-vuying varisble since the camers translates
along its optical axis and rotates along the X and Y axis. The estimation
scheme of equations (36)-(40) can compensate for the time-varying nature
of § ) (k) because it is designed under the assumption that the estimated
varishle undergoes a random change. One problem is 0 keep the
covariance scalar p (k) finite. Solutions for this type of probiem can be
fomdin[S].Innddiﬁm,weimpkmmuomeabueﬂimaﬁcnwdmiqm
whidzhlwixhﬁme-vuyingpanheﬁmimphnauedlwhnique
is called exponential data weighting [5]. In this case, we assume that the
most recent data contsins more information than past data and, therefore,
olddnaixexponanhnydiswded.Ancmdueﬁnle&niqucis
covariance resetting. In this case, the covariance scalar p P (k) is rese
when the estimated variable is drastically changed.

Matthies et al. [10] proposed the use of a more accurate form for the state
update of § {7 (k). This form is based on an equation {10} which provides
the change in the featre's depth Z{? (k) between two time instances given
the feature’s image coordinates and the camera motion. This equation can
be written as (computationsl delays are included):

ZPW=ZP k=)~ (T, (k=) + (R (k=D P (k=D =R (k~d)
OU-d)]ZP k- T (a1)
By inverting the terms of the previous equation (41), the following equation
is denved:

AW P k-1)/( 1 ~T(T, (k=) (P (k-1)+

{ P %h-1)

o(R.(k—d)y°3(k-d)~ky(k-d)x")(k—d)) 1) (42

c'( » (k-d)
If the values { ¢ (k) are substituted by their estimates, equation (42) will be
transformed inwo:

LW =GN h= 1) (1=T(T, k- *{ P k= 1)+
. é'(l) *k-1)

0&](1)(1_4)
In addition, equation (37) should be modified o incorporate the new
equation for the updates of states. In the experiments, the improvement in
d\eacmncyofmeuﬁmnadvduufmmmcmeohhecomplufonn(ﬂ)
is minimal. Thus, the majority of the experiments are performed by using
the estimation equations (36)(40). These equations require the estimation
of one parameter per feature-point and therefore, the real-time implemen-
tation of the estimation scheme is feasible. In addition, we implement an
estimation scheme that computes two parameters per feature point. This
scheme is a varistion of the previous estimation scheme and scparately
estimates the depth related parameter § (? (k) in the X and Y directions on
the image plane. In theory, this formulstion can handle the estimaton of
the depth related parameters with more accuracy. The subscript i denotes
the X or Y direction. The estimation equations for each feature point are:

COmefP@-1) i=1.2 {ad)

R (E-DyPk-d)~R (k~d)x? (k-] @y

PRW PO k=) + P (k-1) i=1,2 (43)

POD=POW) +h k=D (RO WK (- i=1.2 (%)
D)= PP A k=) (RO B} iw1,2 47

COME AW ex, WAy, CW~TP WA k-] i=1.2 ©8)
where 4,9 (k) and h, (k) denote the X or Y components of the vectors
Ayp O(k) and h(k), respectively. In practice, the experimental results
from the implementation of this estimation scheme prove to be comparable
with the results of the firnt estimation scheme. Some researchers {11] have
proposed the use of an adaptive scheme that estimates all the clements of
the block matrix B (4) on-line. This approach is computationally expensive
and not necessary.

43. Stablility Analysis

In this section a stability analysis is presented for the proposed algorithms.
We invesigaie the conditions under which the servoing error
(e(t)=y (k)~y° (X)) asymprotically goes 10 zero while the system input
vector u (k) and the system output vector ¥ (k) remain bounded. In 1980,
Goodwin et al. [12] dealt with the nability analyxis of adaptive algorithms
for discretetime deterministic time-invariant MIMO systems.  Using
Goodwh’swakuahse.wemmmﬁmofmemhimyunlyﬁs
for cur discrese-time stochastic nonlinear slowly time-varying MIMO
tyuan.lnlhismlyxis.the2—mmd’amaﬂixl‘.dtmuﬂedthe:p¢cnml
nom, is used. This norm is defined as follows:

Tl , 3
mz:qum eigenvalue of TTTHZ (x20)  (49)
2
Wedeﬁmlhemuimdgenvdneofdnmmixrulu(r)whﬂcthe
nﬁ!ﬁmundgmahedthemmixrilddnedulﬁ(l’). For a
daennhisdcvuximofoutmodel(whilenoiseisigtmed)mdforuyswn
delay d=1, the error equation it (¥ (k) is known a priori and is constant
over time):
e(k+ =l —B M K)]e k) (30)
where M (k) is defined as:



M) = (BT ()QB k) + LI B (1)Q. (51
The servoing error goes asympoucally to zero if the following condition
holds:

=B ()M (k)N , < I (52)
The previous condition can be rewntten as:
A_d,-BHRIME-B MM TR+ BT (OMTBEMM®) <1 (53)

After some simple matnx computations, the previous condition is trans-
formed t0:

A BEOM®+B M) -B (M WBMBHM®) >0 (54)

Therefore, the maurix B (k) M (k) + BT (k) M 7(k)~ B? ()) M 7(k) B (k) M (k)
should be sinicly positive definite. In the case that L =0, the following
conditdon should hold:
BB (1)) + B () (B (1)) - BT (&) (BT W) ' BWB' W) > 0 (55)
In continuous time, the condition becomes simpler. Chaumetie states
{13) that the matrix B (r) B-! () should be positive definite. Ford > 1, the
erTor equation is more complex than the case of unit delay because previous
control input vectors are included. The new error equation is given by:
e(k#l)-[&—ﬂ(k# 1-dMEk+1-D)eR)+Bke 1 ~DOM (ke 1 -d)
m=d-1
2 [Bkel-d—mp-Bk+1-d-m]uks|-d—m) (56)
m=1 .
The M (k) is again given by (S1). For L =0, M (&) is equal to B! (k). This
implies that if B (k) asympotically goes to B (k), then the servoing ermor
asymptotically goes to zero. This can be concluded from the error equation
(56). In order for B (k) to converge to B (£} {1, the input signal u (k) should
be Persistently Exciting (PE). Goodwin [S] proposed several methods for
genenating persistently exciting input signals.

More complex suability proofs can be created by using discrete Lyapunov
functions and the properties of the estimstion scheme. In this way, we can
guaranice stability of the adaptive control algorithms under weaker con-
ditions. The proper selection of initial and target feamre points as well a3
the selection of L, along with the careful design of the estimation scheme
can guarantee continvous nonsingularity of the matrix BT (£) Q B (k) + L as
described in the experimental section of this paper.

5. Experiments

The theory was verified by performing a number of experiments on the
MU DD Amn I (Direa-Drive Arm II) robotic system. A detailed
description of the hardware configuration of CMU DD Am II is given in
[3]. The camera is mounted on the end-effector. The real images are
510%492 and are quantized W 256 gray levels. The focal length of the
camena is 7.5 mm and the objects are static (the initial depth of the objects’
center of mass with respect to the camera frame Z, is varying from 500 mm
o 1000 mm). The camera’s pixel dimensions are: s =0.01278 mmJpizel
and :,=0.00986 mm/pixel. The maximum pemnissible translational velocity
of the end-effector is 10 an/sec, and each one of the components (roll,
pitch, yaw) of the end-effector’s rotational velocity must not exceed 0.05
rad/sec.

Our objective is 10 move the manipulator so that the image projections of
features of the object move w0 desired positions in the image. The objects
used in the servoing examples are books, pencils, items with distinat
features (Fig. 2). The user, by using the mouse, proposes (o the system
some of the object's features. Then, the system evaluates on-line the quality
of the features based on the confidence measures described in (3). The
same operation can be dooe astomaticajly by s computer process that runs
oace for approximately 2 to 3 secs, depending on the size of the interest
operators which are used. The three (this is the minimum number of
required features) best features are selected and used for the robotic visual
servaing task. The gize of the windows is 10x10. The experimental results
are presented in Fig. 3-5. The gains for the controllers are Q= I; and
L = diag{0.025,0.025,02S, 2x10%,2x10°,2x10%). The delay factord
is 2. The computation of the [Br(k)QB(k)+L]' matrix is done on a

Heurikon 68030 board. We use two different techniques for its computa-
tion. The first technique performs a Singular Value Decomposition (SVD)
of the 6x6 matrix based on a routine given by Forsythe [14]. This routine
uses techniques such as the Houscholder reduction to bidiagonal form and
diagonalization by the QR method. The computation of the inverse is based
on the results of the SVD routine. The computational time for the first
technique is 30 ms. The second technique is based on the panition of the
matrix K (k) = BT (k) Q B (£) + L into four submatrices {6] {S}:

[ K, ® K3 ®) ]
K, ) Ky, (6)

Goodwin {5] shows that the inverse of K (k) is given by:

Kk =

N;' () -N (K, (W K5 ()
K-! x = ]
-N' (DK, BK;] () Nt (k)
where N, (=K, 0)-K; WK (DK, (%), and N, (=K, (b~

K, 0K K, ().

We can reduce the complexity of matrix inversions by using simple matrix
algebra and the matrix inversion lemma (5]. Therefore, we can derive two
new forms for K} (k) which require only the inversion of two 3x3
matrices. The first form is {6]:

[K;1 ) (L + K, (DN DK, WK (0} -K K, 0 N () ]

K')e

L -N'OK,K® N'®)
The second form is similar to the first form and is given by:

i N'w

=N (DK, (D KZ ()
K'®)=

-1 Ky (1) N (0 KGO (1 + Ko, (DN (DK, ) KSE (1)

By using the previoas forms, we are able 10 reduce the computational time
of the 6x6 matrix inversion 10 10 ms. Thus, the total computation time
(image processing and contral calculations) is spproximately 200 ms. The
inversion of the two 3x3 submatrices is done based on the sssumption that
the submatrices are inventible. Thus, the singularity of the submatrices
thould be checked every period 7. The initial and the estimated values of
the coefficients of the ARX models are given in the Table 1. In the
experimental results (Fig. 3-5), we check the efficiency of the various
proposed estimation and control schemes. The experimental results present
a small steady-siate ervor which is due to image noise and strict constraints
on the rotational motion of the manipulator-camera system.

o | P | 00 || P (P
Initial 04175 { 0.4175 | 0.4175 0.1 0.1 0.1
Estimated | 0.9435 | 0.9389 | 0.8594 | 0.0015 | 0.0014 | 0.0014

Table 1: Initial and estimated values of the parsmeters for visual servoing
when a PD with gravity compensation cartesian robot controller
is used.

6. Conclusions

The problem of robotic visual servoing (eye-in-hand configuration) around
a suatic target is addressed in this paper. The specific problem can be stated
a3 “find the motion of the manipulstor that will cause the image projections
of certain feature points of the rigid static target to move to some desired
image positions.” The solution of this problem has numerous applications.
Visual control can enhance the performance of industrial robots in as-
sembly lines; improve the alignment of the object with the csmena in
automatic inspection systems; improve the automatic assembly of
electronic devices (surface mount technology); make possible aatonomous
satellite docking and recovery, snd finally, it can improve the efficiency of
outdoor navigation techniques. This paper proposes an adaptive coatrol
scheme for an adequate solution. We claim thst we should address the
problem by combining vision and control techniques. The method fol-
lowed includes a mathematical formulation of the problem, followed by the



introduction of adaptive control schemes for the case of inaccurate
knowledge of some of the system’s parametcrs (relative depth, noise
model). Next, a stability snalysis and an establishment of the minimum
number of required feature points are performed. Finally, the implemen-
tation of the algorithms on our experimental iesibed, the CMU DD Am I
robotic system, is presented. The real-time experiments show the feasibility
and efficiency of our algorithms. jssues for fumre research include the
introduction of the manipulstor’s mechanical consinraints in the whole
formulation, the explicit incorporation of the robot dynamics in the al-
gorithms, the use of other features such as edges for measuring the servoing
errors, the introduction and use of “snakes” for contour servoing, and the
use of the 3-D target modeld in the servoing scheme.
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