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Abstract 

This report presents a general method to compute configuration space (c-space) obstacle surfaces 
(c-surfaces) in planar quaternion space and for projecting points onto them. We parameterize the 
general c-surface using the rotation angle and the vector of translation parameters of the individ- 
ual contacts. Once we compute the domain of the rotation parameter, we can setup the translation 
parameters in a linear equation. The singular value decomposition of this equation gives us with 
the exact parameters of translation. We extend the theory to project a point in c-space onto the c- 
surface. 

We implement our theory on the Assembly Plan from Observation (APO) system. The APO 
observes discrete instants of an assembly task and reconstructs the compliant motion plan 
employed in the task. We compute the contacts at each observed instant and the corresponding c- 
surface. We then interpolate the path on each c-surface to obtain segments of the path. The com- 
plete motion plan will be the concatenation of the connected path segments. 
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1 Introduction 
Consider three cases of an object in contact in a plane as shown in Figure 1. We are given an 
approximate configuration of the object with respect to its environmental objects. We can 
deduce the contacts made in each case as indicated by the ellipses in the figure. Using these 
contacts we want to describe the freedom of the object as shown by the parameters in bot- 
tom half of the figure. We would also like to correct the configuration in each case as shown 
in bottom of Figure 1. 

Figure 1 Examples of Contact Configurations 

When an poiygonal object maintains a set of contacts with another, its configuration in c- 
space will be constrained to a surface called the c-surface as shown in the center of Figure 1. 
This c-surface can be described in terms of a few independent parameters. The c-surface 
representation of the basic vertex-on+dge (ve) and edge-on-vertex (ev) contacts can be 
defined by a rotation parameter and a translation parameter d. For multiple contacts the c- 
surface will be the intersection of the c-surfaces of the individual contacts. Our work shows 
that the parameters of the intersecting surface can be expressed in terms of the parameters of 
the individual surfaces in a partly linear manner 

Much work has been done in computing the c-surface in the field of motion planning. The 
representation of the c-surface is directly dependent on the representation of the c-space. 
The simplest c-space representing planar displacements is the (x,y,O) space. Brost[2] and 
others[ 11 have studied c-surfaces in this space and derived the equations for them. The dis- 
advantage of the (x,y,O) space is that the space is not homogenous which makes the repre- 
sentation difficult. Another approach is to use planar quaternions to represent the c-space as 
was done by Ge and McCarthy[3]. The advantage of using planar quaternions in represent- 
ing rigid body displacements is that all the group properties of displacements are preserved 
in it unlike the (x,y,€l) representation[g]. Thus the algebra of planar quaternions can be used 
to simplify the representation of the c-surfaces. 

Our c-surface formulation is based on planar quaternion approach proposed by Ge and 
McCarthy. Unlike the algebraic method proposed by them to compute c-surfaces, we use the 
structure of the planar quaternion equation of the basic ve and ev contacts to make the prob- 
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lem quasi linear. The structure of the c-surface equations for the basic contacts is such that 
the rotation part of the quaternion equation is separate from the rest of the equation. We use 
of this characteristic to make the representation of the general c-surface quasi-linear. We 
choose the rotation parameter to be the same as the rotation angle of the object and the trans- 
lation parameter 10 be the vector of the translation parameters of the individuai contacts. 
This makes the translation part of the c-surface representation a linear matrix equation. The 
singular value decomposition (SVD) of this equation then provides us with the exact param- 
etrization of the translation of the c-surface. 

Once we have the representation of a c-surface corresponding to a set of contacts, we can 
compute the projection of a c-space point onto it. Again we exploit the separability of rota- 
tion to compute the projected point in a quasi-linear manner. First we project the c-space 
point onto the rotation space and obtain the values of the rotation parameters. Then we setup 
the translation parameters as a linear equation. The values of these translation parameters of 
the projection can then be obtained using least square minimization. 

A major advantage of this quasi-linear approach is that it is possible to handle any number 
of contacts without having to enumerate all possible configurations. Another key benefit of 
the planar quaternion approach is that the theory is scalable to 3D space from the planar case 
by replacing planar quaternions with dual quaternions. 

We implement our theory on the APO system. The system observes discrete instants of a 
human assembling an object and reconstructs the path used during the assembly. We com- 
pute the contacts at each observed scene using the geometrical models. Given the geometry 
of the features in contact we can find the c-surface corresponding to it and also the projec- 
tion of the observed configuration on it. Given a series of discrete points lying on the same 
c-surface, we can interpolate a continuous path through them by using the parameters of the 
c-surface. The complete motion plan is then a series of connected path segments lying on 
adjacent c-surfaces of the c-space obstacle. 



2 Related Work 
Most of the related work is in the field of motion planning for robots. The main idea in all 
such work is the analytic computation of the configuration space obstacies given the geome- 
try of the features in contact. One essential difference in these works is the type of represen- 
tation of the configuration space. 

Computing c-surfaces for polygonal objects in a plane in (.r,y,tl) space was done by BrostL2J. 
This work elucidates all possible contact configurations and individually derives the equa- 
tions for the c-surfaces corresponding to them. We used this work to impiement the first ver- 
sion of the APO system. Unfortunately the work has no counterpart in 3D. 

Ge and McCarthy[3] [8] introduced four dimensional planar quaternions (z1,z2,zgzj)  to repre- 
sent c-surfaces. Their work specifically deals with c-surfaces for a planar manipulator in 
contact with objects in the plane. The configuration space in their work involved the joint 
angles of the planar robot. 

Our work uses the essentials of the contact representation of Ge and McCarthy. We use it to 
build the c-space obstacle surface corresponding to multiple contacts. While their work uses 
algebra to compute the c-surfaces, we use the characteristic of the contact equations to make 
the computation quasi linear. 

Work by Suehiro[lZ] et al uses an iterative method to compute the correct configuration 
given a set of face-on-face contacts of an object with the environment. This work does not 
use the concept of c-surfaces. 



3 Planar Quaternions 

- 

~cos(') 2 + :sin(:: 

e Y  + ?cos(- 0 
2 

sin(:) 

C$) 
- 

The displacement of an object in a plane can be represented by its translation parameters 
(x ,y)  and the rotation parameter 8. The (x,y,8) space is a three dimensional projective space 
in the four dimensional pianar quaternion space. 

3.1 Representation of Displacement 

The displacement of an object in a plane can be represented by its translation parameters 
(x,y) and the rotation parameter 9. The displacement can also be represented by the rotation 
angle 9 about the pole (p,  py) both of which are intrinsic properties of the displacement. The 
pole for the displacement (x,y,0) is given by (1). 

The planar quaternion representing a displacement (x,y,0) is a vector of four numbers, 2 = 
(z,,z2,z3,z4). It is assembled from the pole and rotation angle as given by (2)[8] .  

Given a planar quaternion Z we can compute (x.y.8) using (3). 

9 = 2atan(z3,z4) 

x = 2(z1z4-z2z3) ( 3 )  

Y = 2(2123+z*z4)  

One of the advantages of using dual quaternions is the ease of composing transformations. 
The composition of two displacements represented hy quaternions X and Y will he given by 
the quaternion product 2 = XY = [X+]Y = [Y']X,  which is defined by a matrix product as 
shown in (4). 



We can see from ( 2 ) ,  (3) and (4) that the rotation part of the planar quaternion is isolared 
from the rest of the quaternion. We will show how this characteristic can be taken advantage 
of when representing c-surfaces later. 

3.2 Representation of Basic Contacts 

For planar objects in contact there are two basic contacts, a vertex-on-edge (ve) contact and 
a edge-on-vertex (0) contact as shown in Figure 2. All other contact configurations can be 
expressed as a combination of these basic contacts. The c-surface corresponding to basic 
contacts can be represented by a constraint equation in the planar quaternion space[3]. 

Ye-contact ev-contact 

Figure 2 Basic contacts 

Let the coordinate systems on the vertex and edge are defined as shown in Figure 2. The rel- 
ative configurations of the two coordinate systems can be expressed in terms of two parame- 
ters 41 and d. as given by (5)[3]. This is the c-surface of the contact. The equation is the same 
for both ve and ev contacts except for the variable E which is + I  for ve contact and -1 for eu 
contacts 



We can write the translation part of the planar quaternion in terms of the rotation part and 
the d parameter as a matrix equation as in (6 ) .  

3.2.1 Representation in World Coordinates 
In real life the configuration of the objects are defined in terms of a world coordinate system 
as shown in Figure 3. Thf= (f,f2f3f4) is the quaternion representing the transformation of the 
fixed feature with respect to the world coordinate system. T,, = (m,,m,,rn3,m,) is the quater- 
nion representing the transformation of the moving feature with respect to the object coordi- 
nates. X(@,d) = (y,.y2,y3,y4) is the quaternion representing the contact. The configuration of 
the moving object with respect to the world is ZbI = (zI,z2,z3,zq). The relation between the 
transformation of the objects are as shown in Figure 3, 

Figure 3 World Coordinates 

We can express the configuration of the object in terms of the contact quaternion as shown 
in (7). The eight terms in the matrix (PI, t2...f8) can be computed from the quaternions repre- 
senting the transformations T, and Tm,. both of which are known from the geometry of the 
objects in contact. 
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Once again we see that the rotation is separate from the rest of the quaternion. This makes it 
possible to split the constraint equation into two parts as shown in (8) and (9). 

3.2.2 Limits on Parameters 
In order for the contact to be legal the two variables @ and d can vary only within limits. The 
lirmts for the variable Q are from (0, q,) where a, is the exterior angle of the vertex. The lim- 
its for the variable d are from (0, I,) where I ,  is the length of the edge. 



4 C-Surface Representation 
We now formulate the general representation of c-surface for a set of ve of ev contacts. The 
c-surface corresponding to the set of contacts will be the intersection of the c-surfaces of the 
individual contacts. Generally, the number of parameters needed to define an intersection of 
c-surfaces is lesser than that of the component c-surfaces. We parametenze the general c- 
surface as follows. We use the rotation angle 0 of the object as one parameter. We then make 
a vector of the parameter d of the individual c-surface, (d,, d2, ...). We will show how the 
constraints from the individual contacts can be used to constrain the elements of the d vec- 
tor. We illustrate the idea by generalizing from the set of one and two contacts to multiple 
contacts 

4.1 One contact 

When there is just a single contact, the c-surface is the same as the basic contact it is made 
of. The parameters are 0 and (d). The limits of 0 can be obtained by mapping the limits of @ 
into 0 using (3). The parameter d is the identical to and has the same limits as the d of the 
basic contact. 

4.2 Two contacts 

When there are two simultaneous contacts in a plane there can only be two possibilities as 
shown in Figure 4 and Figure 5. 

Figure 4 Example 1 of the two contact case 

Figure 5 Example 2 of thc two contact case 
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4.2.1 The 0 Parameter 
Using (8) and (3), we can compute the values of the rotation parameter 0 for the two con- 
tacts @, and @2 for any rotation in the configuration Z of the object as shown in (10) and ( I  I). 

But all values of 0 may not be legal. The legal range of 0 can then be computed by mapping 
the limits of + I  and 4 1 ~  into a unit circle representing 0 as shown in Figure 5(b). The legal 
range is the intersection of the two ranges of 0, and &. In the case of the contacts shown in 
Figure 4 the range is 0 to 90, On the other hand the range for the contacts shown in Figure 5 
is single valued at 0. In the former case the rotation is a variable parameter defining the c- 
surface. In the latter case the rotation parameter is constant. 

4.2.2 The d Parameters 
The d parameters d, and d2 can be expressed in terms of the angle parameters as given by 
(12)and(13). 

Equating (12) and (13) we get the constraint equation involving the dparmeters as given in 
(14). If we are given the geometry of the contacts and the rotation 0, The d parameters can 
be obtained by solving the linear equation of the form AX=B. 

The solution X of this equation can be obtained using the singular value decomposition tech- 
nique as given by ( 15). 
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If A is non-singular as in the case of contacts in Figure 4 then there will be a unique X for 
every 0. In this case the ds are not independent parameters defining the c-surface. The more 
interesting case is when A is singular as in the case of Figure 5. In that case the columns of V 
corresponding to the singular values will correspond to a degree of freedom of the c-surface. 
The number of parameters will be the same as the number of singular values and the pararn- 
eters defining the c-surface will be the variables k,. 

4.3 Multiple contacts. 

We can easily generalize the two contact case to the case of N contacts. The parameters in 
this case will be 0 and (d,, dz ,... dN). 

4.3.1 The 0 Parameter 
As for the two contact case we compute the range of €I for every contact using the limits of @, 
for all N contacts using (16). We then intersects the ranges of 0 to get the range of 0. If the 
range of 0 15 a single value, then the e is not a parameter defining the c-surface. If it 1s not 
single valued then e will be a parameter defining the c-surface. 

4.3.2 The d Parameters 
The individual d parameters, d, can be expressed in terms of the angle parameters as shown 
111 (17). 

Equating A' pairs of contact equations (17) we can construct the constraint equation invoiv- 
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ing the d parameters as given in (18). If we are given the geometry of the contacts and the 
rotation 8. the d vector can be obtained by solving the linear equation of the form AX=B as 
shown in (19). 

_ _  
0 ... 0 
. . . . . . . . . . . .  

. . ~  0 i+ 1 
-C 

. . . . . . . . . . . .  
0 ... c"- 

- 
I d 

- 
di - 

p"- 

- 
c' -c2 0 
. . . . . . . . .  

i 0 ... c 

. . . . . . . . .  
-2 0 0 

1 2  
b - h  

~ . .  
bi-bi+ 

... 
N 1  

b - b  

The complete solution X of this equation can be obtained using the singular value decompo- 
sition (SVD) technique[l I ]  as given by (20). According to the definition of the SVD, the 
diagonal matrix W contains the singular values. The matrix [W'l-' is obtained by replacing 
the non-zero diagonal elements with their reciprocals. The columns of the matrlx U corre- 
sponding to the non-singular values spans the range of A. Whereas the columns of the 
matrix Vcorresponding to the singular values will span the null-space of A. 

If A is non-singular, then there will be a unique X for every 8. In this case the ds are not inde- 
pendent parameters. The more interesting case is when A is singular when the columns of V 
corresponding to the singular values will correspond to degrees of freedom of the c-surface. 
The number of parameters will be the same as the number of singular values and the param- 
eters of the c-surface will be the variables k,. 
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5 Projection onto C-Surface 
Given any point in configuration space, its projection onto a c-surface will be the closest 
point on the c-surhce. If the c-surface is represented using the parameters as explained in 
the previous section, the projection can he completely determined by the values of the 
parameters defining the c-surface. The projection can be done in two steps ZE was done with 
the representation. First we compute the value of 0 for the point, then we project the point 
onto the d space. We illustrate the projection for the one contact and then for the multiple 
contacts. 

5.1 One contact 

5.1.1 Projection onto 9 space 
Given the configuration in c-space Z = (zI.z2,z3,z4J we can use equation (8) to compute the 
parameter 9 for the c-surface. We first map the limits of the contact angle 4 to 6 using equa- 
tions (8) and (3) .  The closest value to this legal range is the angle of the projection. 

5.1.2 Projection onto d space 
Once we have 9 computed, we substitute the corresponding (y3, y4)  into (21). 

We can set up the linear equation with d as the unknown as shown in (22). 

Note that this is an over constrained equation in d. The value of d in the least square sense 
can be obtained by using SVD. 

5.2 Multiple Contacts 

An example of a projection of a given approximate configuration for a two contact case is 
shown in Figure 6. The projection is done by first projecting onto the 9 space followed by 
the projection onto the d space. We directly proceed to the method of projection for the mul- 



tiple contacts case. 

N] 
[ I  i 
c ... c ... c 

C 

(a) (b) 

Figure 6 Projection for a two contact case 

5.2.1 Projection onto kl space 
We compute the legal range of the parameter 0 of the c-surface as explained in the previous 
section for multiple contacts. We then find the closest value of the range to the given object 
rotation angle as shown in Figure 6(b). 

5.2.2 Projection onto d space 
We use the computed 0 to obtain the ( y i ,  y,') and substitute them into (23). The Nequations 
ai-e then summed into a single matrix equation as shown in (24). 

- 
d' 

": - ; [ r Y - b g  (24) d' - 
i = l  % ... 

-dN- 
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Equation (25 )  can be written as a linear equation in k,, as shown in (26) which can be solved 
in the least square sense (using SVD). 

Once we get the values of 0 and kj, we can substitute them into (20) to obtain the values ofd 
vector. This will completely define the projected point in configuration space. 
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6 Implementation 
We implemented the theory developed in the previous sections on our Assembly Plan from 
Observation system which programs robots €or assembly tasks by demonstrating the task. 
Automatic planning of robots for assembly typically involves the combinatorics of comput- 
ing all possible contacts to build the configuration space (c-space) obstacle, and then search- 
ing for a feasible path in c-space. Unlike that approach, our system computes only the 
features of the c-space obstacle which are relevant to the observed assembly task. In addi- 
tion, our system reconstructs a feasible path, instead of searching for one. 

We use a real time vision system to record the assembly task. We then recognize and track 
the parts in each observed scene. The position and geometry of the objects are used to find 
the contacts between the objects in each observed scene. Using this, we identify the distinct 
contact configurations involved in the assembly task. Next, we analytically compute the fea- 
ture on the c-space obstacle corresponding to each observed configuration. We then use the 
observed configurations to reconstruct the path segments lying on each computed c-space 
obstacle feature. These path segments constitute the model of the assembly task. Finally, we 
can use the modeled path to program a robot to repeat the assembly task. 

6.1 Observation of the Assembly Task 

The analysis of human assembly actions is based on the relations between the hand and the 
assembled parts at every instant of the assembly. Parts of the assembly task, such as during 
the compliant motion, consists of relatively small but significant motion. We capture this 
motion by recording the human assembly using a real-time stereo system [5]. The stereo 
images give us a sequence of dense and accurate 3D images of the scene. The assembled 
parts are then identified in the initial scene and tracked continuously through the whole 
sequence using a robust localization algorithm. 

&l,I Localization and Tracking 
We use a geometrical modeler called Vantage to build the models of the assembled parts. 
These models are then used to localize the parts and fingers in the scene using a 3D template 
matching algorithm called (3DTM) [13]. The 3DTM has features which make it well suited 
for localization in assembly scenes where occlusion and noise are inevitable. 

The 3DTM can localize an object in a 3D scene, given a rough estimate of the location of 
the object in the scene. The algorithm uses sensor modeling, probabilistic hypothesis gener- 
ation and robust localization techniques to make localization fast and accurate. We extend 
the localization algorithm from localizing one object in one image to tracking multiple 
objects in a series of images. We achieve tracking by using the previous locations of each 
object to compute the starting location for the next localization. 

The pose of each object in a scene is given by (x,y,z,O,$,yr) in a global reference frame as 
shown in Figure 7. The output of the localization is a list of poses of the objects in the scene. 
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The output of the tracking system is a list of list of poses of the objects being tracked. 

+ 

4 

Figurr 7 Assembly scene coordinates 

The APO system uses the geometrical modeler called Vantage to create scenes of the task by 
instantiating models of the assembly objects at their observed poses. The sequence of 
observed poses of the peg during the peg in hole task is shown in Figure 8. The localized 
models of the peg and hole are superimposed as dark triangulated meshes on each of the 
observed intensity images. 

Figure 8 Object tracking in the observed scenes (only of the 70 scenes are shown here) 

It should be noted that the raw pose obtained from the observation system is error prone. 
Despite this, we can extract the essential contact information in each observation, and use it 
to reconstruct the path. 
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6.2 Assembly Contacts 

The key information in an observed scene of an assembly task is the contacts that are made 
between the assembled object and the environment. This involves identifying the feature 
pairs which are in contact. 

Each feature pair in contact involves a feature of the assembled object (vertex and edge for 
polygonal objects) and a feature of the objects in the world as shown in Figure 9. 

ve ev 

Figure 9 Types of contact pairs 

Given the pose of the assembled object and the objects in the world, we can obtain the 
geometry of each feature of the assembled object and that of the other objects in the environ- 
ment from the geometrical modeler, Vantage. We then check each feature pair for contact 
using the contact condition. For vertex-on-edge (ve) and edge-on-vertex (ev) contacts, if the 
vertex coordinates are (v ,v ) and the edge equation' is e,x+eby + e ,  = 0 ,  then the primary 

x ; Y  condition for the pair to be in contact is given by (27). 

e,v,te  b y  v +e,<6,c (27) 

In addition, we check if the projection of the vertex lies within the end points of the edge. 

All possible contact configurations can be expressed as a combination of these ve and ev 
contacts. Thus, for every observed configuration oil of the assembled object we end up with 
a set of feature pair sets in contact {q,, ci3...}. 

6.3 Observations to Motion Plan 

The output of the observation system is list of observed configurations of the assembled 
object, / o I ,  oz, ... o J. The system instantiates the models of the assembled objects at each 
observed configuration, 0,. The next step is to find the feature pairs which are in contact €or 
each o, of the assembled object using the contact condition (27). Given the approximate con- 
figurations of the assembled objects and the set of contacts we can compute the c-surface Ci 
as explained in section 4. 

We then segment the observed configurations lol ,  ob ... o J into contiguous segments {S,, 
S,.... SJ such that the c-surfaces for all observations in a segment S,  have the same c-surface 
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C,. 

Next we interpolate a continuous path through the projections of the observed points on 
each c-surface. The continuous path segment is obtained by interpolating in the parameter 
space. Any point on this curve will maintain the same contacts c,. This will be the path seg- 
ment PS,. An example of this interpolation for a single ve contact in (0,d) space is shown in 
Figure 10. 

.d collfimratinn 

Figure 10 C-surface corresponding to a ve contact 

The complete compliant motion path for the observed assembly task is then the concatena- 
tion of the path segments PS,. The reconstructed path in c-space of the peg in the task 
observed in Figure 8 is shown in Figure 1 1. 

Figure 11 Path of the peg in configuration-space 
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The path segment so shows the path the peg in free space. This is considered special because 
no contacts exist. This path usually avoids obstacles. Hence unlike other path segments, this 
path is interpolated between all observed configuration points. The path segment s, corre- 
sponds to the single ve contact that is made initially. The segments, corresponds to the sin- 
gle ev contact following s]. s, corresponds to two ev contact. Finally, s, corresponds to the 
multiple ev and ve contacts when the peg is in the hole. The modeled path in c-space will 
correspond to the motion of the assembled peg as shown in Figure 12. 

Figure 12 Path of the peg in Vantage 
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7 Conclusions 
We have developed a general quasi-linear method for computing the c-surfaces for polygo- 
nal object in contact in planar quaternion space. We extended the theory to compute the pro- 
jection of a point in c-space onto the c-surface. 

We are able to implement the theory to model the compliant motion path of planar assembly 
tasks from observation. We reconstructed the path by first computing the c-surface and pro- 
jection onto it. Then we computed the path segments lying on these c-surfaces. The con- 
nected path segments constitute the model of the observed assembly task. 

We can scale the theory from the planar case to 3D space by replacing planar quaternions 
with dual quaternions. We plan to extend our APO system to model the assembly path of 3D 
polyhedral objects in 3D space. 
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