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Abstract

Key to the autonomous exploration of an unknown area,
by a scientific robotic rover is the ability of the vehicle
to autonomously recognize objects of interest and
generalize about the region. This paper presents a
Bayesian framework under which a mobile robot can
learn how different classes of objects are distributed
over a geographical region, using imperfect
observations and non-random sampling. This yields
dramatic improvements in classification accuracy by
exploiting the interdependencies between objects in an
area and allows the robot to autonomously characterize
the region. This is demonstrated with data from
Carnegie Mellon University’s Nomad robot in
Antarctica, where it traversed the ice sheet, classifying
rocks in its path.

Introduction

For many tasks involving the robotic searching and
exploration of an area to find and identify objects, it is
necessary to characterize the operating environment. To
classify objects using onboard sensors, the likely
candidates and potential false targets must be known in
advance. In addition, to optimally classify objects their
prior probabilities of being encountered must be known.

Unfortunately, it is difficult to know « priori the relative
chances of finding different objects in an unexplored
area. Consider the problem of classifying rocks from a
robot for the purpose of geological exploration. There
are many possible rock types, some hard to distinguish
from each other. A geological map, if available, only
indicates the most common rock type over a very large
area. It does not indicate all rock types or their relative
probabilities, and ignores small-scale variations. The
latter is very important, as the kinds of rocks present can
change significantly over a short distance, such as when
crossing geological strata.

The standard approach to classifying objects is to
consider each one independently, and classify it based
on observations. However, objects in an area may be
correlated, exploiting this can significantly increase
classification accuracy. It is common for objects of the
same type to be clustered together.

This paper will show a Bayesian approach to using the
dependencies between objects distributed over an area
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by learning the statistical prior probabilities for different
objects as a function of position, and specifically from
the perspective of exploring an area with a mobile robot.
Classification is thus improved not only by exploiting
spatial dependencies, but also through improved
knowledge of the priors. Furthermore, a map of prior
probabilities over a geographic area is itself a useful
summary with which to characterize the region and
recognize gross properties.

This work is applicable to a variety of tasks involving
the classification of objects distributed across an area,
such as geological exploration, landmine removal, or
soil profiling for agriculture. However, this analysis
focuses on the problem of identifying the abundances of
different rock types in an area of the Antarctic ice sheets
using a scientific robotic vehicle, Nomad (Figure 1),
built at Carnegie Mellon University to look for
meteorites in Antarctica [1].

Figure 1 Nomad robot in Antarctica, investigating rocks
with a spectroscopic sensor to classify them.

Autonomously identifying rocks with a robot is a
challenging task with a high error rate [2]. It is highly
relevant to the next generation of planetary rovers for
exploring Mars, intelligently selecting samples for return
to Earth, and incorporates the issues that arise when
classifying objects from a mobile robot.

Robotic learning of the environment

. Using a robotic vehicle to explore an area introduces

unique issues.

e Sampling is not random. Rocks are examined by the
robot as it traverses a path through the terrain of interest,
leaving areas unexplored (Figure 2). The uncertainty
about what is found in these areas must be noted, and



used to constrain subsequent changes in beliefs about
the area as new data is added.

Figure 2 Modus operandi of a robotic explorer. Only
selected samples are visited in a large area, and they
are not randomly distributed, but lie along the robots
path.

e Relatively few rock samples are examined. The
Nomad robot (Figure 1) obtainzsd measurements of no
more than 50 rocks in 2 days. To make matters worse,
there are many possible rock classes [3]. The rock
probabilities must be therefore be initially coarsely
defined and subsequently improved if and when data
becomes available.

¢ Rock samples cannot usually be identified with
complete certainty. Rather, when sensor data is obtained
from a rock sample, only the likelihoods of different
rock classes generating that data is known.

e The probabilities of different .rock types are
conditioned on geographical position, a continuous 2D
(or 3D) quantity.

While machine learning and statistical estimation are
mature fields, little prior work directly addresses the
problem of characterizing a geographical area for the
purposes of classification. The evidence grids of [4] are
used to model the likelihoods of obstacles in an area.
However, they fail to account for statistical
dependencies between objects and require that space be
discretized into a grid.

[5]1 and [6] survey strategies for either autonomously
searching an area, given a prior description of the
geographical distribution of targets, or exploiting the
knowledge that targets tend to cluster together. They do
not address how this information is obtained in the first
place.

Representing the rock priors over an area

Consider the parameter 6, = [6,,,....8.,,], representing

the relative proportions of each rock type present at a’

geographic location x, and the random variable Ry the
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rock type (class labels 1, 2... M) of a rock sample found
at there. Therefore

M
6,0, €011, Y0, =1 &
i=l
P(R,=k| 0, )=PR,=k| 6,)=8, @
P(R,=k)=E{0,,} (3)
6, is itself a random variable and depends on position.

Furthermore, knowing its distribution allows the
determination of the rock type priors at x (3). Therefore,
the problem of learning these priors is solved by
learning the distribution of éy at all positions y, given a
sequence of robot sensor observations { O, [i=1,2...N}

made at locations {x; | i = 1,2...N}. To do this it is
necessary to model the statistical relationships between
§y, the rock types of each rock sample, and the

associated observations. Consequently we will show
how to compute p( 0:, }Ox’ ), the posterior representation

of the rock priors over the area, and how to use it to
improve classification.

Pseudo Bayes network generative model

rock type priors 6 as function of position

N

- rock tyb'g;“g

R,

observation

o,

observation

O,

Figure 3 Pseudo Bayes network generative model of the
statistical relationships between position (x,y), relative
proportions of different rock types at those positions
(6,. 8,), type of rock samples found (R,, R,), and the

observations on those samples (O,, O,).

It is reasonable to assume that the rock type of a sample
at any given location x is conditionally dependent only
on the local rock ratios éx, and sensor observations of a

rock depend only upon its type (Figure 3). Therefore, for
any positions x,y, and rock type k € {1,2,...,M}



PR, =k|6,,6,,R)=P(R,=k|6,)=0, )

No assumptions are yet made on the relationship
between g, and 9_,,, which is not usefully expressible in
terms of a standard Bayes network diagram.

Furthermore, (4) implies that

P(R, =k|0)) (%)

= [[P(R, =k16,.6,)p0,0,)d8,

= [0,{] 1(@.16,10,,..d6,,..d0...d0,, 16,
= Je,x‘k PO, | éy )do

= E{0, | 9—,}

a result that will be used subsequently. See [7] for more
on the Bayes network representation of statistical
relationships.

Geographical models

Consider the case when rocks can be identified with
complete certainty. Suppose a rock at position x is
determined to be of type k. Then, using Bayes rule, the
posterior density of éy is given by
P(R, =k10,)p@,) ©)
P(R, =k)

p@,|R, =k) =

_E{6,16,1p0,)
E{exk }

To clarify the functional relationships it is convenient to
define

M

"x=y

S XEY

_ 0

Then, the posterior density e—y given the definitive

observation is simply expressed in terms of M, (éy; X, y)
M, (6,:x7)p@,) ®)

PO, R =k = =

The function Mk(éy; X, y) is fundamental to determine

how a rock find at the location x affects the rock ratio’s
at all other locations y (including x). In recognition of
the functions importance it will be henceforth referred to
as a geographical model, as it describes the statistical
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relationships between samples at different geographic
positions.

Properties of M, (91,;x,y)

The geographical model Mk(e_y; X, y) is a complicated

multi-variate function, determined by the underlying
geological (or other) mechanism by which different rock
types are distributed across an area. Nonetheless,
applying reasonable assumptions it is possible to
constrain it and make it tractable without going into the
details of the (unknown) underlying mechanism.

o Small influence at a distance

Observations at a distant location should have little or no
relation to the rock ratios at the current location. This
assumption can be formalized as

M, (6, J’)W Ef6,. } ©)
Following this it also reasonable to assume some finite
cut-off distance, beyond which measurements have no

effect:

(10)

For some distance D > 0
|x—y| >D$Mk(6—y;x,y)=E{0xk}.

e Decreasing influence with distance

Not only should observations at locations distant to each
other be largely independent, but the dependence
between observations should never increase when the
distance between them is increased. While motivated by
the previous statement, this is a stronger assumption.
Formally:

For any locations x, y, z s.t. [x-y| > |x-z|

iMk (éy;x’ y)_E{exk}l < ’Mk (éz;x’ Z)iE{exk}' .

(11)

e Smoothness assumption
M, (éy;X, y) should vary smoothly with x and y. This is

consistent with natural laws and not very restrictive.
However, relaxing this slightly to allow a discontinuity
at the finite cut-off distance may be convenient.

o Spatial invariance and isotropy
This assumption requires that Mk(éy; X, y) be solely a

function of the distance |x-y| between samples, and not
depend on their individual positions or the direction
from one to the other. However, this is inconsistent with
the previous assumptions, which require explicit
dependence on x. Nonetheless, if this dependence can be
explicitly accounted for and functionaly separated from



the rest of Mk(éy; X, y), then spatial invariance and

isotropy are desirable and reasonable properties,
provided that the geographic area of interest is not too
large.

e Conjugacy requirement

This is “the most restrictive and useful of the
assumptions, requiring that for all positions x,y, and rock

types k, the prior distribution of rock ratios p( O—y ) is the
same class of distribution as the posterior p(éy (R, =k)-

Conjugate prior distributions are computationally
convenient and the prior is easily interpretable as earlier
measurements.

It is natural to represent p( év) by a Dirichlet distribution

[7] with parameters Oly;...0lyy

p(6,) = Dirichlet(8 ; oy ... Oy ) (12)

D@, et )

6 Ay =1
Ia,).Ta,)

~Ym

Ensuring that P(§y| R =k) is also a Dirichlet

distribution requires that

M, (6,;x,7) = .
Z,(x,)8, 0.0, P

which guarantees from (8) that

PO, IR, =k) = "

Dirichlet( év; 01t Bi(%,¥,K), .., 0t Bu(x,y,k) )

The small influence at a distance assumption (9) implies
that
Z,(x )~ Blou

[x=y| e

(15)

B.(x,y.k) o0

Introducing the finite cutoff of (10) implies the limits are
attained when x and y are separated by a finite distance.
The assumption of decreasing influence with distance
(11) means that Z, and B,...pm never get further from
their limits as [x-y} increases. They are smooth functions
as M, (;x,y) is assumed smooth.

Note that computation of the posterior distribution
requires only that B(x,yk)...Bm(xyk) be specified.
Z(x,y) is implicitly defined by normalization of the
posterior in (8). Furthermore, Z,(x,y) accounts for the
spatial dependence of M, (;x,y), making it possible to
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assume  spatial  invariance and  isotropy for
Bi(x.y.k)...Bux.y.k). That is, Bi(x, v, k) = Bi(le-], k).
Uniform:
.Bk (x,y) =
0 |x-yp>D
, 1 |x-yiKD
0
. Exponential:
ﬁk (xa ,V) =
0 |x=y|>D
. e |x-y|<D
5
Gaussian:
4
ﬁk (x> y) =
0 |x=y|>D
~Lfeenf
4N e’ [x-ylsD

Figure 4 Possible formulae for the functions ByX.y).
While ad hoc, they satisfy all the restrictions on Byx.y),
including spatial invariance and isotropy. The uniform
formula weights all samples within an area equally,
whilst the others have steadily decreasing influence with
distance. Choice of the constants D and A involves a
trade-off between spatial resolution and power to
generalize. Large values allow the rapid learning of the
rock ratios over a large area from a few samples but are
less effective in learning regional variations, which will
be smoothed over. Ideally, they should be comparable to
the average separation between samples.

For co-located samples x = y, hence M, (éy;x,y) =9

vk

implying that

Bi(x.x.k) = 1 and Bj(x,x,k) = 0 (for every j # k) 16)

Because B(x,y,k)...Bu(x,y,k) approach zero and may not
increase as distance |[x — y| increases, it follows that
Bi(x.y,k) = 0 for all x, y and j # k. Therefore the notation
for the B’s is redundant; it is sufficient to denote the
remaining nonzero term By (x,y,k) as Bi(x,»).

This implies that a definitive rock find (identified with
100% certainty) will not increase the assumed
probabilities of finding other related but distinct rock
types in the area.

To summarize

M, (6,555)= Z,(x,0)0," (an

and



PO, |R, =k) = (18)

Dirichlet( 8, ; 01 ,..., Oy + Bu(X,Y), vy Oyt

To learn the distribution of rock ratios at a particular
point given definitive observations in the area, sum the
contributions of each observation using (18) and an
appropriate formula for the §’s (Figure 4).

Learning from uncertain observations

Regrettably, it is rarely the case that rock samples can be
autonomously identified with certainty. Otherwise, there
would be little reason to learn the priors.

Consider an observation O, made on a rock sample R, at
position x, with likelihoods w,=P(O«R,=k). It can be
shown that

PO, 10,)= Y [PyZ(x )8, 1p@,) 19
k
where
Py=P(R,=k|0,) (20)
= PO, |R =K)E®.} (Bayes rule)
Y. PO, [R, = )HEP,]
J
= Wuly
Z W»‘.fa-v'
As P(é.r) is a Dirichlet distribution, it follows that
p@é,10,) = @n

M

> P, Dirichlet( 8, ;041,..,0cHBi(X,¥), s Oynr)

k=1

This is not a Dirichlet distribution, but a mixture model
of Dirichlet distributions. It violates the conjugacy
requirement and is intractable as more observations are
made. Subsequent observations would produce mixture
models with M2, M3, and so on terms. To maintain a
closed form model with a bounded number of
parameters it is necessary to approximate

P@,|0,) (22)

Dirichlet( 8, ; 01 +PBi(X,Y),...0M+PriBu(xy) )
This is equivalent to computing the posterior distribution
of éy given the definite observations {R,=klk =1..M} at

x, each weighted according to their probability
P(R,=k|0,) given the current observation and priors on
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8 , . This exactly equals the true posterior whenever the

observations identify the rock with complete certainty.
The approximation is worst when the observations do
not favor any rock type. The latter occurs when an
observation is made that is equally likely for all possible
rock types, in which case the probability of each rock
type is equal to the prior. The approximation (21) of the
posterior distribution on 9‘), then correctly has the same

mean as the prior but a slightly decreased variance,
which is incorrect as nothing has been learned.

Multiple rock finds

Assuming the prior rock ratio density at any point x is

prior

Dirichlet, with parameters o, and an observation is

made on a particular sample. Then, the rock type
probabilities for that sample are given by (20), and the
rock ratio densities at all other points given by (22). If
observations are made at all sample locations then (20)
and (22) are combined to create the following coupled
simultaneous equations, relating the rock type
probabilities at each sample and the posterior rock ratio
distribution at each sample given the rock type
probabilities at the other samples:
Py = zv:):}—a;,; s Oy =0l + ZPykﬁk (¥,x)
~ yex
J

(23)

The o} ’s define the assumed (Dirichlet) distributions

on ¢ at all sample locations x prior to any

measurements.

Note that the order in which samples are examined does
not affect the computed probabilities and rock ratio
distributions.

Experimental results

Results obtained by applying (23), using Gaussian
geographical models (Figure 4) to simulated data have
shown statistically robust improvements in classification
accuracy and generated consistent probability maps.
However, there are too many arbitrary parameters to set
when simulating data for it necessarily to be a good
indicator of performance. There is no substitute for real
data, gathered in the field by a robot.

In December 1998 the Nomad robot was dispatched to
Patriot Hills, Antarctica where it traversed a moraine
and acquired spectral data, using a fiber optic reflectance
spectrometer operating in the visible range, from 51
rocks in its path, along with their spatial coordinates
(Figure 5). These rock samples were recovered and



subsequently classified by a geologist to ascertain

ground truth.

® Sedimentary -

% Metamorphic

X Igneous

Figure 5 Patriot Hills, Antarctica, data collection site.
The Nomad robot traversed a 600m x 300m area,
collecting spectroscopic data from each rock along it’s
path. The samples have been grouped into according to
their formation process: sedimentary, metamorphic,
igneous and extraterrestrial (meteorites, although none
are present in the sample), each of which encompasses
many non-overlapping rock types.

Each sample spectrum was processed and run through a
Bayes network classifier developed for rock and
meteorite identification [3] to determine the conditional
likelihood of that spectrum for each of 25 different rock
types. This data was sequentially entered into a
statistical model (22) of the possible rock ratio’s at each
sample position, using a Gaussian geographical model
(Figure 4) and assuming initial distributions with
a’?™ ’s = 0.1 at all locations. At each iteration the rock

type probabilities for every sample entered so far were
recomputed and the most likely formation (sedimentary,
metamorphic, igneous and extraterrestrial) deduced.
Comparing with the known formation processes, the
cumulative number of classification errors Figure 6(ii)
as each sample is entered are determined.

Note the occasional reduction in the total number of
misclassifications as more samples are examined and the
model becomes more precise. This would not be
possible if each rock sample was examined
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independently, as in Figure 6(i) and Figure 6(v) where
the rocks are respectively classified with the assumption
of uniform fixed rock type priors everywhere, and the
priors fixed to the known data set rock type ratios. These
indicate the worst and the best that the rock classifier in
[3] can do under different assumptions on the rock type
priors over the entire region if each rock is classified
independently and the priors are assumed the same at
each sample location.

Note that classification performance improves for
various values of A, indicating robustness to the exact
form of the geographic models. Further computations
using a uniform geographic model empirically confirm
this. Furthermore, for large values of A, Bayes optimal
classification performance is exceeded. While from this
data set it is hard to tell if the improvement is
statistically significant, it is not inconsistent as the
system is exploiting dependencies between samples as
well as learning their geographical distributions.

30
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Figure 6 Cumulative number of misclassifications as
samples from the Antarctic field data are examined in
the order they were encountered by the robot. In (i)
samples are each independently classified assuming
uniform rock type probabilities. In (ii)-(iv), the rock type
probabilities are learned as samples are acquired, using
Gaussian geographic models with A values of 5, 10 and
60 respectively (cf Figure 4). Curve (v) indicates
performance when rocks are again classified
independently, using the known fraction of each rock
type in the data set as the priors. This is the best
performance possible for the independent classification
of the rocks.

With all the rock data entered into the model it is also
possible to compute the learned rock type probabilities
everywhere in an area (Figure 7, Figure 8, and Figure 9),



not just at the samples. Compare these to the actual
distribution of the rock samples along the robots path in
Figure 5 to verify that they are indeed consistent with
what was seen by the robot. The regions dominated by
sedimentary and metamorphic rocks are clearly
identified. Conversely, nothing is learned about the areas
distant from the robot path, since a geographic model
with a finite cut-off is assumed. Furthermore, the low
density of igneous rocks (and meteorites, which have a
probability map almost identical to Figure 9) is learned,
even in the area dominated by metamorphic rocks,
which are often confused with igneous rocks.

20 40 80
x

Figure 7 Learned probability of sedimentary rocks
across the explored region of the data collection site in
Antarctica. The original sample positions and types are
indicated by the colored dots (c.f- Figure 5).

60

55

Figure 9 Learned probabilities of igneous rocks.
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Conclusions

The results of Figure 6 are very significant. They show
that learning the probabilities gives a clear improvement
in classification over assuming uniform priors
everywhere and classifying each sample independently.
In fact, performance approaches and possibly exceeds
the optimum, achieved when the average priors over the
region are known beforehand. The latter might occur
with more data and pronounced regional variations that
can be exploited by this approach.

This is equivalent to a human geologist who looks at
many rocks, constantly re-evaluating all the previous
rocks seen every time another rock is looked at.
Unfortunately, because of the lack of prior work in this
exact area it is not possible to compare this with other
methods.

A weakness of the approach proposed here is the ad hoc
nature of the geographical models. While based upon
reasonable assumptions they are still under-constrained.
Nonetheless, empirical evidence suggests that the
improvements in classification are robust to changes in
the assumed geographical models. Choosing models
with a wide footprint (large cut-off distance and low
decay rate) results in faster convergence and generalizes
over a larger area, but also less ability to capture and
exploit small scale variations. Further work is needed to
determine the optimal geographic models from the data.

All rock type probabilities are re-computed every time
another rock sample is examined, and do not depend on
the order in which they are found. Therefore, this
method is robust to unlucky sequences of samples not
representative of the area. Except for the approximation
(22), the learning algorithm is Bayesian, and should
converge (in the probabilistic sense) to the correct
probabilities as more data is added.

Computationally requirements are minimal. They
increase with the number of samples squared. In
practice, the matrices in (23) are sparse and, depending
on the robot path, complexity is order N’ each time a
new sample is added, where N is the average number of
samples within a circle whose radius is the geographical
model cut-off distance.
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