

I

Table of Contents
1. lntroductlon
2. m e Problem Context
3. Exploitlng Local Flexibillty In the Global Schedule

3.1. Representlng the Schedule and the Current Scheduling State
3.2. Panltioning declsbn-making responsibility
3.3. Executing Schedules and Detecting Problems
3.4. Maklng Local Repalrs

4. Concluslons
References

1
3
3
4
6
7
8
9

10

List of Figures
Figure 2-1 : The Overall System
Flgure 3-1 : Pre and Post idle and Slack
Figure 3-2: Sets of Schedule Objects

4
6
7

Abstract

In this paper we address the problem of realizing the benefits of pre-computed schedules in the face of
a partially unpredictable execution environment. We focus specifically on the problem of manufacturing
production scheduling, where advance planning is crucial to overall factory performance but is, at the
same time, confounded by the unpredictability of factory operations. We present a scheduling framework
where decision-making responsibility is shared between a gfobal scbdu/er, responsible for establishing
and maintaining execution constraints in accordance with overall performance objectives, and a local
diylatcher, responsible for containing execution within globally imposed constraints and notifying the
scheduler when containment is no longer possible. We identify the sources of local executional flexibility
that can be expected in a pre-computed schedule, and describe an execution-time scheduler (the
dispatcher) capable of exploiting this flexibility.

1

1. Introduction

In broadest terms, this paper is concerned with realizing the benefits of pre-computed schedules aimed
at optimizing global performance objectives in the face of a partially unpredictable execution environment.
The specific domain of interest is manufacturing production scheduling, where the problem is one Of
allocating resources to production activities over time to produce a factory behavior that Satisfies product
demands in a timely and cost-effective manner. The development of good SOlUtiinS to the manufacturing
production scheduling problem is confounded by two realities: the combinatorial wrnpiexity of decision-
making and the execu?iona/ uncertainly of factory operations. Problem complexity derives from the need
to coordinate the simultaneous execution of many production processes, each a specific temporally
ordered set of process steps that require use of shared resources, in a manner that tends to optimize the
overall performance of the factory. Performance concerns argue strongly for advance development of
schedules, providing the opportunity to anticipate important process interactions (in particular resource
contention) and impose execution constraints that minimize their degrading effects on petformance
objectives. At the same time, the unpredictabilily of factory operations (e.g. process step variability,
unexpected resource unavailability, quality control failures) inevitably forces deviations from prescribed
actions, and tends to work against any attempt to exploit pre-optimized schedules. An advance schedule
will be of limited use unless the guidance it contains can be continually adapted to current circumstances
on the factory floor. Moreover, since schedulinglrescheduling takes time, practical solutions to the
production control problem must strike an appropriate balance between system performance and system
responsiveness objectives .

Ideally. one would like an advance schedule to impose sufficient constraints on execution so as to push
the behavior of the factory in the right direction while leaving suffiuent flexibility to insure an equitable
partition of the computational load between global and local decision-making processes as execution
proceeds. From the standpoint of performancs, the dominant determinant in domains like production
scheduling is efficient resource sharing among production processes. In contrast to the assumptions of
most AI planning work (e.g. [15,51). there is typically relatively little complexity in determining the
structure of the processes themselves (i.e. what activities need to be performed). Rather the complexity is
in synchronizing their resource usage to produce a good global behavior (e.g. jobs completed by their
due dates, minimization of work in progress, maximization of machine utilization, minimization of process
throughput time, etc.). Given these characteristics, there are two basic dimensions along which an
advance schedule might remain imprecise: resource assignments and process step timing constraints'. It
is often the case that a process step can be performed with any of a number of substitutable resources. If
these resources are unreliable and/or there is no strong reason to precisely commit (e.g. to minimize
resource setup time), the schedule might instead dictate capacity from speafic resource groups.
Alternatively, a schedule need not commit in advance to specific start and end times for individual process
Steps, but instead maintain execution windows. Unfortunately, it is difficult to remain imprecise
simultaneously along both dimensions without giving up the guarantee of schedule feasibility. Feasibility
is important, since recognition of scheduling commitment violations as execution proceeds can then be
treated as signifying a broken schedule and the necessity of schedule repair activity.

Historically, scheduling research has tended to focus exclusively on either the optimization or the
control part of the problem. One bDdy of work (61 has been concerned with producing optimal solutions
under various problem assumptions. From an operational standpoint, such approaches can be viewed as
purely predictive. They produce a complete set of commitments in advance of execution, and any
surprises encountered during execution require complete resolving of the problem. The computational
expense of producing a schedule is often high, but even in the case of an infinitely fast scheduler,

'We rscognize Uw additional psihliiy of remaining imprecise with respect B h e order in which the steps of a given pmcsss are
parlonned; our target domain does not a h i t such opportunities sa we ignore this issue.

2

frequent rescheduling might not be practical.
execution begins and does not usually respond favorably to repeated resetting of goals.

A manufacturing organization gains momentum once

Control oriented research 1121 has alternatively focused on the development of local dispatch priority
rules. These approaches can be seen as purely reactive. They are relatively insensitive to surprises,
since commitments are only made as necessary to continue execution, and typically require only modest
computational resources. However. overall factory performance is very much a function of the sensitivity
of the local decision rule to the structure and operating conditions of the factory. Unless the dynamics Of
the factory are well understood and stable over time, such strict reliance on local decision-making leads to
otherwise avoidable congestion and suboptimal performance.

More recent research in knowledge-based scheduling has attempted to close the gap between
optimization and control perspectives. One approach p.41 suggests that combinatorial complexity can
be used to solve the problem of executional uncertainty, and, conversely, that executional uncertainty can
be used to solve the poMem of combinatorial complexity. The part of the system which builds the
schedule operates under the principal of least commitment, generating a set of good schedules (rather
than just one) with the certainty that as execution proceeds, circumstances will prune the members of the
set which are inappropriate. The part of the system which executes the schedule is based on the
principal of opportunism. manipulating the set of schedules such that its real time decisions will leave as
many options open for me future as possible.

Other knowledge-based scheduling efforts have explored frameworks for integrating predictive and
reactive scheduling processes. OPlS (13, 10, 141 defines an incremental scheduling methodology that is
focused by repeated analysis of current solution Constraints and objectives, which is used as a basis for
both generating schedules in advance of execution and revising them as circumstances warrant. The
schedule revision strategies studied here 11 11 are motivated primarily by global performance concerns,
attending secondarily to schedule stability and system responsiveness concerns. From the standpoint of
executional flexibility, a representation is employed that enables inprecision in resource assignments (i.e.
provides an ability to allocate capacity from resource groups without naming individual resources). In
SONlA[2], a system which generates and revises schedules according to a similar methodology, a
framework for explicitly controlling the extent of constraint propagation performed is proposed as a means
of balancing the time spent revising the schedule against the quality of the reaction. Moreover, a schedule
representation that retains executional flexibility with respect to timing details is introduced, in contrast to
mOSt other schedulers which generate and manipulate temporally "crisp" schedules (i.e. schedules with
absolute start and end times). As suggested above, this temporal flexibility is achieved at the expense of
an ability to remain flexible in the resource assignment dimension. 181 proposes an alternative framework
for remaining temporally imprecise based on fuzzy logic (again at the expense of flexibility in resource
assignments). DAS [l] partitions the overall decision-making effort among a hierarchically organized set
of scheduling agents, where each agent is given responsibility for making and retracting specific
commitments (time assignments on a particular machine, machine assignments in a given work area, due
dates of current jobs). Schedule generation and schedule revision are again treated uniformly, in this
case as a collective activity based on backtracking search. In reactive contexts, the hierarchical
organization provides heuristic structure for incrementally enlarging the m p e of the change required to
the schedule.

In this paper, we present an approach to exploiting local flexibility in a globally motivated schedule
during schedule execution. Our approach assumes an overall scheduling framework where decision-
making responsibility is shared between a globa! scheduler, responsible for establishing and maintaining
execution constraints in accurdance with overall performance objectives, and a local diqafcher,
responsible for containing execution within globally imposed constraints and notifying the scheduler when
containment is no longer possible (and global reaction may be required). The framework is realized
through cooperative management of a temporally crisp schedule that is initially produced by the global
scheduler, and from which local temporal flexibility is derived and exploited during execution. For

3

purposes of this paper, we assume the existence of a global scheduler [16.7] and focus on mechanisms
for exploiting schedule flexibility during execution. Our approach is influenced by the specific
characteristics of the target application domain, and we first briefly consider the manufacturing domain of
interest.

2. The Problem Context

The scheduling framework described here is aimed specifically at scheduling facilities which fabricate
semiconductor wafers each containing hundreds of die. A typical ?ab" runs a few thousand jobs of a few
tens of products over a few hundred machines' through three or four basic processes each with a few
hundred linearly-ordered steps. Any particular machine is capable of running one or more steps, and any
given step can run on one or more machines. Each job has a specified due date, and the overall cycle
time of a job through the fab is measured in weeks. Furthermore, both machines and process steps
employ very advanced technology, and the semiconductor market is quite volatile. Consequently,
uncertainty is present both in terms of the health of the process and the machines, requiring preventive
and emergency maintenance (called PM and EM respectively), and in terms of the delivery demands.

The overall system of interest is depicted in Figure 1. It includes the factory with its data collection
subsystem and its command execution subsystem, and the scheduling system with its global scheduling
subsystem and local dispatching subsystem along with their data model, knowledge base, and schedule.
The data collector feeds me data model, and the dispatcher feeds the command executor. Both the
scheduler and the dispatcher have access to the data model, the knowledge base, and the schedule.
The factory with its data collector and control system work continuously. The scheduler is initialized by
filling its data model with a whole factory snapshot and with which it builds a schedule for the next time
period, twelve hours for example. The dispatcher executes the schedule. issuing control instructions to
the factory, watching the data stream coming from the factory, and communicating with the global
scheduler as necessary. The dispatcher recognizes problems and tries to either avoid or locally repair
them. When it fails, the scheduler is called on to perform more global repairs. The cycle starts over when
either the time period ends or the global scheduler determines that complete schedule regeneration is the
most appropriate global repair.

For purposes of this paper, we assume that the data collector and the control system function
perfectly.3 Three message rates are important to the reactive component. The first is the rate of
"expected" messages from the data collector (i.e. process step or preventive maintenance (PM) started
or ended on time, emergency maintenance (EM) ended on time) which o a r on average every 5
seconds. The second is the rate of 'surprise" messages from the data collector (Le. process step or PM
or EM ended early or late, machine broken and EM started, job broken and placed on hold) which occur
on average every 60 seconds. The third is the rate of messages from the dispatcher to the control
system (i.e. start process step or PM step) which averages one every 10 seconds.

3. Exploiting Local Flexibility in the Global Schedule

Any machine in the factory spends its time either running production, being maintained, or sitting
waiting. One objective of the global scheduler is to try to reduce machine waiting time since this will

w i l e other ly'pes d resources are used. only machines are consaered here.

'Note that the first of these is a gross assumptim In k t the data mllector misses some data delivers some i n m m andm
inwnsislent data and is sometimes lam. Thaw problems am being addrsbsed through a related p*a on intelligent data
wllectlm agents.

4

\
COLLECTOR

CONTROL
SUBSYSTEM

Flgure 2-1 : The Overall System

improve machine utilization, one of the performance metrics by which the behavior of the factory will be
iudged. But due to the interactions between activities in the factory, schedules with zero machine waiting
time can never realistically be expected. A similar set of comments can be made for jobs. Any job in the
factory spends its time either on a machine, on a transporter, on hold, or sitting waiting. The global
scheduler a l a tries to reduce job waiting time since this will improve throughput time, another of the
performance metrics by which the behavior of the factory will be judged. However, again due to the
interactions between activities in the factory, schedules that completely eliminate job waiting time can
never realistically be expected.

Even if "no wait" schedules were achievable, they would not be desirable. Given the uncertainty in the
execution environment, any surprise would disrupt the whole schedule. We argue that, in fact, these
inescapable waits can be used to hedge against surprises. They can provides a basis for distinguishing
between locally containable problems and problems of global import that might develop in the schedule,
and, as such, can be used to dynamically download a share of scheduling responsibility to the dispatcher
as the factory operates. In the following subsections, we describe a framework for local decision-making
based on this perspective. We first consider the representational assumptions underlying our approach.

3.1. Representing the Schedule and the Current Scheduling State

Central to our approach is a "distributable" representation of the current schedule. We represent the
current schedule as a set of schedule objects (SOs). The most w m m n type of SO is a production step.
A production step has the basic form u t e p job mnch SI e n , where, for any given production step s:
sfep(s) is the process step to be performed, job(sj is the job being operated on, m h ($ is the machine
allocated for purposes of performing this production step, s(s) is the scheduled start time of the
production step, and ei(sj is the scheduled end time of the production step. The first two attributes of a
production step uniquely identify a particular production activity to be performed. The final three
represent the deasions of the global scheduler. As execution proceeds and production steps moves from
pending to inprocess to completed, st($ and el($) are updated accordingly to reflect actual times. Two
additional attributes, moch-pred(s) and mach-succ(s), are also associated to indicate respectively the
previous and next step to use mch(s) in the current schedule.

5

We also associate the following constraints with any given production steps:
jo&pred(s) =the immediate predecessor production step to sor nil (implying s is the first step

op&srrcc(s) = the immediate successor production step to s or nil (implying s is the last step of

dur(5) = the duration of s

mg(s) = the machine group from which capacity is required to perform s. We assume that
machines are partitioned into mutually exclusive machine groups, and that each machine in a
given machine group is capable of performing the same set of process steps in the same
times. The precise resource requirement for a given production step s is use of one of the
machines in the set designated by mg(s) for the entire duration of s. For a given machine
group MC, mchs(lwC) indicates the set of constituent machines.

of the process). If jo&pred(s) exists, ef(iob-pr@d(s)) < SO).

the process). If jo&mcc(s) exists, el($) 5 st(/o&succ(s)).

These constraints are imported or derived from generic product/ptocess models when particular

Machine PM and EM steps comtitute the other types of SOs in the schedule and are represented
similarly to production steps. In these cases, a machine is identified rather than a job and there are no
pred, SUCC. and mg constraints. There are also additional mnstraints on the scheduling decision variables:
For any PM or EM steps, m c h (s) cannot be changed, and, in the case of EM, neither can sr(s).

The current scheduling state is represented in part by status information in the data model that is
associated with each job and each machine in the factory and is updated by the data Collector. For each
job j , srufur~'~] indicates either "busy' executing on a process step, "waiting" for a machine to become
available to begin the next process step, "in-transit" from one machine to another, or 'on-hold" awaiting
repair actions. If the job is "busy", the relevant current-SO(ll is designated. For each machine m, srotus(m)
indicates either 'busy" executing a job, "waiting" for a job to become available, undergoing a PM
operation, or involved in an EM. Again, if the machine is'busy", the relevant currenr-SO(m) is designated.

TO provide a basis for temporally containing local decision-making, we define four additional times
relative to a given SO s: pre-sfuck(s), post-sluck(s), pre-idle(s), and post-idle(~) (see Figure 2.). If s is a
production step, then pre-slack(s) = er(iob-pred(s)) and psr-sluck(s) = sr(iob-succ(s)). If s is a PM step, we
assume pre-sluck and posr-sluc& is specified externally. If 5 is of either type, pre-idl@(s) = er(mnch-succ(s))
and posr-idle(s) = sr(mach-succ(s)). These four times explicitly represent the residual temporal flexibility
implied by the current schedule. The earliest time at which scan be started without effecting the sr or er of
any other SO in the system is mnr@re-s!uck(s), pre-ide(s)). Likewise, min(posr-s luck(s) .p-~~e(s))
designates the latest time at which scan end without impacting other SOs.

These earliest starts and latest finishes are of direct interest to the local dispatcher. Given that
factories usually have actual throughput times three to five times higher than theoretical, and usually have
machine utilizations in the range of sixty to eighty percent, the dispatcher will have substantial pre and
post slack and idle to use in managing surprises. The heuristics it uses to perform repairs are explained
in a later section, but have guaranteed locality of effect due to their exdusive use of pre and post slack
and idle. This avoids contention between the global scheduler and the local dispatcher.

production steps are created and are assumed static over the lifetime of a step.4

that this is not actudly h a y s the case. P m s s step failures can occur, necessitaw ether the addition ot rework
production steps or the removal of the job from the system, md resulting in changes ID thejob-fyEc and j w r e d mnslraints of
different produclion step% We assume, for this paper, that such sibations simply resun in putting !he job on 'hold- and informing
the global xheduler

6

0 00 0

ucc mach

Figure 3-1: Pre and Post Idle and Slack

3.2. Partitioning decision-making responslbility

To mediate interaction between the global scheduler and the dispatcher, the set of all SOs is divided
into six subsets, as shown in Figure 3. Two of these subsets, Unscheduled and Scheduled, are
designated as the responsibility of the global scheduler. SOs in either of these subsets are accessible
only to the global scheduler. Three other subsets, hemling, OnDeck, and IflTheHole, are similarly
defined to be the exclusive responsibility of the local dispatcher. Control of the flow of SOs between
these subsets and the sixth identified subset (Finished) defines the overall operation of the system.

SOs are created in response to production and maintenance requests and loaded initially into subset
Unscheduled At this point, SOs have only a name and type, and an assigned job or machine. The main
task of the global scheduler is moving SOs from subset Unscheduled to subset Scheduled, where SOS
have all scheduling decision variables assigned. The scheduler is also responsible for So's that are
returned to Unscheduled from the dispatcher, indicating the necessity of a global schedule repair.

Within the jurisdiction of the dispatcher, there are three subsets of interest. Subset Executing contains
all SOs that are currently executing in the factory. The SOs in subset OflDedc are the focus of attention
of the dispatcher. These are the next to execute, according to the schedule, and the prinapal task of the
reactive scheduler to move SOs from OnDeck to Executing, making whatever local adjustments are
necessary before sending the start command for the SO to the command execution system in the factory.
The SOs in subset IflTheHoIe are the next to execute after the So's in OnDeck. amrding to the
schedule. They are under the control of the dispatcher to enable computation of p ~ r - d ~ ~ k and post-idle
times for OnDeck-SOs without danger of their corruption by the global scheduler. When an OnDeck-SO
is moved into Executing, InTheHole-SOs are pulled into OnDeck and Scheduled-SOs are pulled into

7

(FINISHED 1

t 1

Flgure 3-2: Sets of Schedule Objects

InTheHole (the solid arrows in Figure 3.). Failure of an Executing-SO to successfully execute, or an
inability to contain the execution of a OnDeck-SO within the constraints imposed by the global scheduler,
can lead to movement of SOs in Drecuthg, &ID&, or lnTheHole back to Unscheduled (the dashed
arrows in Figure 3.).

As SOs successfully finish executing, they flow into Subset Z. providing a record of the actual behavior
of the manufacturing system.

3.3. Executlng Schedules and Detectlng Problems

As indicated above, the local dispatcher focuses on OnDeck-SOs, trying to start execution of each
within the constraints imposed by the global scheduler. To decide whether execution within the
cnnstraints is possible, the dispatcher has at is disposal a number of relevant times for each OnDeck-SO:
a SI and a et (suggested by the global scheduler), a pre-slack and apre-idle (reflecting current Executing-
SOs). and a post-ide and a psi-slack (reflecting InTheHole-SOs). To start execution of a particular
OnDeck-SO 5, the dispatcher must be sure that two requirements are met - much($ must be available,
and job(s) must be available. A number of circumstances are possible depending upon the order in which
the relevant events take place.

There is the possibility that mach(s) is reported available sometime behueen pre-idle(.v) and SI(S) but
jub(s) is not available until SI@), or that job(5) is available between pre-sluck(s) and sr(r> but mach(s) is not

available until st(s), or that both become available just at s f W . In any of these cases, the dispatcher can
just execute as planned. It is also possible that both much(s) and job($) are reported available sometime
between pre-i&(s) and sf(s). In this case, the dispatcher can be opportunistic and begin execution of s
early.

Neither of these cases is especially difficult to resolve. More problematic arcumstances arise if either
mch(s) , or pb(s), or both become available after sf(s). Here the dispatcher will be forced to try to
rearrange execution. If the lateness of mach(s} orfib($) pushes s past (~ s ~ ~ l e (s) ~ w s f - s l Q c ~ s) } , it may
not be possible for the dispatcher to begin execution at all. Inability to locally recover is almost assured
upon notification that an Executing-SO has failed during execution. This implies that either an EM has
been started on m n ~ h l s) or job@) has been placed on hold, or both. In any of these failure modes, many
OnDeck-SOs and InTheHole-SOs (and possibly scheduled-SOs) will be effected and the dispatcher will
most likely have to appeal to the global scheduler to perform a global repair.

As alluded to above, the detection of problems is tied to recognizing inconsistencies between the
current state of the factory and the predicted schedule. The issue of when to raise the "alarms", however,
can be seen from different perspectives. Clearly some events (e.g. broken machine, misprocessed job)
serve themselves as alarms. But when a machine or job has the possibility of simply being late, there are
tradeoffs involved in determining when the alarm is sounded and repair attempts initiated. On one hand,
alarms can be tied to Executing-SOs. Under this scheme, whenever an actual start time is established,
an expected end is computed and propagated to related OnDeck-SOs. This provides the opportunity to
respond immediately to anticipated problems at the danger of spending computational resources to
resolve problems that may fail to materialize. On the other hand, alarms may be tied to the current
scheduled start times of OnDeck-SOs and deactivated if execution can be started before the alarm goes
off. This scheme affords less flexibility for local reaction at the potential benefit of less computational
expense. These ideas are being evaluated in the prototype.

3.4. Making Local Repairs

Since the dispatcher has access to only Executing-SOs. OnDeck-SOs. and InTheHole-SOs, the space
of possible revisions to the schedule is bounded. In particular. all changes are temporally bounded by the
et of all Executing-SOs (which are currently executing), and the scheduled el of all InTheHole-SOs (which
guarantees non-interference with me global scheduler). This implies, for example, that InTheHole-SOs
can only be moved earlier in time while OnDeck-SOs can be moved earlier or later and Executing-SOs
can not be moved at all. Similarly, a OnDeck-SO or InTheHole-SO can only be reassigned to another
machine in the same machine group as the machine it is currently assigned to. The recorded post-idfe
and post-slack constraints associated with Executing-SOs, the pre-idle. pre-slock, pst-idle, and post-slack
constraints associated with OnDeck-SOs, and the pre-idfe and pre-slack constraints associated with
InTheHole-SOs provide guidance in identifying local repairs that leave the sts and ers of Executing-SOs,
OnDeck-SOs, and InTheHole-SOs in a consistent state, and a number of simple heuristics which exploit
this information are used by the dispatcher to respond to detected problems and opportunities.

in the case of an opportunity, the pre-ide and preslock can be inspected to see how far the sf of the
OnDeck-SO in question can be shifted earlier. In the case of a problem, post-idle and poSf-S/Qck indicates
how far the er, can be shifted later. These simple "shift-earlier' and "shift-later repair heuristics, i f
applicable, fix the problem with minimal disruption to the schedule, and combat the very common situation
of "time jitter" in the executional system where events occur a few minutes earlier or later than expected.
Another rarer circumstance to which simple shifting seems well suited is that resulting after a
misprocessed job has been retracted from the schedule, leaving holes throughout the schedule into which
OnDeck-SOs can be pulled.

The dispatcher can alw exploit knowledge of equivalent machines in responding to problems. If a

9

machine availability problem is detected in conjunction with a given OnDeck-SO s, the dispatcher inspects
all of the Executing-SOs, OnDeck-SOs, and InTheHole-SOs contained in machine-group mg(s) for an idle
interval which spans the interval from sr(s) and et(s). If such an interval is found, a reassignment Of

mach(s) can be again made without disrupting to any other SO. This simple shift-machine repair heuristic
can also be utilized in cases where there are holes left in the schedule by misprocessed pbs.

A third heuristic is a combination of the simple shift-earlier and shift-later heuristics. The dispatcher
can use the mnckmcc link in the problematic OnDeck-SO to determine whether the OnDeck-SO can
undergo a shift-later and the identified InTheHole-SO can undergo a shift-earlier. Simply stated, this
results in switching the order of two jobs occurring sequentially on the same machine.

Another pair of more complex repair heuristics combine either of the shift-earlier or the shift-later
heuristics with the shin-machine heuristic. This allows the local dispatcher to reassign a OnDeck-SO to a
different machine at a different time than assigned by the global scheduler. Basically another machine in
the Same machine group must have an idle period that spans the the problematic OnDeck-SOs duration,
and this idle period must fall completely within the OnDeck-SOs prtsiack and posf-slack Constraints.

The most Complex repair heuristic includes all three of the simple heuristics: "shift-later", "shift-earlier",
and "shift-machine". The dispatcher can use this heuristic to manipulate two OnDeck-SOs in such a way
that their machine assignments are swapped and their time assignments are moved earlier or later as
appropriate.

With regard to the order of application of the above set of heuristics, our current approach is
computationally cheapest first. This is based on the observations that any solution found is consistent with
the global schedule, and the faster the system can find one the better. As we gain more understanding of
the nature of local reactive poblems. we expect more knowledgeable ordering strategies to emerge.

4. Conclusions

In this paper, we have presented a framework for manufacturing production scheduling that distributes
decision-making responsibility between a global scheduler, concerned with optimizing overall factory
performance in the face of a high degree of combinatorial complexity, and a local dispatcher, concerned
with robust execution in the face of an uncertain execution environment. The framework is based on the
use of existing machine idle time and job wait time in the global schedule as sources of flexibility in
managing execution. Assuming the existence of a scheduler capable of effecting global schedule repairs,
we have defined a local deasion-maker capable of exploiting this flexibility. The approach is currently
being implemented for testing in a specific wafer fabrication facility.

One aspect of the framework that has been left underspecified concerns reassignment of responsibility
for specific scheduling decisions (Le. OnDeck-SOs and InTheHole-SOs) to the global scheduler upon
failure of the dispatcher to move a given OnDeck-SO s into Execuring. One straightforward approach is to
simply remove s, and its related InTheHole-SOs mack-succ(s), and jo&succ(s) from the dispatcher's
purview. This implies that the dispatcher must wait for the global scheduler's response (reaction) before
making any further decisions involving either job($) or mch(s), and provides the global scheduler with
complete flexibility to revise decisions relating to job($) and/or mach(s). On the other hand, there are
circumstances when such an approach unnecessarily constrains factory execution. For example, if the
failure of OnDeck-SO s is due to the fact that job($) was misprocessed during execution of job-pd(s) (Le.
its related Executing-SO), then removal of s and j&succ(s) from dispatcher jurisdiction is approp,iate but
removal of mach-succ(s) may stall execution for no reawn (if, in fact, determination by the global
scheduler that mach-succ(s) is not affected by the problem is time consuming enough to cause an actual
delay in executing mac/~-succ(s)). It may be mare advantageous to leave responsibility for much-succ(s)
with the dispatcher, in essence treating it subsequently as a OnDeck-SO that can be executed as soon as

10

conditions allow. The appropriateness of various responsibility reassignment policies depends heavily on
the computational demands that are placed on the global scheduler (Le. the frequency at which non-
locally resolvable problems arise) and the speed at which global schedule repairs can be made.

At a more general level, there are several assumptions made in the model described in this paper that
warrant further consideration. One assumption that our present model makes is that unique machine
assignments are made in advance of execution by the global scheduler. In some manufacturing
environments there may be no strong reason for such advance commitment, and it might be argued that
doing so places artifiaal constraints on the dispatcher. On the other hand, there may be no danger in
doing so if the dispatcher's machine swapping heuristics can effectively exploit opportunities to reassign
machines. If nat, it is straightloward to extend our approach to accommodate deferring of specific
machine assignments to execution time. Since the present approach is built around manipulation of
temporally crisp schedule, representations that enable enforcement of resource "capacity" constraints are
well known (e.g. IS]) and could be easily integrated.

We have also made strong assumptions regarding the amount of lookahead given to the dispatcher. In
the dispatcher described here, we have bounded the view of the dispatcher to the maximum extent,
giving it access to those scheduling decisions that are only one or two steps into the future from those
currently executing in the factory. This was done purposely to minimize computational expense and
simplify the local reactive scheduling problem. At the same time, looking further ahead does provides the
opportunity to "accumulate" more slack and ale time, and it may be the case that this would lead to a
more equitable balance between global and local decision-making. It is certainly the case that looking
further ahead will lead to more complicated local scheduling heuristics and longer compute times.

References

I11

PI

131

141

151

I61

171

Burke, P.. and P. Prosser.
A Distributed Asynchronous System for Predictive and Reactive Scheduling.
Technical Report AISL42, Dept. of Computer Science, Univeristy of Strathdyde, October. 1989.

Collinot A., and C. LePape.
Controlling Constraint Propagation.
In Proceedings 10th International Joint Conference on AI, pages 1032-1034. Milano, Italy,

August, 1987.

Fox B.R. 8 Kempf K.G.
Complexity. Uncertainty and Opportunistic Scheduling.
In Proceedings ofthe Second IEEE Conference on AI &plications, pages 487-492. IEEE-85,

Fox B.R. 8 Kempf K.G.
Reasoning about Opportunistic Schedules.
In Proceedings ofthe IEEE International Conference on Robotics and Automation, pages

Georgeff, M.P. and A.L. Lansky.
Reactive Resaoning and Planning.
In Proceedings AAAI-87, pages 677-682. Seattle, Washington, July, 1987

Graves, S.C.
A Review of Production Scheduling.
@eratiom Research 29(4):646-675. July-August, 1981.

Kempf K.G
Manufacturing Scheduling - intelligently Combining Existing Methods.
In Proceedings of the Stanford Spring Symposium, pages 51 55. AAAIBS. 1989.

1985.

1876-1882. IEEE-87,1987.

11

[SI Kerr, R.M and R.N Walker.
A Job Shop Scheduling System Based on Fuzzy Arithmetic.
In M.D. Oliff (editor), Proceedings 3rd lntemationalConference on Experl Systems and the

Leading Edge in Production and aerations Management, pages 433-450. Hilton Head
Island, SC. May, 1989.

LePape, C. and S.F. Smith.
Management of Temporal Constraints for Factory Scheduling.
In C. Rolland, M. Leonard, and F. Bodart (editors), fm. lF/P TC &'WG 8.1 Working Conf. on

Temporal Aspects in /nfofn?at;on Systems (TAG 87), pages 165-1 76. Elsevier Science
Publishers, May, 1987.

[9]

[lo] Ow, P.S. and S.F. Smith.
Viewing Scheduling as an Opportunistic Problem Solving Process.
In R.G. Jeroslow (editor), Annals of@erations Research 12, pages 85-108. Balker Scientific

Ow, P.S.. S.F. Smith, and A. Thiriez.
Reactive Plan Revision.
In ProceedingsAAAl-88. St. Paul, Minn.. August, 1988.

Panwalker, S.S. and W. Iskander.
A Survey of Scheduling Rules.
Operations Research25:45-61, 1977.

Publishing Co.. 1988.

[l i]

[12]

[i3] Smith, S.F.
A Constraint-Based Framework for Reactive Management of Factory Schedules.
In M.D. Olifl (editor), /nle//genr Manufacturing. Benjamin Cummings Publishers, 1987.

[14] Smith, S.F., P.S. Ow, N. Muscettola, J.Y. Potvin, and D. Matthys.
An Integrated Framework for Generating and Revising Factory Schedules.
Journal of the qOerational Research Society, to appear, 1990.

Practical P/anning.
Morgan Kaufrnann Publishers, 1988

Yu C., Scott G & Kempf K.G.
Artificial Intelligence and the Scheduling of Semiconductor Wafer Fabrication Facilities.
In Proceedings ofthe lntel Technology Conference, pages 135-138. Intel Corporation, 1988.

(151 Wilkins, 0.

[16]

