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Abstract 

In this paper we address the problem of realizing the benefits of pre-computed schedules in the face of 
a partially unpredictable execution environment. We focus specifically on the problem of manufacturing 
production scheduling, where advance planning is crucial to overall factory performance but is, at the 
same time, confounded by the unpredictability of factory operations. We present a scheduling framework 
where decision-making responsibility is shared between a gfobal scbdu/er, responsible for establishing 
and maintaining execution constraints in accordance with overall performance objectives, and a local 
diylatcher, responsible for containing execution within globally imposed constraints and notifying the 
scheduler when containment is no longer possible. We identify the sources of local executional flexibility 
that can be expected in a pre-computed schedule, and describe an execution-time scheduler (the 
dispatcher) capable of exploiting this flexibility. 
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1. Introduction 

In broadest terms, this paper is concerned with realizing the benefits of pre-computed schedules aimed 
at optimizing global performance objectives in the face of a partially unpredictable execution environment. 
The specific domain of interest is manufacturing production scheduling, where the problem is one Of 
allocating resources to production activities over time to produce a factory behavior that Satisfies product 
demands in a timely and cost-effective manner. The development of good SOlUtiinS to the manufacturing 
production scheduling problem is confounded by two realities: the combinatorial wrnpiexity of decision- 
making and the execu?iona/ uncertainly of factory operations. Problem complexity derives from the need 
to coordinate the simultaneous execution of many production processes, each a specific temporally 
ordered set of process steps that require use of shared resources, in a manner that tends to optimize the 
overall performance of the factory. Performance concerns argue strongly for advance development of 
schedules, providing the opportunity to anticipate important process interactions (in particular resource 
contention) and impose execution constraints that minimize their degrading effects on petformance 
objectives. At the same time, the unpredictabilily of factory operations (e.g. process step variability, 
unexpected resource unavailability, quality control failures) inevitably forces deviations from prescribed 
actions, and tends to work against any attempt to exploit pre-optimized schedules. An advance schedule 
will be of limited use unless the guidance it contains can be continually adapted to current circumstances 
on the factory floor. Moreover, since schedulinglrescheduling takes time, practical solutions to the 
production control problem must strike an appropriate balance between system performance and system 
responsiveness objectives . 

Ideally. one would like an advance schedule to impose sufficient constraints on execution so as to push 
the behavior of the factory in the right direction while leaving suffiuent flexibility to insure an equitable 
partition of the computational load between global and local decision-making processes as execution 
proceeds. From the standpoint of performancs, the dominant determinant in domains like production 
scheduling is efficient resource sharing among production processes. In contrast to the assumptions of 
most AI planning work (e.g. [15,51). there is typically relatively little complexity in determining the 
structure of the processes themselves (i.e. what activities need to be performed). Rather the complexity is 
in synchronizing their resource usage to produce a good global behavior (e.g. jobs completed by their 
due dates, minimization of work in progress, maximization of machine utilization, minimization of process 
throughput time, etc.). Given these characteristics, there are two basic dimensions along which an 
advance schedule might remain imprecise: resource assignments and process step timing constraints'. It 
is often the case that a process step can be performed with any of a number of substitutable resources. If 
these resources are unreliable and/or there is no strong reason to precisely commit (e.g. to minimize 
resource setup time), the schedule might instead dictate capacity from speafic resource groups. 
Alternatively, a schedule need not commit in advance to specific start and end times for individual process 
Steps, but instead maintain execution windows. Unfortunately, it is difficult to remain imprecise 
simultaneously along both dimensions without giving up the guarantee of schedule feasibility. Feasibility 
is important, since recognition of scheduling commitment violations as execution proceeds can then be 
treated as signifying a broken schedule and the necessity of schedule repair activity. 

Historically, scheduling research has tended to focus exclusively on either the optimization or the 
control part of the problem. One bDdy of work (61 has been concerned with producing optimal solutions 
under various problem assumptions. From an operational standpoint, such approaches can be viewed as 
purely predictive. They produce a complete set of commitments in advance of execution, and any 
surprises encountered during execution require complete resolving of the problem. The computational 
expense of producing a schedule is often high, but even in the case of an infinitely fast scheduler, 

'We rscognize Uw additional psihliiy of remaining imprecise with respect B h e  order in which the steps of a given pmcsss are 
parlonned; our target domain does not a h i t  such opportunities sa we ignore this issue. 
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frequent rescheduling might not be practical. 
execution begins and does not usually respond favorably to repeated resetting of goals. 

A manufacturing organization gains momentum once 

Control oriented research 1121 has alternatively focused on the development of local dispatch priority 
rules. These approaches can be seen as purely reactive. They are relatively insensitive to surprises, 
since commitments are only made as necessary to continue execution, and typically require only modest 
computational resources. However. overall factory performance is very much a function of the sensitivity 
of the local decision rule to the structure and operating conditions of the factory. Unless the dynamics Of 
the factory are well understood and stable over time, such strict reliance on local decision-making leads to 
otherwise avoidable congestion and suboptimal performance. 

More recent research in knowledge-based scheduling has attempted to close the gap between 
optimization and control perspectives. One approach p.41 suggests that combinatorial complexity can 
be used to solve the problem of executional uncertainty, and, conversely, that executional uncertainty can 
be used to solve the poMem of combinatorial complexity. The part of the system which builds the 
schedule operates under the principal of least commitment, generating a set of good schedules (rather 
than just one) with the certainty that as execution proceeds, circumstances will prune the members of the 
set which are inappropriate. The part of the system which executes the schedule is based on the 
principal of opportunism. manipulating the set of schedules such that its real time decisions will leave as 
many options open for me future as possible. 

Other knowledge-based scheduling efforts have explored frameworks for integrating predictive and 
reactive scheduling processes. OPlS (13, 10, 141 defines an incremental scheduling methodology that is 
focused by repeated analysis of current solution Constraints and objectives, which is used as a basis for 
both generating schedules in advance of execution and revising them as circumstances warrant. The 
schedule revision strategies studied here 11 11 are motivated primarily by global performance concerns, 
attending secondarily to schedule stability and system responsiveness concerns. From the standpoint of 
executional flexibility, a representation is employed that enables inprecision in resource assignments (i.e. 
provides an ability to allocate capacity from resource groups without naming individual resources). In 
SONlA[2], a system which generates and revises schedules according to a similar methodology, a 
framework for explicitly controlling the extent of constraint propagation performed is proposed as a means 
of balancing the time spent revising the schedule against the quality of the reaction. Moreover, a schedule 
representation that retains executional flexibility with respect to timing details is introduced, in contrast to 
mOSt other schedulers which generate and manipulate temporally "crisp" schedules (i.e. schedules with 
absolute start and end times). As suggested above, this temporal flexibility is achieved at the expense of 
an ability to remain flexible in the resource assignment dimension. 181 proposes an alternative framework 
for remaining temporally imprecise based on fuzzy logic (again at the expense of flexibility in resource 
assignments). DAS [l] partitions the overall decision-making effort among a hierarchically organized set 
of scheduling agents, where each agent is given responsibility for making and retracting specific 
commitments (time assignments on a particular machine, machine assignments in a given work area, due 
dates of current jobs). Schedule generation and schedule revision are again treated uniformly, in this 
case as a collective activity based on backtracking search. In reactive contexts, the hierarchical 
organization provides heuristic structure for incrementally enlarging the m p e  of the change required to 
the schedule. 

In this paper, we present an approach to exploiting local flexibility in a globally motivated schedule 
during schedule execution. Our approach assumes an overall scheduling framework where decision- 
making responsibility is shared between a globa! scheduler, responsible for establishing and maintaining 
execution constraints in accurdance with overall performance objectives, and a local diqafcher, 
responsible for containing execution within globally imposed constraints and notifying the scheduler when 
containment is no longer possible (and global reaction may be required). The framework is realized 
through cooperative management of a temporally crisp schedule that is initially produced by the global 
scheduler, and from which local temporal flexibility is derived and exploited during execution. For 
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purposes of this paper, we assume the existence of a global scheduler [16.7] and focus on mechanisms 
for exploiting schedule flexibility during execution. Our approach is influenced by the specific 
characteristics of the target application domain, and we first briefly consider the manufacturing domain of 
interest. 

2. The Problem Context 

The scheduling framework described here is aimed specifically at scheduling facilities which fabricate 
semiconductor wafers each containing hundreds of die. A typical ?ab" runs a few thousand jobs of a few 
tens of products over a few hundred machines' through three or four basic processes each with a few 
hundred linearly-ordered steps. Any particular machine is capable of running one or more steps, and any 
given step can run on one or more machines. Each job has a specified due date, and the overall cycle 
time of a job through the fab is measured in weeks. Furthermore, both machines and process steps 
employ very advanced technology, and the semiconductor market is quite volatile. Consequently, 
uncertainty is present both in terms of the health of the process and the machines, requiring preventive 
and emergency maintenance (called PM and EM respectively), and in terms of the delivery demands. 

The overall system of interest is depicted in Figure 1. It includes the factory with its data collection 
subsystem and its command execution subsystem, and the scheduling system with its global scheduling 
subsystem and local dispatching subsystem along with their data model, knowledge base, and schedule. 
The data collector feeds me data model, and the dispatcher feeds the command executor. Both the 
scheduler and the dispatcher have access to the data model, the knowledge base, and the schedule. 
The factory with its data collector and control system work continuously. The scheduler is initialized by 
filling its data model with a whole factory snapshot and with which it builds a schedule for the next time 
period, twelve hours for example. The dispatcher executes the schedule. issuing control instructions to 
the factory, watching the data stream coming from the factory, and communicating with the global 
scheduler as necessary. The dispatcher recognizes problems and tries to either avoid or locally repair 
them. When it fails, the scheduler is called on to perform more global repairs. The cycle starts over when 
either the time period ends or the global scheduler determines that complete schedule regeneration is the 
most appropriate global repair. 

For purposes of this paper, we assume that the data collector and the control system function 
perfectly.3 Three message rates are important to the reactive component. The first is the rate of 
"expected" messages from the data collector (i.e. process step or preventive maintenance (PM) started 
or ended on time, emergency maintenance (EM) ended on time) which o a r  on average every 5 
seconds. The second is the rate of 'surprise" messages from the data collector (Le. process step or PM 
or EM ended early or late, machine broken and EM started, job broken and placed on hold) which occur 
on average every 60 seconds. The third is the rate of messages from the dispatcher to the control 
system (i.e. start process step or PM step) which averages one every 10 seconds. 

3. Exploiting Local Flexibility in the Global Schedule 

Any machine in the factory spends its time either running production, being maintained, or sitting 
waiting. One objective of the global scheduler is to try to reduce machine waiting time since this will 

w i l e  other ly'pes d resources are used. only machines are consaered here. 

'Note that the first of these is a gross assumptim In k t  the data mllector misses some data delivers some i n m m  andm 
inwnsislent data and is sometimes lam. Thaw problems am being addrsbsed through a related p*a on intelligent data 
wllectlm agents. 
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improve machine utilization, one of the performance metrics by which the behavior of the factory will be 
iudged. But due to the interactions between activities in the factory, schedules with zero machine waiting 
time can never realistically be expected. A similar set of comments can be made for jobs. Any job in the 
factory spends its time either on a machine, on a transporter, on hold, or sitting waiting. The global 
scheduler a l a  tries to reduce job waiting time since this will improve throughput time, another of the 
performance metrics by which the behavior of the factory will be judged. However, again due to the 
interactions between activities in the factory, schedules that completely eliminate job waiting time can 
never realistically be expected. 

Even if "no wait" schedules were achievable, they would not be desirable. Given the uncertainty in the 
execution environment, any surprise would disrupt the whole schedule. We argue that, in fact, these 
inescapable waits can be used to hedge against surprises. They can provides a basis for distinguishing 
between locally containable problems and problems of global import that might develop in the schedule, 
and, as such, can be used to dynamically download a share of scheduling responsibility to the dispatcher 
as the factory operates. In the following subsections, we describe a framework for local decision-making 
based on this perspective. We first consider the representational assumptions underlying our approach. 

3.1. Representing the Schedule and the Current Scheduling State 

Central to our approach is a "distributable" representation of the current schedule. We represent the 
current schedule as a set of schedule objects (SOs). The most w m m n  type of SO is a production step. 
A production step has the basic form u t e p  job mnch SI e n ,  where, for any given production step s: 
sfep(s) is the process step to be performed, job(sj is the job being operated on, m h ( $  is the machine 
allocated for purposes of performing this production step, s(s) is the scheduled start time of the 
production step, and ei(sj is the scheduled end time of the production step. The first two attributes of a 
production step uniquely identify a particular production activity to be performed. The final three 
represent the deasions of the global scheduler. As execution proceeds and production steps moves from 
pending to inprocess to completed, st($ and el($) are updated accordingly to reflect actual times. Two 
additional attributes, moch-pred(s) and mach-succ(s), are also associated to indicate respectively the 
previous and next step to use mch(s )  in the current schedule. 
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We also associate the following constraints with any given production steps: 
jo&pred(s) =the immediate predecessor production step to sor nil (implying s is the first step 

op&srrcc(s) = the immediate successor production step to s or nil (implying s is the last step of 

dur(5) = the duration of s 

mg(s) = the machine group from which capacity is required to perform s. We assume that 
machines are partitioned into mutually exclusive machine groups, and that each machine in a 
given machine group is capable of performing the same set of process steps in the same 
times. The precise resource requirement for a given production step s is use of one of the 
machines in the set designated by mg(s) for the entire duration of s. For a given machine 
group MC, mchs(lwC) indicates the set of constituent machines. 

of the process). If jo&pred(s) exists, ef(iob-pr@d(s)) < SO). 

the process). If jo&mcc(s) exists, el($) 5 st(/o&succ(s)). 

These constraints are imported or derived from generic product/ptocess models when particular 

Machine PM and EM steps comtitute the other types of SOs in the schedule and are represented 
similarly to production steps. In these cases, a machine is identified rather than a job and there are no 
pred, SUCC. and mg constraints. There are also additional mnstraints on the scheduling decision variables: 
For any PM or EM steps, m c h ( s )  cannot be changed, and, in the case of EM, neither can sr(s). 

The current scheduling state is represented in part by status information in the data model that is 
associated with each job and each machine in the factory and is updated by the data Collector. For each 
job j ,  srufur~'~] indicates either "busy' executing on a process step, "waiting" for a machine to become 
available to begin the next process step, "in-transit" from one machine to another, or 'on-hold" awaiting 
repair actions. If the job is "busy", the relevant current-SO(ll is designated. For each machine m, srotus(m) 
indicates either 'busy" executing a job, "waiting" for a job to become available, undergoing a PM 
operation, or involved in an EM. Again, if the machine is'busy", the relevant currenr-SO(m) is designated. 

TO provide a basis for temporally containing local decision-making, we define four additional times 
relative to a given SO s: pre-sfuck(s), post-sluck(s), pre-idle(s), and post-idle(~) (see Figure 2.).  If s is a 
production step, then pre-slack(s) = er(iob-pred(s)) and psr-sluck(s) = sr(iob-succ(s)). If s is a PM step, we 
assume pre-sluck and posr-sluc& is specified externally. If 5 is of either type, pre-idl@(s) = er(mnch-succ(s)) 
and posr-idle(s) = sr(mach-succ(s)). These four times explicitly represent the residual temporal flexibility 
implied by the current schedule. The earliest time at which scan be started without effecting the sr or er of 
any other SO in the system is mnr@re-s!uck(s), pre-ide(s)). Likewise, min(posr-s luck(s) .p-~~e(s))  
designates the latest time at which scan end without impacting other SOs. 

These earliest starts and latest finishes are of direct interest to the local dispatcher. Given that 
factories usually have actual throughput times three to five times higher than theoretical, and usually have 
machine utilizations in the range of sixty to eighty percent, the dispatcher will have substantial pre and 
post slack and idle to use in managing surprises. The heuristics it uses to perform repairs are explained 
in a later section, but have guaranteed locality of effect due to their exdusive use of pre and post slack 
and idle. This avoids contention between the global scheduler and the local dispatcher. 

production steps are created and are assumed static over the lifetime of a step.4 

that this is not actudly h a y s  the case. P m s s  step failures can occur, necessitaw ether the addition ot rework 
production steps or the removal of the job from the system, md resulting in changes ID thejob-fyEc and j w r e d  mnslraints of 
different produclion step% We assume, for this paper, that such sibations simply resun in putting !he job on 'hold- and informing 
the global xheduler 
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Figure 3-1: Pre and Post Idle and Slack 

3.2. Partitioning decision-making responslbility 

To mediate interaction between the global scheduler and the dispatcher, the set of all SOs is divided 
into six subsets, as shown in Figure 3. Two of these subsets, Unscheduled and Scheduled, are 
designated as the responsibility of the global scheduler. SOs in either of these subsets are accessible 
only to the global scheduler. Three other subsets, hemling, OnDeck, and IflTheHole, are similarly 
defined to be the exclusive responsibility of the local dispatcher. Control of the flow of SOs between 
these subsets and the sixth identified subset (Finished) defines the overall operation of the system. 

SOs are created in response to production and maintenance requests and loaded initially into subset 
Unscheduled At this point, SOs have only a name and type, and an assigned job or machine. The main 
task of the global scheduler is moving SOs from subset Unscheduled to subset Scheduled, where SOS 
have all scheduling decision variables assigned. The scheduler is also responsible for So's that are 
returned to Unscheduled from the dispatcher, indicating the necessity of a global schedule repair. 

Within the jurisdiction of the dispatcher, there are three subsets of interest. Subset Executing contains 
all SOs that are currently executing in the factory. The SOs in subset OflDedc are the focus of attention 
of the dispatcher. These are the next to execute, according to the schedule, and the prinapal task of the 
reactive scheduler to move SOs from OnDeck to Executing, making whatever local adjustments are 
necessary before sending the start command for the SO to the command execution system in the factory. 
The SOs in subset IflTheHoIe are the next to execute after the So's in OnDeck. amrding to the 
schedule. They are under the control of the dispatcher to enable computation of p ~ r - d ~ ~ k  and post-idle 
times for OnDeck-SOs without danger of their corruption by the global scheduler. When an OnDeck-SO 
is moved into Executing, InTheHole-SOs are pulled into OnDeck and Scheduled-SOs are pulled into 
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Flgure 3-2: Sets of Schedule Objects 

InTheHole (the solid arrows in Figure 3.). Failure of an Executing-SO to successfully execute, or an 
inability to contain the execution of a OnDeck-SO within the constraints imposed by the global scheduler, 
can lead to movement of SOs in Drecuthg, &ID&, or lnTheHole back to Unscheduled (the dashed 
arrows in Figure 3.). 

As SOs successfully finish executing, they flow into Subset Z. providing a record of the actual behavior 
of the manufacturing system. 

3.3. Executlng Schedules and Detectlng Problems 

As indicated above, the local dispatcher focuses on OnDeck-SOs, trying to start execution of each 
within the constraints imposed by the global scheduler. To decide whether execution within the 
cnnstraints is possible, the dispatcher has at is disposal a number of relevant times for each OnDeck-SO: 
a SI and a et (suggested by the global scheduler), a pre-slack and apre-idle (reflecting current Executing- 
SOs). and a post-ide and a psi-slack (reflecting InTheHole-SOs). To start execution of a particular 
OnDeck-SO 5, the dispatcher must be sure that two requirements are met - much($ must be available, 
and job(s) must be available. A number of circumstances are possible depending upon the order in which 
the relevant events take place. 

There is the possibility that mach(s) is reported available sometime behueen pre-idle(.v) and SI(S) but 
jub(s) is not available until SI@), or that job(5) is available between pre-sluck(s) and sr(r> but mach(s) is not 



available until st(s), or that both become available just at s f W .  In any of these cases, the dispatcher can 
just execute as planned. It is also possible that both much(s) and job($) are reported available sometime 
between pre-i&(s) and sf(s). In this case, the dispatcher can be opportunistic and begin execution of s 
early. 

Neither of these cases is especially difficult to resolve. More problematic arcumstances arise if either 
mch(s) ,  or pb(s), or both become available after sf(s). Here the dispatcher will be forced to try to 
rearrange execution. If the lateness of mach(s} orfib($) pushes s past ( ~ s ~ ~ l e ( s ) ~ w s f - s l Q c ~ s ) } ,  it may 
not be possible for the dispatcher to begin execution at all. Inability to locally recover is almost assured 
upon notification that an Executing-SO has failed during execution. This implies that either an EM has 
been started on m n ~ h l s )  or job@) has been placed on hold, or both. In any of these failure modes, many 
OnDeck-SOs and InTheHole-SOs (and possibly scheduled-SOs) will be effected and the dispatcher will 
most likely have to appeal to the global scheduler to perform a global repair. 

As alluded to above, the detection of problems is tied to recognizing inconsistencies between the 
current state of the factory and the predicted schedule. The issue of when to raise the "alarms", however, 
can be seen from different perspectives. Clearly some events (e.g. broken machine, misprocessed job) 
serve themselves as alarms. But when a machine or job has the possibility of simply being late, there are 
tradeoffs involved in determining when the alarm is sounded and repair attempts initiated. On one hand, 
alarms can be tied to Executing-SOs. Under this scheme, whenever an actual start time is established, 
an expected end is computed and propagated to related OnDeck-SOs. This provides the opportunity to 
respond immediately to anticipated problems at the danger of spending computational resources to 
resolve problems that may fail to materialize. On the other hand, alarms may be tied to the current 
scheduled start times of OnDeck-SOs and deactivated if execution can be started before the alarm goes 
off. This scheme affords less flexibility for local reaction at the potential benefit of less computational 
expense. These ideas are being evaluated in the prototype. 

3.4. Making Local Repairs 

Since the dispatcher has access to only Executing-SOs. OnDeck-SOs. and InTheHole-SOs, the space 
of possible revisions to the schedule is bounded. In particular. all changes are temporally bounded by the 
et of all Executing-SOs (which are currently executing), and the scheduled el of all InTheHole-SOs (which 
guarantees non-interference with me global scheduler). This implies, for example, that InTheHole-SOs 
can only be moved earlier in time while OnDeck-SOs can be moved earlier or later and Executing-SOs 
can not be moved at all. Similarly, a OnDeck-SO or InTheHole-SO can only be reassigned to another 
machine in the same machine group as the machine it is currently assigned to. The recorded post-idfe 
and post-slack constraints associated with Executing-SOs, the pre-idle. pre-slock, pst-idle, and post-slack 
constraints associated with OnDeck-SOs, and the pre-idfe and pre-slack constraints associated with 
InTheHole-SOs provide guidance in identifying local repairs that leave the sts and ers of Executing-SOs, 
OnDeck-SOs, and InTheHole-SOs in a consistent state, and a number of simple heuristics which exploit 
this information are used by the dispatcher to respond to detected problems and opportunities. 

in the case of an opportunity, the pre-ide and preslock can be inspected to see how far the sf of the 
OnDeck-SO in question can be shifted earlier. In the case of a problem, post-idle and poSf-S/Qck indicates 
how far the er, can be shifted later. These simple "shift-earlier' and "shift-later repair heuristics, i f  
applicable, fix the problem with minimal disruption to the schedule, and combat the very common situation 
of "time jitter" in the executional system where events occur a few minutes earlier or later than expected. 
Another rarer circumstance to which simple shifting seems well suited is that resulting after a 
misprocessed job has been retracted from the schedule, leaving holes throughout the schedule into which 
OnDeck-SOs can be pulled. 

The dispatcher can alw exploit knowledge of equivalent machines in responding to problems. If a 
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machine availability problem is detected in conjunction with a given OnDeck-SO s, the dispatcher inspects 
all of the Executing-SOs, OnDeck-SOs, and InTheHole-SOs contained in machine-group mg(s) for an idle 
interval which spans the interval from sr(s) and et(s). If such an interval is found, a reassignment Of 

mach(s) can be again made without disrupting to any other SO. This simple shift-machine repair heuristic 
can also be utilized in cases where there are holes left in the schedule by misprocessed pbs. 

A third heuristic is a combination of the simple shift-earlier and shift-later heuristics. The dispatcher 
can use the mnckmcc link in the problematic OnDeck-SO to determine whether the OnDeck-SO can 
undergo a shift-later and the identified InTheHole-SO can undergo a shift-earlier. Simply stated, this 
results in switching the order of two jobs occurring sequentially on the same machine. 

Another pair of more complex repair heuristics combine either of the shift-earlier or the shift-later 
heuristics with the shin-machine heuristic. This allows the local dispatcher to reassign a OnDeck-SO to a 
different machine at a different time than assigned by the global scheduler. Basically another machine in 
the Same machine group must have an idle period that spans the the problematic OnDeck-SOs duration, 
and this idle period must fall completely within the OnDeck-SOs prtsiack and posf-slack Constraints. 

The most Complex repair heuristic includes all three of the simple heuristics: "shift-later", "shift-earlier", 
and "shift-machine". The dispatcher can use this heuristic to manipulate two OnDeck-SOs in such a way 
that their machine assignments are swapped and their time assignments are moved earlier or later as 
appropriate. 

With regard to the order of application of the above set of heuristics, our current approach is 
computationally cheapest first. This is based on the observations that any solution found is consistent with 
the global schedule, and the faster the system can find one the better. As we gain more understanding of 
the nature of local reactive poblems. we expect more knowledgeable ordering strategies to emerge. 

4. Conclusions 

In this paper, we have presented a framework for manufacturing production scheduling that distributes 
decision-making responsibility between a global scheduler, concerned with optimizing overall factory 
performance in the face of a high degree of combinatorial complexity, and a local dispatcher, concerned 
with robust execution in the face of an uncertain execution environment. The framework is based on the 
use of existing machine idle time and job wait time in the global schedule as sources of flexibility in 
managing execution. Assuming the existence of a scheduler capable of effecting global schedule repairs, 
we have defined a local deasion-maker capable of exploiting this flexibility. The approach is currently 
being implemented for testing in a specific wafer fabrication facility. 

One aspect of the framework that has been left underspecified concerns reassignment of responsibility 
for specific scheduling decisions (Le. OnDeck-SOs and InTheHole-SOs) to the global scheduler upon 
failure of the dispatcher to move a given OnDeck-SO s into Execuring. One straightforward approach is to 
simply remove s, and its related InTheHole-SOs mack-succ(s), and jo&succ(s) from the dispatcher's 
purview. This implies that the dispatcher must wait for the global scheduler's response (reaction) before 
making any further decisions involving either job($) or mch(s), and provides the global scheduler with 
complete flexibility to revise decisions relating to job($) and/or mach(s). On the other hand, there are 
circumstances when such an approach unnecessarily constrains factory execution. For example, if the 
failure of OnDeck-SO s is due to the fact that job($) was misprocessed during execution of job-pd(s) (Le. 
its related Executing-SO), then removal of s and j&succ(s) from dispatcher jurisdiction is approp,iate but 
removal of mach-succ(s) may stall execution for no reawn (if, in fact, determination by the global 
scheduler that mach-succ(s) is not affected by the problem is time consuming enough to cause an actual 
delay in executing mac/~-succ(s)). It may be mare advantageous to leave responsibility for much-succ(s) 
with the dispatcher, in essence treating it subsequently as a OnDeck-SO that can be executed as soon as 
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conditions allow. The appropriateness of various responsibility reassignment policies depends heavily on 
the computational demands that are placed on the global scheduler (Le. the frequency at which non- 
locally resolvable problems arise) and the speed at which global schedule repairs can be made. 

At a more general level, there are several assumptions made in the model described in this paper that 
warrant further consideration. One assumption that our present model makes is that unique machine 
assignments are made in advance of execution by the global scheduler. In some manufacturing 
environments there may be no strong reason for such advance commitment, and it might be argued that 
doing so places artifiaal constraints on the dispatcher. On the other hand, there may be no danger in 
doing so if the dispatcher's machine swapping heuristics can effectively exploit opportunities to reassign 
machines. If nat, it is straightloward to extend our approach to accommodate deferring of specific 
machine assignments to execution time. Since the present approach is built around manipulation of 
temporally crisp schedule, representations that enable enforcement of resource "capacity" constraints are 
well known (e.g. IS]) and could be easily integrated. 

We have also made strong assumptions regarding the amount of lookahead given to the dispatcher. In 
the dispatcher described here, we have bounded the view of the dispatcher to the maximum extent, 
giving it access to those scheduling decisions that are only one or two steps into the future from those 
currently executing in the factory. This was done purposely to minimize computational expense and 
simplify the local reactive scheduling problem. At the same time, looking further ahead does provides the 
opportunity to "accumulate" more slack and ale time, and it may be the case that this would lead to a 
more equitable balance between global and local decision-making. It is certainly the case that looking 
further ahead will lead to more complicated local scheduling heuristics and longer compute times. 
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