
CHIMERA II: A Real-Time UNIX-Compatible
Multiprocessor Operating System for

Sensor-based Control Applications

David B. Stewart
Donald E. Schmitz
Pradeep K. Khosla

CMU -RI-TR-89-24

Advanced Manipulators Laboratory
The Robotics Institute

Carnegie Mdon University
Pittsburgh, Pennsylvania 15213

September 1989

.

Contents

1 Introduction 3

2 CHIMERA I1 Features 4

3 CHIMERA I1 Hardware Support 7

3.1 General Purpose Processors . 9

3.2 Special Purpose Processors and I/O Devices . 10

4 CHIMERA I1 Kernel 13

4.1 Real-time Computing Requirements . 13

4.2 CHIMERA I1 Kernel Design . 14

4.2.1 Context Switch Operation . 15

4.2.2 Process Scheduler . 15

4.2.3 Process Data Structures . 17

4.2.4 Process Control Primitives . 18

4.2.5 Exception and Interrupt Handling . 19

4.3 Memory Management . 20

5 Interprocessor Communication 20

5.1 Global Shared Memory . 21

5.2 System-Level Communication . 22

5.2.1 Express Mail Devices . 23

5.3 User-level Communication . 26

5.3.1 SharedMemary . 28

5.3.2 MessagePassing . 31

5.3.3 Semaphores and Synchronization . 32

6 Summary 32

7 Acknowledgements 33

List of Figures

1 A Sample Hardware configuration Supported by CHIMERA II

2 CHIMERA 11 Configuration File . 12

3 A remote read() operation . 24

8

4 Read() and write() drivers for wn devices . 27

5 Example of Interprocessor Shared Memory . 29

6 Implementation of Interprocessor Shared Memory . 30

...... .__

Abstract

This paper describes the CHIMERA I1 multiprocessingoperating system, which has been developed
to provide the flexibility, performance, and UNIX-compatible in t e rhe needed for fast development
and implementation of parallel real-time control code. The operating system is intended for sensor-
based control applications such as robotics, process control, and manufacturing. The features of
CHIMERA I1 include support for mnltiple general purpose CPUs; support for multiple special pur-
pose processors and I/O devices; a high-performance real-time multitasking kernel; user redefinable
dynamic real-time schedulers; a UNIX-like environment, which supports most standard C system
and library calls; standardized interrupt and exception handlers; and a user interface which serves
to download, monitor, and debug d e on any processor board, and serves as a terminal interface
to the executing code. CHIMERA I1 also offers an attractive set of interprocessor communication
features. The system-level express mail facility provides transparent access to a host file system
and remote devices, and provides the basis for implementing user-level interprocessor communica-
tion. Application programmers have the choice of using shared memory, message passing, remote
semaphores, or other special synchronization primitives for communicating between multiple pro-
cessors. As an example of an actual implementation, we are currently using CHIMEFU I1 to control
a multi-sensor based robot system. The system runs on a Sun workstation host, with one or more
Ironics M68020 processing boards, connected over a VME backplane. The system contains various
special purpose processors, including a Mercnry 3200 Floating Point Unit and an Androx Image
Processor. The system also supports a variety of sensors and devices for real-time systems, which
currently include a camera., force and tactile senmrs, and a joystick.

.

1 Introduction

Sensor-based control applications, such as robotics, process control, and manufacturing systems,
present problems to conventional operating systems because of their need for several different
hierarchical levels of control, which can fall into three categories: servo Zewels, supervisory levels,

and planning levels. The servo levels involve reading data from sensors, analyzing the data, and
controlling electro-mechanical devices, such as robots or machines. The timing of these levels is

critical, and often involves periodic processes ranging from 10 Hz to 1000 Hz. The supervisory
levels are higher level actions, such as specifying a task, issuing commands like turn on motor 3
or moue to position B, and selecting different modes of control based on data received from sensors
at the servo level. Time at this level is a factor, but not as critical as for the serwo levels. In
the planning levels time is not a factor. Examples of processes in this level include generating

accounting or performance logs of the real-time system, simulations, and programming new tasks
for the system to take on.

In order to satisfy the needs of sensor-based control applications, a flexible real-time, multitasking
and parallel programming environment is needed. For the servo levels, it must provide a high

performance real-time kernel, low-level communication, fast context switching and interrupt la-

tency times, and support for special purpose CPUs and 1/0 devices. For the supervisory levels, a

message passing mechanism, access to a file system, and scheduling flexibility is desired. Finally,

the real-time environment must be compatible with a host workstation, which can provide tools
for programming, debugging, and off-line analysis, are required by the planning levels. Ideally, a

popular high level language k available to minimire the learning time of the system. The real-

time operating system should also be designed so that programs running in simulation under a

timesharing environment can be incorporated into the real-time environment with minimal effort.

CHIMERA I1 provides such an environment that is capable of supporting all levels of sensor-based
control applications on a parallel computer system.

Several real-time operating systems currently exist for control type applications, such as VRTX,

by Ready Systems [l], and VxWorks, by Wind River Systems [2]. VRTX is aimed at embedded

systems for production, as opposed to CHIMERA II, which is a flexible UNIX-mmpatible real-time
environment, suitable for research and development of control applications. VxWorks is similar to
CHIMERA II in concept, but it is geared towards networking multiple single board computers to
provide parallel processing power. It does not offer the necessary features for taking advantage of

multiple processors on a common backplane, which is especially needed to satisfy the high compu-

3

tational demands of the servo levels. It also does not provide the scheduling and communication
flexibility needed by many sensor-based control applications. In contrast, CHIMERA I1 is designed
especially for providing maximum performance and flexibility in a parallel processing system. It
takes advantage of shared memory over a backplane to reduce overhead on message passing and
to provide interprocessor shared data segments and semaphores. The design of the CHIMERA I1
operating system, and its predecessor CRIMERA[3], was influenced by its target application, that
involved real-time control of the Reconfigurable Modulator Manipulator System [4] and Direct
Drive Arm I1 [5] at Carnegie Mellon University. The features, high performance, and flexibility of

CHIMERA Il allow it to be used in any type of process control, manufacturing, or real-time control
applications; and as a testbed for research in real-time systems.

The remainder of this paper describe5 the implementation of CHIMERA 11, and concentrates on the
details of the operating system which makeit unique. Section 2 provides an overview of the features
of CHIMERA 11. Section 3 describes the possible hardware that can be used with CHIMERA 11.

Section 4 provides details of the CHIMERA II real-time kernel, including our approach for ob-
taining low context switching times, scheduling flexibility, and real-time process control primitives.
Section 5 describes the various forms of system-level and user-level interprocessor communication
within the system.

2 CHIMERA I1 Features

CHIMERA II provides the necessary features for implementing semor based control applications
in a parallel computing environment. These features include the following:

Support for multiple general purpose CPUs;

Support for multiple special purpose CPUs and 1/0 devices;

A real-time multitasking kernel;

User definable and dynamically selectable real-time schedulers;

Transparent access to a host file system and to remote devices;

Generalized and efficient interprocess and interboard communication;

Local and remote process synchronization;

4

Standardized interrupt and exception handlers;

UNIX-like environment, which supports most standard C system and library calls;

Support for Hierarchical and Horizontal Control Architectures

A user interface which serves to download, monitor, and debug code on any processor board,
and serves as a terminal interface to the executing code.

One of the goals of CHIMERA II is to provide an environment for controlling systems that accept

inputs for their operation from multiple sonrces that include both sensors and humans. Another
goal is to develop an environment, based on commercially available devices, that can be easily

ported and thus made widely available for research, development, and application. Based on these

objectives, we established the following requirements for the hardware architecture of a program-

ming environment for sensor-based control applications:

Aside from application specific I/O, the hardware must be based on commercially available
items.

A well supported family of general pnrpose CPUs must be used in the entire system. These

must be chosen for overall performance and software portability.

A time sharing workstation must be used as a host to the real-time programming environ-
ment, in order to provide widely-wed editors, debuggers, and window managers for program
development.

e The real-time system must be expandable by adding one or more general purpose CPUs
operating in parallel, a c h capable of working either independently or synchronized with

other CPUs.

The hardware must be capable of supporting special purpase devices, such as floating point
processors and 1/0 devices, in order to provide enough flexibility for use in a wide variety of

control applications.

Based on the above requirements, we chose to base CHIMERA I1 on the Sun 3 workstation, a

popular and well supported Motorola M68020-based workstation with a VME bus. This choice

dictated that our real-time engines also be VMEbased M68020-based boards. Of the commercially
available M68020 processor boards, we chose the Ironics family of CPU boards, because of support

5

for a local bus and rnailborinterrnpts, each of which helps in reducing potential memory bandwidth
problems on the VME bus.

Besides the above requirements for the hardware architecture, we also established the following
software requirements for a sensor-based real-time computing environment:

The software environment must appear to the user as a real-time extension of a typical UNIX
development system:

- The C programming language must be available for all levels of the control program.
There should not be any need for using assembly language.

- The real-time kernel must support programs which are designed as multiple, concurrent
processes. The kernel must support access to hardwaredevices via a library of high level
routines, hiding the hardware details from the applications programmer.

- Standard UNIX utility libraries must be ported or emulated, allowing ready portability

of existing UNIX programs.

- The UNIX file system must be acceesible to all general processing boards.

The kernel must be flexible enough to use a variety of echedders to provide the best per-
formance for a given task, thus taking advantage of the many different scheduling strategies

which have been proposed for real-time operating systems.

The software must implement a form of interprocessor communication and synchronization

which requires a minimal amount of overhead, yet is flexible enough for all applications. Effi-
ciency is very imporbat since increased parallelism usually creates additional communication
overhead between processors, which may nullify the advantages gained from making the code

run in parallel.

A standardized interface for interrupt handling and device drivers must be available, to sim-
plify user code and also decrease development time of applications.

The environment must provide the basic constructs required to support both hierarchical
and horizontal control architectures, such as high level constructs for low-volume hierarchical
communication; and low overhead communication for high-volume horizontal communication;
and global shared memory across all processors.

The simulation and real-time control environment6 must be similar, so that code can easily
be moved between the two environments.

6

The above requirements must all be achieved by sacrificing a minimal amount of performance. The
CHIMERA I1 programming environment provides a UNIX-compatible interface, which supports
a real-time kernel, interprocessor communication, transparent amess to the host file system and
devices on the VME bus, remote process synchronization, and many more features needed for sensor-

based control. In the remainder of this paper, we describe the hardware and software architecture
for our implementation.

3 CHIMERA I1 Hardware Support

CHIMERA I1 is capable of supporting multiple general purpose processors (CPUs), which provide
the parallel mmputational power needed to support multiple sensors in a control application. In
addition, special purpose processors, such aa floating point units (FPUs), image processing units

(P U S) , and digital signal processors (DSPs), can be incorporated into the system. CHIMERA I1
also allows devices, such as serial ports, parallel ports, and frame grabbers, to be added to the
system with relative ease. Eaxh of these devices are acxecasible by all CPUs in the system. The
remainder of this section describes the interface developed for CHIMERA II to incorporate a large

variety of processors and devices within the system.

The minimum configuration to run the CHIMERA II environment is a Sun 3 workstation with
VME backplane, running Sun OS 3.x or Sun OS 4.0.3l, and one Ironics M68020 processing board.
Figure 1 shows a sample hardware configuration. It is the one currently in use with the CMU
Direct Drive Arm I1 project. The system consists of several processors and I/O devices:

A Sun 3/260 host system on a VME bus, running Sun OS 4.0.3

A VMEtc-VME bus adapter, to isolate the timesharing host from the real-time system;

Multiple Ironics M68020 boards, pmsibly with different options, such as varying memory size,

1/0 ports, and local buses;

A Mercury 3200 Floating Point Unit, which provides a peak performance of 20 Mflop, for
intensive real-time control calculations;

six Texas Instrument TMS320 DSP processors, on a Multibus backplane, each controlling
one joint of the CMU DDArm 11. The Multibus is connected to the VME bus through a

'We have plans to port the CHIMERA I1 code to the Mach operating system [SI.

7

Sun 3f260
workstation

with
VME bus

Backplane

Joint
Controller

1

. . T""; - Camera

Joint Joint
Controller Controller

2 # 6

6 DOF
Joystick

Tactile Sensor

Form Sensor

- - VME to Multibus - - Bus Adapter

Multibus

t
I TMS320 I I TMS320 I TMS 320

Tdfrorn Robot Tdfrom Robot Tdfrorn Robot
Joint 1 Joint 2 Joint 6

Figure 1: A Sample Hardware Configuration Supported by CHIMERA I1

8

VME-to-Multibus Adapter.

e Multiple Sensors with corresponding 1/0 ports: a tactile sensor, connected to an h n i c s serial
port; a six axes force sensor, connected to a parallel 1/0 board; and a camera, with monitor,
connected to an Androx Image Processing board;

A six degree of freedom joystick, connected to an Ironics serial port.

The CHIMERA 11 kernel executes on each Imnics M68020 board, while the development environ-
ment is on the Sun h a t system. Now68020 boards, such as the Mercury and the Androx, operate
as slaves to one of the Ironics CPUs. Additional devices can be easily incorporated into the system.

h h Ironics M68020 has either an M68881 or M68882 floating point coprocessor on the board.
Although these are useful for small amounts of floating point calculations, they are not powerful

enough to support the computational requirements of a sensor-based control application. We opted
for the Mercury 3200 floating point unit, since it offers the required performance at a reasonable

cost; and because a true C compiler is supplied, allowing us to develop all parts of the control code

in C.

The various sensors we are using not only allow us to perform research on multi-sensor control
algorithms, but also provide a base for testing CHIMERA 11’s capability for handling a variety of
devices. Similarly, the Mercury FPU, the Androx vision processor, and the custom TMS320 DSPs

also provide a good way of testing CHIMERA II with a variety of special-pnwe processors, hence
demonstrating the flexibility of the programming environment. Finally, the six degree of freedom

joystick is a source of aperiodic human interaction into the control loop of various algorithms.

3.1 General Purpose Processors

All CHIMERA I1 real-time program execute on one or more real-time engines that are single board

computers co-existing on the W E bus of a SUN-3 workstation host. At present, CHIMERA I1 sup-
ports the Motorola M68020 processor architecture as implemented on several commercial products,

and will be ported to the newer M68030 in the near future. While ports to radically different CPU
architectures are now under consideration, the M680XO family provides sufficient performance for
many real-time control applications and continues to improve. Using the same CPU family in both

the real-time engines and h a t processors eliminates many of the problems of porting code between
the simulation and real-time environments.

9

Real-time programs are typically written in C, and cornpiled using the standard SUN C compiler.
Once compiled, these programs are linked with the real-time kernel, interprocessor communication
package, and common utilities, all of which are simply UNIX library files, again using the standard
SUN linker. The resulting executable iile is then downloaded directly into the real-time proces-
sor's memory via the host's VME bus. A user interface program on the SUN host performs this
downloading and provides a simple terminal-like interface to the remote processor, both to user
programs running on the processor and to the on-board monitor program for debugging purposes.

3.2 Special Purpose Processors and 1/0 Devices

CHIMERA I1 uses the UNIX philosophy of device drivers to incorporate special purpose processors
and I/O devices into the system. The UNIX-compatible calls open(), close(), read(), m'te () ,

mmop() and kU() are used to access these devices, thus hiding the details of the devices from the
applications programmer. However, compared to UNIX, writing device drivers for CHIMERA 11 is
simpler. Since there is no inteqrocess security or virtual memory (refer to Section 4.1 for details),
much of the overhead and complexity required to write a set of device drivers has been eliminated.

Each device is allocated a major number and a minor number. The major number is used as an
index to the proper driver routines for the device, and the minor number distinguishes between

multiple devices sharing the same driver.

A configuration file on the host workstation stores the information defining the processors and 1/0
devices within the system. Figure 2 shows the configuration file carresponding to our setup for
the CMU DDArm 11. The first part of the fie contains lines beginning with "x", which lists the

general processors, and defines their corresponding xm devices (see Section 5.2.1 for more details).
Lines beginning with "#" are comments. The second part of the file defines all the processors and
devices on the system (lines starting with "d"). For compatibility with the UNIX file system, all
filenames are under the directory /m. Any access to a device with such a name is intercepted by
CHIMERA 11, and a s s u m 4 to be Imated within the real-time processing environment; otherwise,
CHIMERA IIassumw that it is a file on the Sun host file system.

The different fields for defining general processing boards, in the first part of the file, are the
following:

bid: Numerical ID given to processor board

10

e boardname: Symbolic name given to the board

e sunnume: Device name used on Sun host to access board

e space: The VME addrew space in which the device is defined.

vmeaddr: The VME address of the board

e cputype: The model of the board.

0 uec: For hum# devices: Interrupt vector; the 3 least significant bits of the vector also represent
the level of the interrupt. For ixm# devices: Mailbox number for mailbox interrupts.

All the information needed by the CHIMERA I1 system about the general processor boards are

included in the configuration file. Similarly, for special purpose processors and devices, the necessary
information is included, on lines starting with an "x". The fields are the following:

boardname: The name of board which owns and is responsible for maintaining the data
structures required for reading and writing the device.

e umename: The name to be used in application programs wanting to open the device.

e space: The VME address space in which the device is defined. 'LOCAL' means that the

device is only accessible to the local CPU.

umeaddr: The VME address of the board (or local address for LOCAL devices)

sire: Number of bytes occupied by device (memory mapped devices only)

ma? Major device number

e min: Minor device number

vec: Interrupt Vector generated by device (or 0 if device does not interrupt). The 3 least
significant bits of the vector represent the level of the interrupt.

Usually special purpose processom are memory mapped for maximum performance, while the 1/0

drivers are accessed using the generic read() and write() system calls or utilities.

11

P # # # # # # X # # # # # # X X Y # # # # # # # ~ # # # X ~ ~ X X # # # # # # # # P # # P P P # # X X X # P P X Y # # # # # # # # # X ~ # # # P # # # ~ # P

CHIMERA I1 Configuration file for CMU DDAm I1

II This file contains the information needed to specify the configuration of
X the hardware.
X correaponding device drivers installed if they are t o be accessed by the
X user program.

t##X##X#P~####X#~~mPm#mmmm#XXXXX#mm#P###m#~######P###XX#Xm#~PP#mP###X###X##PP#
t declarations for general processing boards

All numerical values in hex

Any devices specified in this file must have their

y! bid boardname sun-nawa space weaddr cputype vec
X O host /deu/hxmO A24D32 000000 SUN3 53
X l sensor /dev/innO A32D32 40000000 IV3220-4 01
x 2 control /dev/imi A24D32 800000 IV3204 01

X declarations for other devices on W E board

/we/sio# are the onboard serial devices of the Ironic8 IV3220 model.
/vme/pio# are parallel 110 ports
/vme/vnuO allows mapping the Ironics local VMX bus into D32 space.
X /vme/vmxl allows mapping the Ironics local VHX bus into D16 space.
1. /vme/tmsO allows memory mapping the space of the 6 THs320 processors.
I /vme/tmO are the control registers for two.
P /we/mcO is the mercury 3200 board.

t boardname me-name
d sensor /vme/sioO
d sensor /vme/siol
d sensor /vme/pioO
d sensor /vme/piol
d sensor Ivmelpio2
d sensor /vme/pi03
d control /me/narO
d control /vme/wxl
d control /me/mcO
d control /me/tmsO
d control /vme/tmrO

space
LOCAL
LOCAL
A16D16
A16Di6
A16D16
A16Di6
LOCAL
LOCAL
A32D32
A24D16
116D16

weaddr
FC460000
FC460000

coco
coco
coco
coco

FCOOOOOO
FDOOOOOO
bOOOOOOO
3d0000
0050

size
0
0
0
0
0
0
0
0

200000
030000

20

maj min vec
o o a3
o i a3
i 0 74
i 1 74
i 2 74
1 3 74
2 0 0
2 1 0
3 0 e4
4 0 0
6 0 0

End of Configuration file.

Figure 2: CHIMERA I1 Configuration File

.-

4 CHIMERA I1 Kernel

The CHIMERA I1 multi-tasking capabilities are provided by a real-time executive or kernel. The
kernel design exploits the unique requirements of a real-time control environment to provide much
of the functionality of a conventionaloperating system with a minimal performance overhead. User
access to the kernel is via a s m a l l set of process control primitives implemented as C callable library

routines. These primitives support an Ada-like process control methodology, and serve as building

blocks for more complex constructs. The kernel itself is a C library linked into the user’s code, easing
software modifications and user extensions. While the kernel implementation is fairly conventional,
the design trade-offs are unique to the target environment. The various system requirements and

their impact on kernel design are not always obvious, and are worthy of dmussion here.

4.1 Real-time Computing Requirements

The computing requirements for a real-time system are very different from those of a conventional
operating system. These constraints d e e t both the computing hardware and kernel design of a

real-time system. In particular:

Interprocess security i s not required. In general, all of the processes running on a given CPU
(or set of CPUs) are written and invoked by a single user - it is reasonable to assume that
these processes are designed to cooperate. This eliminates much of the overhead in performing
system calls or their equivalents, since all processes can be assumed to have all privileges.

Programs are rarely limited by memory size. Real-time processes tend to be short repetitive
operations, implying a small number of instructions and small data sets. This allows such

systems to forgo virtual memory, improving memory system performance and eliminating
memory management overhead from the process context switch operation.

Process scheduling must occur a t a fast rate, and include the concept of physical time and

execution deadline in the scheduling algorithm. Restating the justification above, real-time

processes tend to be active for short periods and deadline critical, requiring a scheduling
time quanta on the order of the shortest physical event being controlled. Typical scheduling

rates are an order of magnitude (or more) higher than conventional time-sharing operating
systems. Since execution priorities are a function of time, this also implies reevaluating the
relative priority of each process every time quanta

13

The number of processes is usually small. This is due to the performance limitation of

the CPU, and the difficulty of designing concurrent algorithms. This small number allows
computationally intensive scheduling algorithms to be used without introducing unacceptable
context switch overhead.

Consistent or deterministic performance is more important than average performance. Many
systems use techniques such as hardware caching or data dependency optimizations to increase
the average performance. These features, however, are undesirable in a real-time system where
predictability is more important than obtaining higher performance most of the time, at the
cost of lower performance some of the time.

The CHIMERA I1 kernel is designed around the above requirements, and sacrifices interprocess
security and virtual memory to provide the predictability and high performance needed for all levels
of sensor-based control applications.

4.2 CHIMERA I1 Kernel Design

The CHIMERA I1 kernel is readily divided into five major components:

Context switch code, written in assembly language, that pedorms the low level mechanics
of saving and restoring the CPU state required to initiate a context switch. This code is

initiated by either a hardware timer intermpt or a user level trap.

A process scheduler, written in C, that is called from within the low level context switch.

The scheduler is responsible for maintaining the current global process state, and selecting

the next process to swap into the CPU.

A set of data structures which contain the CPU state of non-active processes and the schedul-
ing status of all processes.

User interface routines that manipulate the process data structures to (indirectly) control the
operation of the process scheduler, and thus the execution of the process.

Exception handler code, written in C or assembler, which service traps cansed by interrupts
and execution errors, such as division by zero, illegal memory access, and illegal instruction.

Each of these components are described in more detail in the following paragraphs.

14

4.2.1 Context Switch Operation

The low-level context switch operation is very much dependent on the CPU architecture. The cur-

rent CHIMERA I1 kernel supports the Motorola MC68020 CPU archjtecture, and uses a straight-
forward multi-tasking implementation. As is typical of many modern CPUs, the MC68020 enters
a supervisor stale when processing an exception, automatically toggling the active stack pointer
from user stack pointer to supervisor stack pointer, and enabling all privileged instructions 2. Each
CHIMERA 11 process owns a supervisor stack area that is used as storage space for the CPU state
when the process is inactive (not currently executing). Immediately after entering the exception
handler code, the current CPU state is saved in this area. The process scheduler is then called (as
a subroutine), which employs some algorithm to select the next process to execute, and returns a

pointer to the new process’s saved context. The current supervisor stack pointer is then replaced
with the returned value, the CPU is loaded with the state information stored there, and the excep-

tion processing is exited. This effectively restarts the process defined by that state, a t the point at

which it was previously interrupted.

4.2.2 Process Scheduler

The operation of the process scheduler is the most significant difference between a real-time kernel

and a conventional operating system. In addition to a much greater emphasis on execution efficiency,

the real-time scheduler must select which process to make active as a function of physical time and

the execution deadlines of the process pool. At the same time, the algorithm should impose a

mjnimum burden on the user programmer - if the user must specify exactly when each proces
should be swapped in and out of the CPU, little is gained in terms of programming efficiency or

performance over an interrupt driven approach.

The CHIMERA TI scheduler algorithm waa developed in an ad hoc fashion, incorporating various
standard algorithms with extensive experimentation and tuning to obtain the best performance for
typical job mixes. Given the lack of security requirements in this application, CHIMERA 11 does
provide hooks into the context switch code to allow the user to replace the standard schedulers

with application specific algorithms.

‘While tasks normally run at user level, nothing prevents a task k m explicitly changing the processor statue and
executing at supervisor level. In @nerol them is no reason lo do this; atastrophic Urn due to programmer error
are more likely when running in s u p e h r mode. however nothing prevents a user process fram changing sthtus if
needed.

15

An important realization in the design of the scheduler was that there are two distinct reasons for
performing a context switch:

1. The expiration of a time quanta, indicating it is time to reevaluate the time based scheduling
criteria, or simply to give another concurrent, equal priority process a chance to execute.

2. A process cannot continue due to contention for a system resource, for example mutually
exclusive access to a data set or I/O device. In this case, the process which must wait may
actually have a preference as to which process is to execute next in the remainder of its
previously allocated time quanta.

In the first case, the standard CHIMERA II scheduler divides processes into two classes, those
with real-time deadlines and those without. Processes with deadlines always have priority over

those without, in the general case that multiple deadlines exist at once a minimum-[ority-first
algorithm is used. This algorithm selects the process which must start execution in the shortest
period in order to meet its deadline - ties are settled using a highest-priority-first algorithm. If
no deadlines exist, processes are scheduled using a highest-priority-first algorithm. By replacing

previously active processes at the end of the process ready list, and starting the next process search
from the beginning, a round-robin behavior is introduced that improves scheduler fairness among

equal priority processes.

Research has shown that the minimum-[ozity-first algorithm provides very good real-time schedul-
ing efficiency, and is inexpensive to implementI71. The algorithm is also fairly simple to use. An
application programmer has only to assign a relative priority to each process, and when required,

specify the execution deadline, an estimate of the number of time quanta required to execute, and
an emergency action routine. If a process misses its deadline, the scheduler automatically calls

the emergency action routine, which can perform such tasks as aborting or restarting the process,
altering the process’s priority, or sending a message to another part of the system.

In the case of a context switch due to resource contention, a different algorithm is used. Since only

a fraction of a time quanta remains, it is best to choose the next process quickly in order to utilize

as much of the remaining time quanta as possible. In addition, the current processor hardware does
not allow the scheduler to know how much of the time quanta remains, making it impossible to
schedule based on physical time. Finally, the process which blocks may actually have a preference
as to which process to run next; for example, a good strategy would be to give the process being
waited on the remainder of the quanta. CHIMERA 11 addresses this diverse set of possibiIities

16

by providing a context switch primitive which takes a scheduler routine as an argument. In most
cases, the scheduler is a round-robin algorithm which simply selects the first process in the ready

list, regardless of priority. The resulting context switch typically executes faster than the more
complex time-driven algorithm. It is possible to specify a user supplied scheduler routine which
implements an arbitrary algorithm to select the next process.

Our scheduling methodology, sometimes called preemptive scheduling[7] (we prefer dynamic schedul-
ing), is in contrast to mte monotonic scheduling, in which each process is defined at compilation

time as having periodic deadlines and well defined execution timing. &ate monotonic systems
are often more efficient, as a provably optimal CPU utilization schedule can be determined offline,

virtually eliminating the need for process scheduling a t runtime (during a context switch) [8]. How-
ever, such an approach impoaea more responsibility on the application programmer, slowing down
program development and incrasing the chance for an error. The rate monotonic methodology
is also limited for the case of processes that require variable amounts of CPU utilization, such
as iterative algorithms, which converge in a variable number of iterations, or aperiodic processes,

which are usually triggered by an interrupt.

4.2.3 Process Data Structures

The CHIMERA I1 schednler maintains process state infopation in a number of linked lists of
Process Control Blocks, or PCBs. A PCB is simply a memory segment containing the process’s
supervisor stack, which is used for processing exceptions and also holds its CPU state when inactive,

and a smal l amount of process specific scheduling information, such as priority and execution
deadline. Each list corresponds to a particular state a process can be in (since there can only be

one active or executing process at a time, there is no need for a list for this state):

Ready to run with a deadline.

Readytorun.

Paused (waiting) on a timer to expire.

Waiting on a software signal.

This sorting by execution state eliminates the number of processes which must be checked a t any

time for a potential change of state. In addition, the user is free to create lists indicative of more

17

complex process states and explicitly manipulate these processes using standard process control
primitives.

The pmess list implementation is doubly linked with a fixed guard or head node that can never be
removed. This implementation makes adding and removing arbitrary elements from a list efficient,
requiring only a few processor instructions. Searching through the list is similarly efficient. Utilizing
a guard node list representation also improves execution efficiency, eliminating the need for handling
the special empty list case. The guard node also imposes a distinct ordering on the lists that is
useful in many search algorithms.

4.2.4 Process Contro l Primitives

CHIMERA II provides the application programmer with a small set of process control primitives

that support the most general level of process execution control. The CHIMERA I1 design phi-

losophy has been to make these primitives as simple, general, and efficient as possible, allowing
the user to build more complex operations on top of these primitives while achieving acceptable
performance. The relative simplicity of the primitives makes them portable across hardware envi-
ronments and processor architectures. Since (aside from hardware specific utilities) these primitives

serve as the basis for all other CHIMERA I1 supported utilities, their functional specification can be
thought of as defining the CHIMERA II programming environment. Following is a brief description
of the most important process control primitives:

spawn() create an instance of a process.

pause(): suspend a process for a specified (physical time) duration. Accepts optional param-
eters to specify a subsequent execution deadline.

setdeodline(): specify the minimum number of time quanta of CPU utilization required by
a process in a specific period to meet its execution deadline.

block(), wakeup() low level interprocess signaling mechanism.

PI), V(): classic countered semaphore interprocess synchronization mechanism.

clock(): returns the current physical time maintained by a hardware timer.

sph(): UNIX-like interface to hardware interrupt mask, allowing processes to initiate unin-

terruptable atomic code.

18

.-

From the users viewpoint, each CHIMERA I1 process is a C subroutine that can be considered
to execute on its own (virtual) CPU, concurrently with an arbitrary number of other processes.
Independent processes are allowed to schedule their execution as a function of physical time using
the pause(], setdeadlifle() and clock() primitives. For example, a call to the primitive pause() sets

the calling process’s restart, required quantaand deadline fields to the arguments passed to pausel),
moves the calling process to the paused process list and arranges a context switch to another ready
to run process.

The CHLMERA Il kernel, and in particular the process scheduler, then arranges to time-share the
CPU among each process to provide each with the specified number of processor cycles required to
meet their execution deadlines. The block(), wokeup(), P() and V() utilities are used in the more

complex case in which concurrent processes must interact. These constructs support the concept
of one process waiting for another, either in a producer-consumer re la t i~sh ip or as competitors
for a global resource. The CHIMERA I1 scheduling algorithms support these features while still

enforcing real-time execution constraints.

While a few of the above routines are implemented as conventional trap driven system calls, the
majority are simply subroutines. Access to the CPU interrupt mask and status register is provided
by the s&() routine - using this utility it is possible to code C routines that do practically
anything that previously required assembly language codin$.

4.2.5 Exception and Interrupt Handling

CHIMERA II allows usem to write programs that respond to exceptions and hardware interrupts.

These exception handlers are written as C routines, which are then called from a small segment
of assembly code that provides the low level interface to the processor. CHIMERA I1 includes a
preprocessor macro which automatically generates the proper assembly patch code when a routine
is declared as an exception handler. Interrupt handlers are typically included in the device dn’wr
software that provides an interface between the CHIMERA real-time kernel and the hardware
device as a standard part of the CHIMERA 11 software release, however there are no restrictions to

prevent new interrupt handlers from being installed. More useful is the ability to define handlers
for software exceptions, such as division by zero or attempting to access a non-existent memory
location. By default, such exceptions are handled by printing an error message on the system

’Since these routines are very much CPU dependent sueh code will likely be non-portable across varying
architectures.

19

console and terminating the offendhg process; however CHIMERA allows user programs to define
an exception handler for such conditions on either a per-processor or per-process basis. The later
requires making a copy of the standard exception vector table and installing it (with the modified
entries) in place of the default table the vector table for the specified process.

4.3 Memory Management

Since no interprocess security is available in CHIMERA 11, any process is capable of accessing
any part of the processor’s memory. However, unless there is some form of memory management,

processes will not be able to use the memory efficiently. CHIMERA I1 provides the standard C
routines malloc(), free(), reallot(), etc., and other useful routines such as matmil(), mazauaail(],
malZoc-uerify(], etc. They provide the same functionality as their UNIX counterparts, but the
implementation varies.

The routines keep two singly-linked lists: one for free blocks and one for allocated blocks. A first-
fit algorithm is used to allocate blocks. Each block has a header, which includes the size of the

allocated block, a pointer to the next block, and the process ID of the owner. Storing the owner’s
ID allows all allocated memory to be released when a process terminates, even if the process does
not explicitly free the memory. The kernel on each board is responsible for it’s own memory.

Interprocessor shared memory segments are used to access off-board memory (see Section 5.3).

5 Interprocessor Communication

One of the most important aspects of a multiprocessor real-time system is its ability to provide
fast, reliable, and standardized Communication between all processes in the parallel computing
environment. We have designed a standardized interfaee for low-overhead reliable communication
among processes on parallel CPUs on a common backplane, induding the Sun host. Multiple Sun
hosts can then be connected to each other, by ethernet, using Sun’s networking protocols, such as
TCP/IP 191, RPC, and Sun NFS [lo].‘ The features provided include shared memory, semaphores,

and message passing, which not only work transparently across multiple processors, but also across
the Sun host, allowing non-real-time processes to communicate with the real-time environment

‘Note that since neither the ethernet nor UNM operak in real-time, the concept of time is lost, and thus the
real-time arena is exited. Pmgrama that require such networldng, however, are nsndy at the planning level, and
thus do not need the tast real-time responses reqnired for the servo md supervisory levels.

20

without the need of high-overhead networking protocols. The remainder of this section describes
the communication facilities provided by CHIMERA 11.

5.1 Global Shared Memory

The VME bus provides global shared memory by mapping the memory of each processor into one
of several standard address spaces, depending on the addressing and data handling capabilities of
the processor and memory. This form of memory mapping has the advantage that it provides the

fastest possible communication with very little, if any, overhead. In such a scheme, however, several
problems arise:

Not all boards use the same address space. The VME bus alone supports several different
modes (A32D32, A24D16, A16D16, etc.). Each board also views its own memory as a local

address space, starting at address 0.

The SUN hast operates in a virtual memory environment, and although the SUN can easily
map other CPU’s memory into its virtual memory space, the reverse is not easily done.

All information copied from one processor to another is nntyped. The receiving board may
not know what to do with the data unless it knows what data is arriving.

Some mechanism is needed for different processors to settle on a single memory segment to

communicate in. By default, two processes on different boards will not be able to communicate

unless an absolute memory area is defined at compile time. This is not always desirable, nor

always passible.

Standard semaphores cannot be used for mutual exclusion. The kernel is usually responsible
for controlling access to semaphores by blocking and waking up processes. In a multiprocessor
environment, however, a kernel on one processor does not have control of blocking or waking
up processes on another processor.

CHIMERA I1 solves the above mentioned problems, while still maintaining general and fast com-
munication among all processors, by splitting the communication into two levels: system level and

user level. The system-level communication, which we also call ezpress mail, uses a combination of

message passing and global shared memory. It is used only by the real-time kernels for performing

remote operations transparent to the user and to communicate with the Sun Host; the user cannot

21

access these routines directly. The user-leuel communication is a set of high level primitives avail-
able to the applications programmer, which includes shared memory, message passing, and remote
semaphores that can be used transparently across multiple processors.

5.2 System-Level Communication

In CHIMERA II, many UNIX system calls have been emulated as C procedures. Whenever these
calls have to access a remote processor, a message is sent to the remote processor’s express Mail
(xm) device. Eaeh board has one xm device, which is in a part of memory known to all other
processors, and a local server process, which handles all incoming messages. Using this method, a

small portion of the Sun virtual memory can be mapped into the VME space, using Sun’s Direct
Virtual Memory Access (DVMA). The DVMA space lies in physical memory on the Sun, and
is never swapped out, thns only a small amount of memory can be reserved 88 DVMA space.
The x m devices minimum memory size is that of the largest possible message. In our current
implementation, the average message is less than 32 bytea long. Only one message (a kernel
prWf() message) is relatively long at 268 bytes. A buffer of one kilobyte (four times the maximum

message length and 32 times the average message length) is more than adequate, while a buffer of

4 Kbytes will prevent almost all processes from blocking on an insert into message buffer because
of buffer overflow. A Sun with 4 Megabytes or more of memory can n s d y spare 4 Kbytes for
DVMA space.

A good way to demonstrate the use of the xm devices at the system level is by an example. Figure 3
shows a read operation on a file or device on a remote board, which occurs transparently to the
user. Pmssor i is one of the real-time general purpose processors, and Processor j is a different
processor or the Sun host. The steps in the reud operation are as follows: (1) the C statement
read(fd,bufler,nbyks) is d d from a user’s profess. Fd is a valid fde descriptor returned from a

previous open() call. Buger is a pointer into either the processor’s local memory, or a valid VME
bus address. Nbytes is the number of bytes to read. (2) The mad() routine first determines whether
the file is local or remote, and branches accordingly. The information is available from an array of
structures indexed by the file descriptor, and was initialized during the open() call. Assuming the

operation is remote, control goes on to step (3). A message is sent to the remote board’s xm device
(4). The message consists of a header and a body. The header mntains the ~ource process ID,
and source boani ID, which specify the origin of the measage, a w a g e type which determines the
contents of the body, and a set of flags, which can be used to alter the default processing methods
for a particular message type. In the case of the read() operation, the message type is READ, and

-

22

the contents of the message body are the file descriptor on the remote processor, the buffer pointer
in local space, and the number of bytes to read. After the message is sent, the process then blocks
while waiting for the read() operation to complete (5).

When a message is placed into the xm device of processor j , a mailbox interrupt is generated, which
wakes up the server process, which in turn begins to process the message (6). Based on the message
type, the server takes appropriate action. In the case of the read() operation, the buffer pointer is

first converted into the proper VME address, in processor fs address space. This conversion makes

use of the configuration file, and solves the problem of communicating across several address spaces.
The server then executes a read() operation, which is guaranteed to be a local operation (7). Using
the converted buffer pointer, the data can be placed direetly into the memory of processor i (8).

After the operation is complete, a reply message is sent to acknowledge success or failure of the

message (9). For a read(), the return value is the number of bytes read, indicating a successful
operation, or -1, and the accompanying enno, to indicate faiiure. The message is placed into the

x m device of processor i (10). Note that it is possible to send a message with the NOREPLYflag

set, which suppresses sending the reply message. This feature is useful to allow special purpose
processors, which do not have xm devices, to still send messages; the only difference is that no

reply is received to acknowledge fiuccess or signal a failure.

The server on processor i receives the message (11). This time, the message type is REPLY. The
default action is to wakeup the p rows waiting for the reply, and to pass it the return values (12).
Since both processes are on the same board, local semaphores and shared memory can be used to

communicate between the two processes (13). No reply is sent to a REPLY message (14). Finally,

the read process wakes up (15), and returns the value of the r a d () operation (16).

Analyzing the efficiency of the remote read() operation, we note the following: The data from the
m d () is placed directly into the remote processor’s memory, thus there is no need for copying from
a buffer on one processor to a buffer on the other. The largest overhead thus arises from sending
and receiving two messages. The next section describes the x m devices and their dc iency for
sending and receiving messages.

5.2.1 Express Mail Devices

The x m devices consists of a first-in-first-out circular queue, with zmwrite() and zmread() drivers

to insert messages into and remove them from the queue respectively. These drivers manipulate

23

Processor

I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
1
I .-

Figure 3 A remote mad() operation

24

the messages using the least amount of overhead possible, while still maintaining integrity and
providing mutual exclusion against being accessed by multiple processors at once. Figure 4 shows
the pseudo-code for the zrnwrite() and m e a d () drivers. These drivers assume that the proper

initialization has been performed previously.

In mwri te() , checking for a legal board ID and putting the message into a packet requires only a
few simple instructions. The next step is to ensure mutual exclusion when accessing the queue of

the x m device. A test-and-set (tas) instruction on a mutual exclusion bit is used to obtain access.

If the bit is not previously set, then the tal] instruction sets the bit, and proceeds to the next
instruction. If it fails, however, the process does not block; rather, i t will initiate a context switch
so that the next ready process will run, and places itself back on the ready queue. At a later time,
when it is the processes’ turn to run again, it will again try the tw[) instruction, and repeat the
above s tep . The reasons that encourage this type of contezt-switch polling implementation include
the following:

blocking the process trying to gain mutual exclusion would require some sophisticated syn-
chronization to wake it up, because the process holding the mutual exclusion bit may be on
a different processor.

pure polling would waste valuable CPU time. The overhead of performing a context switch
is only a frztion of the time used as compared to polling for an entire time quanta.

The mutual exclusion bit is locked for only a very short amount of time, since the messages
to be transferred are relatively short. More often than not, the tm() instruction succeeds on

the first try, but if it does not, the lock will usually be cleared by the time the process tries
again.

A timeout mechanism prevents a process from waiting indefinitely for the lock, which can
happen if the remote x m device dies, such as all processes terminating on the remote board
terminate.

When success is achieved the first time, the overhead for gaining mutual exclusion is limited
to one tus() instruction and one comparison.

After mutual exclusion is obtained, a check is made to see if there is enough room in the buffer.

If not, context-switch polling is again used until there is enough room. However, since the average

message size is less than 32 bytes, and by default the xm device has 4 Kbytes; 128 messages can

25

fit in the queue before running out of place, thus buffer overflow is rare. Copying the message to
the queue is done using an optimize bcopy() (block copy) routine.

Usually only one server process per processor reads incoming messages, using x m w d () , therefore
the tus() instruction usually succeeds on first try. If it does not succeed, then the server blocks.
Unlike in zrnwrite(), only onboard processes can read messages from the xm device, thus a process
can actually block, and wakeup via a signal from another onboard process, instead of having to use

context-switch polling. The server also blocks if the buffer is empty. The server wakes up upon
reception of a mailbox interrupt, which signals the arrival of a message.

Messages can be sent and received within a few microseconds. The major overhead with message
passing occurs when a receiving process is not the executing process, in which case a t least one

context switch must occur prior to reading the message. This overhead, however, is inevitable in

any multitasking system.

Xm devices are used not only for implementing remote operations, as was shown in Figure 3,
but are also used a basis in setting up global shared memory segments and message queues,
implementing remote synchronization, and for communicating with the remote COn601es. The next
section describes the user-level communication, and their implementation using the xm devices.

5.3 User-level Communication

CHIMERA II provides the user-level communication package which allows user programs on differ-
ent CPUs to communicate efficiently and in real-time. The facilities include interprocessor shared
memory, which allows a processor to access another processor’s memory directly; message passing,
with options for priority and real-time handling; and semaphores, with special primitives for syn-
chronizing processors. The E z p s s Mail communication devices are the underlying mechanism for

implementing all of these facilities. All of the routines described in the next few sections are avail-

able for both processes running on the real-time processom, and for non-real-time processes running
on the Sun host. This feature allows user applications running on the Sun host to communicate
directly with the real-time processors.

26

xmwrite(board_id.message);
/* Put 'message' into rm queue on board with id 'board-id' */
I

Return Error if illegal board-id
Put message into a packet
timeout = 0;
while (tae(insert-mutexCboard-id1) != OK) C

if (timeout++ > IIAXTIHES) return(Timeout Error)
context-switch;

1
timeout = 0;
while (not enough place in queue) C

if (timeout++ > MAXTIHES) return(Timeout Error)
context-switch;

>
copy message to queue of board-id
adjust pointers to .queue
release (insert_mutexCboard_id])
unblock(empt y /* wake up anyone waiting for the message */

3

wread(message) ;
/* Get message from xm device on my board */
c

Return Error if illegal board-id
timeout = 0 ;
while (tas(remove_mutex) != OK)

block(mutex); /* block waiting for mutual exclusion */
1
remote-mutex = 1
while (buffer empty) I

block(empty);
1
get message in queue
adjust pointers to queue
unblock(mutex) ;

/* block waiting for a message */

/* wake up anyone waiting for mutual exclusion *I
1

Figure 4 Read() and write() drivers for xm devices

27

5.3,l Shared Memory

Four routines are available for using the CHIMERA I1 interprocessor shared memory facility: shm-
Create(), shmDetach(), shmAttach(), and shmDestmy().

ShmCreate(~nl,segment,s~~e) creates a shared memory segment on the specified board, with the
specified memory size. Segment is a symbolic name which is used by all other processes wanting

to use the same segment. A pointer to the newly created segment is returned. Only one process
creates a segment, while all other processes attach to it, using the routine shmAttach(board,segment),

which also returns a pointer to the memory segment. When a process is finished with a segment,
it can issue the shmDetach() routine. The last process to finish using the shared memory issues a
shmDestmy() command to free the memory used by the segment.

The ezpress mailserver €or each processor is responsible for handling all requests for shared memory
segments within its local address space. It also performs the necessary address space conversions,
so that pointem returned can be used directly by user programs. Figure 5 gives an example of code
which uses interprocessor shared memory. Figure 6 shows the process and data flow of the shared
memory routines, as they are implemented using the ezpmss mail facility.

As a first step, process A on processor i issues the command shmC~te(Di”,”segw,nbytes), which
requests that a shared memory segment of nbgyteslong be created on processor i (1). An appropriate
message is placed in processor i’s xrn device (2). The server receives the message (3), and proceeds
to create a shared memory segment (4,5). A pointer to “seg” is then returned to the calling process

(6). Note that onboard processes communicate via local shared memory (7). Process A can then
resume and use the shared memory segment at will (8).

Meanwhile, a second process B on processor j also wants to use the segment, so the shmAttach()
command is issued (9). The message is placed in the xrn device of processor i, since the shared

memorysegmentlies on board i(10). Theserverprocesses theattachin thesamemanner(11,12,13).
If necessary, the server converts the pointer into the proper address space so that process E can use

it directly. It then places the pointer into the xm device of processor j (14). Processor j ’ s server
gets the message, and passes the pointer to process B (15,16,17,18). Process B can then also use
the shared memory segment (19). Note that for simplicity, the example does not show any form of

mutual exclusion when accessing the shared memory segment. If needed, the remote semaphores
described in Section 5.3.3 can be used. When processor B is finished, it calls shmDetach() (20),

28

.-

I

typedef struct E
i n t x;
f l o a t y;

1 shmData:

/* The following code runs on processor "i". */
/* Note t h a t for simplici ty , the code ignores */
/* potent ia l problems with mutual exclusion. */

processA-main()

/* The da ta s t ruc ture s tored i n */
/* t he shared memory segment */

c
shmData *sd;

sd = (shmData *) shmCreate("i","seg",sizeof(shmData));

s d - > X = 10;
6d->y 4.5;
/* Could do l o t s moxe stuff */

/* Keep t ry ing t o destroy u n t i l successful */
while (shmDestroy("i" ."seg") == -1) ;

/* use the shared memory */

1

/* The following code runs on processor "j" */

procesaB-mainO
c

shmData *sd;

sd = (shmData *) shmAttach("i"."seg");

pr intf("x = Xd. y = %f\n". sd->x,sd->y);
/* Could do l o t s more s tu f f */

shmDetach("i" ,"seg") ; /* Detach from shared memory */
3

Figure 5: Example of Interprocessor Shared Memory

29

I
I

I

Figure 6 Implementation of Interprocessor Shared Memory

30

which again sends a message to the server on processor i , and wait for a reply indicating successful
detachment (21). Process A can free up the memory by issuing the shmDestroy() command (22,23).

Note that if not all processes havedetached from the shared memory, shmDestroy()returns am error.

The advantage of this implementation of shared memory is that segments can be referred to by

symbolic names. Once attached to a segment, processes can use the shared memory segment just

as though the memory was on board, in the most efficient manner possible.

5.3.2 Message Passing

The message passing system is implemented much in the same way 88 the s h a d memory, using the
routines msgCreate(), msgAtkrch(), msgDetach(), and msgD&my() to control access to message
queues, and the routines msgSend() and msgReceiw() for sending and receiving typed messages.

As with the shared memory, the board name and queue name only have to be specified for

rnsgCreate() and msgAttuch(). These routines return an identifier, which is used in all subsequent
operations. A process can thus send and receive messages transparently between processors.

The message passing system gives the option of specifying the queuing system to be used. It

can be either priority-based, deadlinetime based, or first-in-first-out, All messages are typed. A
process receiving a message can also specify the type of message to be received, ignoring all other
messages in the queue. MsgReceive() also offers the option of blocking, non-blocking, or polling
retrieval of messages. If the default blocking mode is used, then the process waits until a message
arrives before returning. If the non-blocking mode is selected, msgRureive() returns an error code
if no messages are in the queue. The polling mode allows highly synchronized processes to receive

and process messages 88 quickly as possible. By far, the major overhead occurring in any part
of the communication package offered by CHIMERA I1 is the time spent by a process, which is
blocked waiting for a message, t o context switch back into the CPU. Using the polling mechanism,
a process that expects a message to be arriving, can arrange to d e u p before the message actually

arrives, and wait for the message to arrive by polling the queue, thns receiving a message only

microseconds after it is sent. Timer interrnpts can force the process to swap back out; however,
the splz() primitive provided by the kernel can force a process to poll indefinitely until a message
arri yes.

31

.-

5.3.3 Semaphores and Synchronization

The semaphore mechankm in CHIMERA I1 is consistent with the shared memory and message
passing facilities, offering the routines semCreate(), sernAttach(), semDetach(), and semDestroy

to control access to semaphores, and provide transparent acce88 to semaphores in subsequent calls.
The routines semP() and semV() are used to perform the standard semaphore operations P() and
V() remotely.

Two additional routines, sync Wait() and syncSignaI() are used for obtaining accurate synchroniza-
tion among processors. The sync Wait() locks the process in the CPU, and polls for an incoming
synchronization signal. Processing then resumes immediately upon reception of the signal. Any
other processor, or the user from the terminal interface, can issue the synchronization signal by

calling syneSigmZ(), which sends a signal to every processor waiting for it. This mechanism allows
two or more processors to be synchronized within micmseconds of each other. A typical use for

this feature is for the user to download and start executing a program on each CPU. Each pro-

gram performs all initialization, then call sgmcWait(). Once all boards have been downloaded and

initialized, and the user is ready to start the system, the syncSignal[) can be issued, guaranteeing
that all processors start within a few microseconds of each other.

6 Summary

CHIMERA II has been designed with the goal of supporting real-time sensor-based control applica-
tions. It is a multiprocessor and multitasking UNIX-like environment. Among the many features,

it provides low-overhead interprocessor communication, in the forms of shared memory, message
passing, and remote semaphores. A high-performance kernel, which supports a variety of real-time

schedulers and low context switching times, allows CHIMERA IX to be used with the most demand-
ing of control algorithms. The flexibility of CHIMERA I1 allows the user to fine-tune the operating
system to the application’s needs, by providing simple software and hardware interfaces to support

all types of sensor-based control applications.

32 I
!

7 Acknowledgements

The research reported in this paper is supported, in part, by U.S. Army AMCOM and DARPA

under contract DAAA-2189-C-0001, NASA under contract NAG5-1091, the Department of Electri-
cal and Computer Engineering, and The Robotics Institute at Carnegie Mellon University. Partial
support for David B. Stewart is provided by the Natural Sciences and Engineering Research Council

of Canada (NSERC) through a Graduate Scholarship.

References

111 J. F. Ready, ”VRTX A real-time operating system for embedded microprocessor applications,”
IEEE Micro, vol. 6, pp. 8-17, August 1986.

(21 L. Kirby, “Real-time software controls mars rover robot,” Computer Design, vol. 27, pp. 6042,
November 1 1988.

[3] D. E. Schmite, P. Khosla, R. Hoffman, and T. Kanade, “CHIMERA: A real-time programming
environment for manipulator control,“ in 1989 IEEE International Conference on Robotics and

Automation, (Phoeniz, Arizona), May 1989, pp. 846-852.

[4] D. E. Schmitz, P. K. Khosla, and T. Kanade, “The CMU Reconfigurable Modular Manipulator

System,” in P m e d i n g s of 1 8 4 ISIR, (Australia), ISIR, 1988.

[5] T. Kanade, P. K. Khosla, and N. Tanaka, “Real-time control of the CMU Direct Drive Arm

I1 using customized inverse dynamics,” in M. P. Polis, ed., (Proceedings of the 23d IEEE
Conference on Decision and Control), (Las Vegas, NV), December 12-14,1984, pp. 1345-1352.

[6] R. F. Rashid, “Threads of a new system [MACH],” UNIX Review, vol. 4, pp. 37-49, August
1986.

[7] W. Zhao, K. Ramamritham, and J. A. Stankovic, “Preemptive scheduling under time and

resource constraints,” IEEE Transactions on Computers, vol. C-36, pp. 949460, August 1987.

[SI H. Tokuda, J. W. Wendorf, and H.-Y. Wang, “Implementation of a time-driven scheduler for

real-time operating systems,’’ in Proc. IEEE Real- Time Systems Symposium, December 1987.

[9] G. C. Kessler, “Inside TCP-IP (Transmission Control Protocol-Internet Protocol),” Lan Mag-
a i n e , pp. 134-142, July 1989.

[lo] Sun Microsystems, Inc., Network Progmrnming, 1987.

33

