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The application of human speech processing techniques to the machine shop may 
provide a new means to interpret the sounds created by the metal cut- process. Real- 
time signal processing in the frequency domain can identify those bandpass responses 
which indicate the health of the tools. When combined with knowledge of the tooling 
and the cutting path, spectrograms can veri& the cutting phases and geometric features 
expected of a normal process. 
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The goal of total automation of the machining process is currently being pursued in 
many industry and university laboratories. The Intelligent Machining Workstation 
(IMur) project (Bourne 1987) has identified several interdependent control elements 
which contribute to flrst part success. The sensing expert of the IMW (FYgun 1-11 focuses 
on providing real-time externally-sensed information for the complete closed-loop 
automation of the machining process. Achieving this goal requires the implementation 
of an intelligent sensing system to integrate input data from multiple sensors of 
difierent types into a coherent sensory model. 

Figure 1 - 1 : First Map of the IMW Controller m e r  Bourne 1987) 

To develop a sensory model, efforts have been made to find the relationships between 
several signal sources and various aspects of the cuttfng process. such as tool wear, tool 
breakage, surface finish and machine chatter. Chief among these sources. vibration 
signals, including low frequency vibrations of the machlnlng system and high 
frequency acoustic emissions (AE) from the plastic deformation and fracture of 
working materials, appear to have the most potential for the diagnosis of metal c u m  
conditions. 

Due to the wide frequency response of AE signals, one can selectively fflter out certain 
bands, such as  low frequency machine noises, and extract information from certain 
high frequency components. It has been indicated (Iwata 1977; Lee, M. 1987) that the 
signals between 100 kHz and 300 lrHz are closely related to the condition of the tooling. 
In addition to acoustic emissions, low frequency vibration has also been selected to 
monitor machine chatter and tool wear. Although some substantial results have been 
achieved recently (e.g.. Micheletti 1976, Tlusty 1983 and Yen 1983). the progress toward 

process has been hindered because the fundamental cause and T= e ect relationships the machining are 
implementing a general-purpose in-process sensing system to 

still not clear. Without such an understanding of the chip forming process, the time 
domain analysis of the signals employed by most researchers in this area became 
highly system dependent. According to earller studies Ie.g.. Iwata 1977: Kannatey-Asibu 
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1981; Lee. M. 1987). the total count ofAE pulses over a certain threshold level has been 
shown to be a good index for predicting tool wear, if the threshold is properly chosen. It 
was also shown that the change of the average energy level of the AE signals could be 
another means for monitoring tool wear, if the system could be precisely calibrated. 
The precise calibration and proper selection of threshold values have proven to be too 
expensive and time-consuming for industrlal implementation. 

With all these concern. we are not s a w e d  with a time domain analysis because its 
purely statistical approach loses insight of the system and is always system dependent. 
In contrast, the frequencyrepresentations often sewe to place in evidence certain 
properties of the signal that may be obscure or at least less evident in the time domain 
representations. We believe that frequency analysis may present a unique and 
attractive opportunity for monitoring the details of a cutting process. In the past, 
frequency analyses may not have been pursued due to the time consuming nature of the 
FFT which was impossible to do in real time at these frequencies. It is now possible, 
however. equipped with a second-generation DSP microprocessor. advanced electronic 
technology and parallel algorithms, to implement a real-time frequency analysis 
system which is technically and economically feasible. 

This paper will present our concepts and new ideas about multiple domain analysis of 
the metal cutting process. 

2. M a C h i n e s e  

From shop-floor experience, changes in machine sounds while cutting is always the 
first alarm system for the machine operator. An experienced machinist can detect 
irregular cutting noises and relate them to some cutting parameters instantly. We would 
like to determine the nature of these audio patterns extracted by the human operator 
and devise computer algorithms which might accomplish the same results. The very 
wide band nature of the acoustic signals available from machjntng might permit us to 
learn far more by listening with a computer-assisted ear. Reseamhers in human speech 
studies have been devoted to a seemingly similar problem for almost 50 years. Recently 
published work claims 97% reliability for speaker-independent. continuous speech. We 
would like to suggest the application of these approaches to the manufacturing domain: 
understanding the speech of the machine. or mhfnese. 

2.1. H u m p n r p a c h ~ t l o n  

In the past fifty years, many researchers have been involved in human speech 
recognition. A wide horizon of research has been investigated to identify feasible 
strategies which spanned signal processing. pattern recognition. artificial intelligence. 
statistics, probability theory, information theory and linguistics. The early researches 
included: finding an appropriate physical model for human speech, reading phonemes 
by examining the resonant frequency trends on spectrograms, looking for the best 
representation of the speech signal and developing better statistical training and 
searching algorithms for human speech recognition. 

Not until advances in digital computer hardware which appeared in the '70's have 
several feasible strategies been proposed and implemented. However, their efficiency 
and accuracy were achieved by sacrificing the effectiveness, Le., by imposing one or 
more constraints. Four primary difficulties which constrained human speech 
recognition research were: 

1. Speaker dependence 
Speaker independence has been viewed as the most difficult constraint to 
overcome in human speech recognition. Most parametric representations of 
speech are highly speaker dependent because a set reference patterns suitable for 
one speaker may perform poorly for another. 



5 

2. Isolatedwords 
Continuous speech is more dimcult to recognize because words boundaries are 
unclear in continuous speech. Moreover the content words are often emphasized. 
while the function words are significantly neglected. 

As the vocabulaxy size Is increased. it becomes .'mpossible to store and model each 
word separately. Instead. a subword representation must be defined and used. This 
always makes recognition more complicated. 

The grammar involved in human speech recognition constrains uncertainties at 
each decision point. Less grammar required of input to the system raises the level 
of perplexity of it. 

Research aimed at overcoming all these constraints has culminated in the SPHINX 
system (Lee. K.F. 1987) which employs several strategies for large-vocabulary speaker- 
independent continuous speech recognition. We will review these strategies briefly as 
background for the design of our research plan. 

First. the system samples the speech at 16 kHz. The waveform is then blocked into 
frames. Each frame spans 360 samples, from which the system computes linear 
predictive coding (LPC) coefficients by autocorrelation. From these, a set of 12 LPC- 
derived cepstral coemcients is generated. (The linear filtering of the cepstxum permits 
separation of the speech components representing the vocal tract response and the 
excitation source (Rabiner 1979)). This 12 dimension vector is then reduced to a 
symbolic code using a vector quanthation approach which maps a real vector onto a 
discrete symbol. The symbols are completely described by a "codebook', which is a set of 
prototype vectors with the same dimension as  the original cepstral vector. To perform 
mapping, the input vector is compared with each prototype vector and the vector is 
replaced by the most similar prototype's symbolic code. Initially, a Hidden Markov 
Modeling (HMM) of speech training Is performed to bujld the codebook or feature space. 
An HMM recognition algorlthm is then used to extract the speech pattern from the 
codebook representation. This baseline system achieves a 30% recognition reliability. 

To improve the accuracy, the SPHINX system includes knowledge engineering 
techniques based on human knowledge of speech properties. instead of relylng only on 
statistical training and pattern uctraction. These knowledge based parameters are 
combined with the original vector to construct a multi-dimension symbolic code, thus 
increasing the robustness of the system dramatically. A clusterlng method has also 
been applied to separate the trainfng data into logical groups, and a speaker prototype is 
generated from each cluster. Any new speaker will then be assigned to a spedflc cluster, 
thus overcoming the speaker dependency constraint. Furthermore. an adaptation 
algorithm has also been developed to adapt the existing parameters to the new speaker's 
characteristics through a small number of adaption sentences. In addition, a subword 
unit representation of the speech is used to relieve the continuous-speech and large- 
vocabulary constraints. The reliability of the full system reaches 97%. 

3. Small vocabulary 

4. Constrainedgrammar 

2.2. MnchtrsespachRecoIplition 

The success of the foregoing research in human speech recognition is based largely upon 
models of the vocal system of human speakers, plus heuristic knowledge which is 
highly contextural. In the context of vibrations induced by specific machining 
parameters, we are inclined to ask what the machine is intending to say, or at least 
what we are Interested in hearing from it. At the start. we wlll focus on trying to 
determine "normal" from "abnormal" speech. 
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2.21. Metal Cutthg Feature Space 

To guide the extraction of information from vibration signals, we identify those aspects 
expected from cutting processes in a feature space (Figure 2-1) The space of interest to 
automated machining, and the IMW in particular is as follows: 

Tool condition: tool is sharp, dull, worn. or broken. 
According to (Iwata 1977) and (Domfeld 1981, 1982). the acoustic emission [AE) 
slgnals between 100 kHz and 300 kHz are identified as the most important sources 
for tool wear monitoring. In addition, a sudden increase in AE amplitude has been 
observed by researchers, when the cutting edge actually failed. 

Working material 
Although the working materials, including tool material and workpiece materlal, 
are given parameters predetermined by the planner and cutting expert of the IMW. 
we suspect that power spectrum anatysis of AE signals will display some important 
characteristics of the working materlals. Since different materials feature different 
chip morphology, the AE signals emitted from energy release may have unique 
resonant frequencies. Furthermore, the material strength can also be inferred from 
RMS value of the AE signal {Lan 19821. These data could provide clues for analyzing 
the working material properties from AE signals. 

Constraint space 

Cutting speed 

Depth of cut 

Feed rate 

Tool material 

Workpiece material 

Lubrication 

Dimension 

measurement rpace 

Vibration signal 

Acoustic emission 

Tool wear 

Tool breakage 

Cutting condition 

Chattering 

structural dynamics 

Feature Space 

Flgure 2- 1: The Feature Space for Cutting Processes 
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Cutting history: cutter entrance, chip making, cutter exit 

For the monitoring and diagnosis of a single cut. prominent signals appear at the 
very beginning and ending of the cut. Once the cutting edge hits the part, a 
significant impulse is emitted exciting a large number of system frequencies. We can 
easily detect these from an analog impulse detector. The chip formation process in 
milling is more unsteady due to chip breakage and geometric changes in the chip 
thickness. We ought to try to listen for chip breakage. since chip morphology is 
significantly influenced by cutting process parameters and is at present dimcult to 
detect visually in real time. While the end moment of the cut is not as  crucial with 
respect to tool stress as  the start, we can readfly detect it. The burnishing phase of 
certain milling cuts, e.g.. slotting with an end mill, provides yet another 
characteristic set of vibrations superposed on relative silence. 

A significant advantage of the machining context Over the human speech context is 
that the timing of these "utterances" can be scheduled precisely at the planntng stage 
and compared to the actual results In real time, as  an indicator of normal system 
performance. For a machine tool which is not instrumented for spindle position, 
the HMM could determine the timing of these events after the fact. 

Chatter 

Chatter instability is one of the most important conditions for real-time machine 
monitoring, since its Occurrence seriously affects part quality and it cannot be 
reliably predicted at the planning stage. Researches to extract information from low 
frequency system responses have been underway for quite a long time (e.g.. Tobias 
1958). From our present concerns with precision machining, we are more interested 
in prediction than diagnosis. Several approaches have been proposed to predict 
machine chatter (e.g.. Tlusty 1986). but system-dependent parameters sw1 prevent 
their real-time implementation. We suspect that the structural dynamics of the 
workpiece/machine system will be represented by Its vibrational responses during 
cutting. Thus, the speech of the machine ought to extend through the low frequency 
audio band. 

Cutting speed 

Even though the cutting speed is determined in advance by the planner, this 
parameter can be easily heard through the cepstrum analysis of low frequency 
signals. Such analysis is able to divide the system response into an impulse train 
whose frequency is the cutting speed and the resulting structural dynamics 
response. 

Width and depth of cut 

These two cutting parameters are generally specified a prlori and not subject to 
monitoring nor modification by adaptive control. Since tool wear has a strong 
geometric component (the cutting edge recedes from the original shape), small 
changes in the width and depth of cut should be detectable in-process. The expected 
temporal events related to tool contact with the workpiece can be derived prior to 
cutting and monitored with either spectrogram or bandpass time domain analysis. 

Finishing 

The burnishing process which occurs when a tool passes mer a finished section of 
the workpiece d o r d s  a particularly sensitive region for detecting tool geometry and 
could perhaps be used to estimate the condition of the finished surface. 
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2.2.2. canppring Human speech and A!rachhcse Recognition 

Physical model 

The human voice is generated by excitation of vocal cord on vocal tract. We speak a 
sentence by changing the shape of our vocal tract and recognize other's speech by 
extracting the patterns of vocal shapes. This understanding served as the basis of 
early research in human speech recognition. By analyzing the frequency response 
of human voice. researchers could locate the resonant frequencies of voice 
(formants). from which they could "read" the speech. 

The machine "voice" is emitted from cutting excitations acting on-the machining 
system. Its frequency response is much wider than human speech. We can roughly 
separate the signals to two categories- high frequency acoustic emission from 
plastic deformation processes and low frequency vibration signals from system 
responses and chip forming. The physical model of low frequency vibration is 
similar to vocal tract vibration. The geometrical configuration of the machine 
setup is the main factor effecting resonant frequencies of the response. Process 
signals with a potentially high information content are Included in this area; 
however, most of the environmental nofse also falls into this band. The high 
frequency model. on the other hand. is related to the micro-mechanism within 
w o r m  materials (dislocations and fractures), of which the causes and effects are 
still not yet clear. 

Vocabulary size 

The vocabulary size of "machinese" is expected to be much smaller than that of 
human speech. But each cutting process speaks its own dialect. There is no official 
language for machinese. 

System-dependence and speaker-dependence 

System-dependence is the primary obstacle preventing machinese recognition from 
real-time industrial application. Even with the same type of metal cuttlng process. 
the response would be very different depending on the calibration. system setup and 
the geometry. Since the human speech research faces the same problem, most of the 
strategies already employed to overcome this Miculty are potentially useful for us. 

Continuous speech and isolated machinese 

As far as this aspect is concerned. machinese compares favorably in its regularity of 
excitation. Since the cutting parameters and geometry are already known before 
machining, we can anticipate most events and easily monitor them. 

2.2.3. Analysb Approach 

Within the IWM resides an expert system called the "cutting expert." This code is 
responsible for computing w e n  cutting parameters, viz.: 
cutting speed, feed rate, depth of cut. width of cut, tool material, workpiece material and 
lubrication. Additional geometric information about specific cuts is provided by the 
front-end expert system, the "planner." 

Informed of these data and the constraints implied by the machining center used, we 
are beginning to extract the features of interest related to the cutting process from the 
the following in-process measurements: 

vibration from accelerometers for low frequency signals between several Hz to 20K 
Hz. and 
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acoustic emission from AE transducers monitoring high frequency responses 
between lOOK Hz to 300K Hz. 

The approaches we propose to use to extract models of the cutting process based on 
human speech recognition techniques are summarized as follows: 

1. Spectrogram analysis 

The sound spectrograph was for many years the basic analysis tool in specch research. 
Taking advantage of the short-time Fourier transform, one could separate a continuous 
signal into multiple frames in the time domain, and take the FFT of each segment. The 
resulting spectrogram is a three-dimensional representation of the time-dependent 
spectrum in which the vertical dimension represents frequency and the horizontal 
dimension represents time. The spectrum magnitude is represented by the darkness of 
the marking on the paper. By investigating the spectrogram, one can monitor the 
change of frequency response continuously. Since this method is able to monitor time 
and frequency domain response simultaneously, it provides us with a good opportunity 
to gain more insights into system behavior. 

2. Linear predictive coding analysis 

Linear predictive coding (LPC) techniques have been employed broadly in system 
identification and estimation. While the real model of the system is changeable or 
unclear, one can use LPC to identify it. Once the predictor coefficients have been 
obtained, the system has been uniquely identified to the extent that it can be modelled 
as an all-pole linear system. Therefore, even if the physical basis for the AE signals is 
unknown. one can estimate the model through LPC. This technique obviates the time- 
variant system constraint. Moreover, we can directly derive cepstral coefficients and 
fundamental frequencies of the system from the I9c coefficients. 

3. Cepstrum analysis 

This approach has been very successful for human speech recognition. A continuous 
input waveform is first transformed to a frequency representation with a discrete 
Fourier transform (DFT). Taking the logarithm of the resulting Dm, one can separate 
the signals into different divisions. A simple filter implemented in this domain can 
extract the desired signal from background noise. Inverting the DFT components 
produces cepstral coefficients which sexve as  the primary parameters for speech 
training and recognition. 

4. Noise rejection techniques 

Low frequency system vibrations contain abundant signal energy. This feature has 
prompted researchers to investigate high frequency AE signals because most of the 
environmental (non- metal-cutting] noise also falls into this frequency band. 
Separating the vibration signals of the metal cutting process from other nobe sources. 
would open up another possibly useful source of information. Since the machining 
process is both synchronous and repetitive, temporal averaging may assist in relating 
these signals to the health of the process. N o k  rejection techniques developed for 
aircraft pilots [ref7 may well be applied to machining by implementing multiple sensors 
in different positions to cancel the unwanted noise sources. 

5. Bandpass response analysis 

Previous researches have indicated that several frequency bands are highly related to 
tooling conditions (Lan 1982). but are variable with the specific set-up. Once the system 
recognizes these bands through spectrogram analysis, a digital adaptive filter could be 
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designed on the host and implemented with modem DSP devices. Thus a relatively 
system-independent time domain analysis could be performed. 

3. prelfminarrrRe8ults 

Our initial experiments have been perfonned using a face mill with replaceable 
indexable inserts and a nominal 1 0 0  kHz to 1 MHz AE transducer. Signals from two 
complete revolutions of the cutter were recorded whfle face milling according to the 
geometry shown in Figure 3- 1. In the figure, the primary cutting phase is shown as the 
angle 8. which depends on tool radius, r. and cutting width. w. 

Figure 3- 1: Face Miufng Geometry 

3.1. spectrograms 

Case I: Mild Steel, single cutting edge 

A spectrogram resulting from cutting mild steel with a single cutting edge face mill is 
shown in Figure 3-2. The energy appears to be concentrated in frequencies above 100 
lrHz due to the roll-off of the transducer. Although the distribution is otherwise rather 
uniform in frequency, two prominent intensity bands appear corresponding to the 
cutting and burnishing phases. In this case, the cutter was in contact with the work for 
only 72" of its rotation. The cutting thne represented a 44" arc rather than the 36" arc 
expected from geometry. At this point, the spectrogram shows a distinct drop in energy 
across all frequencies, corresponding to the bumbhing phase. A total contact arc of 72" 
is observed as expected. We can interpret these results by considering that the spindle 
and tool holder are not perfectly rigid, and that significant forces are produced during 
cutting which tend to separate the tool edge from the work. The extended cutting period 
is thus the result of elastic relaxation of the spindle and tool holder, which was 
subsequently verified by post -process measurement. 

Case II: Aluminum. two cutting edges 

An spectrogram resulting from cutting.6061-TE aluminum with a dual cutting edge face 
mill is shown in Figure 3-3. One of the' cutting edges was new. the other worn out. As 
with the steel specimen, the energy appears to be concentrated in frequencies above 100 
lrHZ due to the roll-off of the transducer. However the worn tool (shown by the two 
narrow bands in successive cuts) displays a more unifonn intensity on the spectrogram. 
indicating an increase in energy at lower frequencies. Although the nominal cutting 
phase occurs in a 90" arc of the tool in this case, the worn tool contacts the work for 
only about 45" of its rotation and shows no burnishing phase. This is due to the 
geometry of the workpiece produced by the preufous pass of the fresh tool: having a 
larger overall Profile, it removed more material. The intensity of the worn tool, 
however. is higher overall as expected from past cxperknents. 
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For the fresh tool. two prominent intensity bands appear corresponding to the cutting 
phase, and a lower intensity burnishing period. The cutting phase is marked by the 
initial removal of a relatively small amount of material followed by an effectively 
lager feed rate caused by the absence of cutting by the worn tool on the prcvlous pass. 
The differences between worn and fresh tools is thus readily apparent. SLWX the rate of 
tool wear is typically accelerated at the end of tool life (Emel 1988). one could expect to 
flnd which tool insert of a group was beginning to wear out by comparison to the others. 
This approach has been verlfied further by experiment (Lee, M. 1987) which confirms 
that the likelihood of all cutting edges in a group we- out simuitaneously is very 
low. 

=--Pa= 
The bandpass response corresponding to Case I is shown in Figure 3-4. taken between 
140 and 160 kHz. The relative differences In amplitude between cutting and burnishing 
are preserved from cut to cut. The elastic relaxation time of 5 ms for the spindle and tool 
holder is another distinct consistent feature. 

The bandpass response corresponding to Case 11 is shown in Figure 3-5, agatn taken 
between 140 and 160 kHz. The cutting time periods for both cutting edges are clearly 
distinguishable. and the relative dlfferences in amplitude between the two cutting 
phases and burnishing are preserved from cut to cut. As expected. the lower cutting 
fomes do not produce a pronounced elastic relaxation time feature on this plot. 
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Figure 3-4: Bandpass response of a single cutUng edge face mill on mild steel. 
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Figure 3-5: Bandpass response of a dual cutting edge face mill on aluminum. 

Since the dynamic response of the metal cutting process is hlghly system 
dependent, we do not anticipate an absolute reference to cover all systems. Instead, 
rules for signal interpretation and physical models seem more appropriate for future 
analysis. 

Although our final goal is real-time monitoring and diagnosing. processing rate 
is not necessarily critical: the linear system model of metal cutting is relatively time- 
invariant in the short tern. However, monitoring trends would be very beneficial. This 
implies keeping a history of the cutter and the workpieces for diagnosis of future 
current cutting conditions. 

The cutting feature space is fortunately not large, but some features a n  elusive 
and ambiguous, such as tool breakage and the etfects of structural dynamics. Thenfore. 
feature classification and extraction will require close attention and verification. 
Techniques of human speech recognition would be applied to solve pattern matching 
problems in this level. A simple spectrogram has revealed sevcral intertsting features 
relative to tool wear. Refinement of the measuring and analysis techniques should 
yield further Insight into this method of early detection of tool tailun. 

0 

2 50 
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A working sensing expert should be smart enough to train itself from experience. 
Thus the "expert" should be applied to an arbitrary system in the shortest set-up time. 
The algorithm should first build a set of reference data in the representative feature 
space from a set of training signals and then classify each sensed signal wlth respect to 
a specific feature using the reference data and the constraints. 

CombL?Fng the features thus extracted with information from other in-process 
experts, specifically the expected geometry of the cut- phases and their transitions, 
the sensing expert is expected to diagnose the health of the machining process in real 
tlme. 
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