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Notation:
e The vector sign () indicates a three dimensional spatial vector.

¢ An underbar beneath a symbol indicates an "arm vector” which has one component for cach joint
in the arm. For eaample, 8 is cqual to 01*07*""0:\1 ) when there are N joints in the arm.

o Subscripts indicat2 one of two things:

1. The coordinate frame in which the symbol is referenced and the frame to which the symbol

refers.

2. The joint number that is referred to by the symbol.

The type of symbol will determine whether the subscript is a link coordinate frame or a joint
nun:ber. For example, ?Ei is the angular velocity of link 7 in the link i coordinate systcm and 01 is

the position of joint i.
e A haton asymbol () indicates a constant.

® A star supcrscript ( iy ) indicatcs a value related to the center of mass. Other values are related to
the ink coordinate frame.

o A dotand adouble dot overa variable (  and ) indicate first and second time derivatives

respectively.

e An A with a superscript and a subscript represents a transformation matrix from the superscripted
coordinate system to the subscripted coordinate system; so A% w, is the angular velocity of the link
2 coordinate origin in link 1 coordinates.

» Boldfaced ictters represent matrices or tensors, so J is a moment of inertia tensor.

Note that a reference to the velocity or acceleration of a link actually refers to the velocity or acceleration of
the link’s coordinate system origin.






Abstract

The ability to mathematically model the movement of a robot manipulator is a prerequisite to the understanding of
the key factors that influence a manipulator’s performance. This paper presents a manipulator model which has
been used to simulate and control a real robot arm. A method of describing the arm by its rotational characteristics,
a sct of equations called the Inverse Arm, and an algorithm called Forward Arm are presented. The Forward Arm
simulates the movement of an arm, and the Inverse Arm provides a means of computing the correct voltages to
apply to an arm to achieve a desired movement.
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Introduction

A mathematical model of a physical system, such as a robot manipulator(arm), is onc of the most useful
tools available for studying the system’s behavior. The model, usually in the form of a computer program, can
be used to study the system in several ways. The development of an accurate model Icads to a full
understanding of all of the key elements of the system. The model provides a means of testing the system
under conditions that would be dangerous or impossible for the real system. Iarger systems that contain the
modcled system can be tested with the model insicad of the real system.

As part of the Carnegie-Mcllon University Direct-Drive Manipulator Project (CMU DI Arm Project) we
have developed a mathematical model of the manipulator. The mathematical equations arc based on a
Newton-Euler analysis of free-body dynamics developed for robotic manipulators. [8] [11]

This paper describes the structure of the model that simulates the dynamic motions of our manipulator,
The model is divided into three parts.

e A detailed description of the structure of the arm. The description of the structure is contained in a
Manipulator Database which consists of two parts; the kincmatic and the dynamic. The kinematic
description specifies the relative positions between the links of the arm and gives the axes of
rotation for cach of the joints. This description is easily determined from the mechanical drawings
of the arm. The dynamic description contains the moment of incrtia, the center of mass, and the
mass for cach of the links. A computer program was written to calculate these values from a
databasce fiie(the Parts Databilsc) that contains a description of every piece of the arm. '

o The Inverse Arm. This is a set of equations which, when evaluated, yield the motor voltages
required to produce certain accelerations. This is the inverse of a real arm which produces
accelerations given the voltages. The Inverse Arm part of the model is needed for the third part
which is the Forward Arm.

o The I'orward Arm, This part of the model contains an algorithm which can compute values for the
acceleration of the joints in the arm when the motor voltages arc specified. When the
accclerations are intcgrated over a period of time, the new positions and velocitics can be
determined.

Arm Description

The CMU DD Arm consists of seven links, numbered 0 to 6, going from the base (link 0) down to the hand
(link 6). There are six joints numbered 1 to 6. The odd numbered joints are rotational joints which rotate in
the saimnc manner as the turning of a screw. The even numbered joints are pivotal joints, which move in a
manner similar to that of a person’s clbow.

Each link has a coordinate frame associated with it. The Denavit-Hartenburg convention [5] for assigning
coordinate frames to manipulator links is used to specify the coordinate frames of the manipulator because it
simplifies the cvaluation of the equations used in the Inverse Arm and Forward Arm parts of thc model.
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The Denavit-Hartenburg convention specifies that link i+ / rotates around the 7 axis of link i, denoted 7,
when joint i # [ turns, Link 1, therefore, rotates around 7, at joint 1 and link 2 around 7, at joint 2, etc. The
X axis of cach link’s coordinate system points along the common normal of the link's Z axis and the Z axis of
the previous link. If there is no common normal, such as when the two Z axcs intersect, the direction of the X
axis is arbitrary, so long as it is perpendicular to the Z axis. The Y-axis is perpendicular to both the X and Z
axes and completes a right-handed coordinate frame. The coordinate frames specified by the Denavit-
Haitenburg convention for the CMU DI Arm are shown in figure 1. [4]

Kinematic Description

The kinematic description specifies the gencral organization of a manipulator. The description is a
databasc which contains three picces of information, denoted a, r, and a, for cach joint. For any joint i, a
spccifics the angle of rotation necessary to bring 7‘1—1 parallel to or collincar with Zi. The parameter r specifics
e distance along the ZH axis from the link /-7 coordinate system to the link / coordinate system. The a
parameter specifies the distance from link i-7 to link { along the Xi.1 axis. Once the coordinate frame origins
are determined in the Denavit-Hartenburg conventicn the a, 1, and a parameters can be obtained from the

mechanical drawings.

Dynamic Description

Obtaining a dynamic description of the arm requires a greater cffort than the kinematic description. The
dynamic description consists of the moment of inertia tensor, center of mass vector, and the mass scalar of
cach link. To determine this data we have developed a Parts Database! for the CMU-DD Arm which has
information on cach of the six links. Within the database, each jink is separated into several parey which are
numnbered in the mechanical drawings. Each parr is broken down into several sections. Fach section is
described as a cylinder. semi-cylinder, rectangle, sphere, or prism. The characteristics of each of the parts in
our inanipulator can be approximated by combinations of thesc shapes. The databasc contains dimensions,
densities, and locations of each section relative to the part that it belongs to. With this information we can
determine.the moment of inertia, center of mass, aind mass of each section. Once the information is calculated
for cach section, it can then be determined for each part using the formulas for transforming moments of
inertia. {7] [10]2 The dynamic description of cach link can be computed in a similar manner from the part
information. The resultant description is saved as part of the Manipulator Database and is referred to by the
restof the arm model. It must be recaleulated if the construction of the arm changes.

There are other picces of data related to the dynamic description of the arm which can only be
experimently determined. The most important of these are the motor constants. Each motor has a resistance,
R, and a torque constant, Kt. The resistance of the motor relates the current in each motor’s armature to the
voltage applied across cach motor’s terminals. The torque constant relates the torque produced by the motor
to the current in the armature and it relates the speed of the motor to the back EMF(Electro-Motive Force).

e link coordinate systems used in the parts database are assigned for convenience. The software which generates the dynamic
description changes these coordinate systems to those of the Denavit-Hartenburg convention when the Manipulator Database is
produced.

zChaplcr 10.5 The Inertia Tensor
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Figurc 1. i)cnavit-Har(cnburg coordinate assignments for the CMU DD Arm
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Inverse Arm

The Inverse Arm model is an application of a Newton-Fuler analysis of free-body motion. The purpose of
this model is to allow us to compute the motor voltages required to produce given accclerations when we
know the current state of the arm and all of its parameters. The model has six major steps.

1. Calculation of the velocities and accelerations of cach of the links.
2. Finding the lincar acceleration of cach of the link’s center of mass.
3. Computing the net force and moment exerted on cach link.

4. Caleulation of the local forces and moments on cach link.

5. Finding the torque réquircd for each motor.

6. Comnputing the motor voltage required to produce the computed torques.

The last step is done separately from the first five so that the Forward Arm program can use the first five steps
of the Inverse Arm to find torques.

In this paper a reference to the velocity or acceleration of a link actually refers to the velocity or acceleration
of the coordinate system imbedded in the link.

Link Velocities and Accelerations

There are two forms of link velocitics and accelerations which are considered here, angular and linear. We
have four equations which can be solved iteratively from link 1 to link N to find the angular velocity, angular
acccleration, lincar velocity, and linear acceleration of cach of the links in the arm. Link 0 is assumed to have
no angular or lincar velocity and no angular acceleration(i.e. “’0 = v0 = w [O 0 O]T) It docs, however,
have a lincar accelcration equal to a Z directed gravitational acceleration (1 e. v [0 0 g]T g + 9.80621
meters/second?. depending upon whether Z pomts up or down). Since we kuov» ‘“’0’ v0 “’0’ and v Wwe can use
the following four cquations to solve for @ “’1’ 1’ and ‘1 We cen then apply the equations rcpuatcdly to
solve for the velocities and accelerations of links 2, 3, etc. up through link N.

The angular velocity of link 7+ /, ®. . ., is related to the angular velocity of link i, 31’ and the rate at which
the joint between them, 8. |, turns by

i+1
i+0

o . = ,\§+l(a‘.+zo

i+l i ir1) i=01,..N-1 @)

where 20 =00 1]T and N=6 in the CMU DD Am. The Denavit-Hartenburg convention dictatcs that the
axis of rotation of ioint i+ I is along the Z axis of the link 7 coordinate frame, so the rate of turning of joint
i+ 1 is multiplicd by 7 and added to the anguiar velocity of link 7 to give the angular velocity of link i+ [.
The coordirate frarne i 1s changed from link i to link i+ / by premultipling by A‘

The angular acceleration of link i+ 1, @, . ,, is given by:

i+1
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~

A _ i N ] - P X - no - i
Gy = A (0 + 200, + w0, X 28, ) i =01,..N-1. 2)
Since joint i+ 7 rotates around the Z axis of link /. the acceleration of joint i+ / is multiplied by 7, before

being changed to link i+ / coordinates. The cross product term comes from the geometry of the
s'mnation.[lO]3 A coordinate transformation from link ¢ to link i+ / coordinates is performed by a
premultiplication by A: .

The lircar velocity of link 7+ /. ‘7;+ |+ Is related to the Tinear velocity of link 4, V; and the cross product of

ZS}H and tie vector, P T which points from the link ¢ to the link /-¢ / coordinate system.

& o ~ i BN . 3

Vieln T @ X Pyt ALY i=01..,N1 ()
' D is giv i T . . .
where p,_, is given by [ a ., riHsm(aiH) I, qcos(e; ) 1 in the Denavit-Hartenburg

convention. The linear velocity of the link ¢ coordinate system is transformed to the link i+ / coordinate
system by a premultiplication by Ai 1 The cross product need not be transformed because it is already
expressed in link i+ 7 coordinates. Note that the linear velocity of each link is not used in later calculations.
This equation need not be evaluated, but is included for completeness.

The lincar acceleration of link i+ /, ?i+ . is given by
{.x . A A~ - - A i N P _
Vo T WX Pyt o@, X (wi+1 X pi+1) + Ai+l v; i=01,..,N-1 )]

The first term is, again, due to the geometry of the situation and thg second is called the Centripetal
acccleration. This cquation is a limited case of the Coriolis thecorem. [10] Because there arc no translational
joints in cur arm, the coriolis term of the Coriolis theorem is zero.

Linear Acceleration of the Centers of Mass

The calculation of the linear acceleration of the center of mass of each of the links is very similar to the
lincar acceleration of the coordinate system calculation. The equation relating the linear acceleration of the
center of mass of a link to @,, ‘_'31’ s : and ¥, is

Vo= 8 x84 B x(8, x5+ T i=12..N )

_El

A®, . . . . . . “ . .
where s, is a vector pointing to the center of mass of link i from its coordinate origin. Again, we scc that
there are no coriolis accelerations in the arm. Note that these calculations can be performed in any order, but
must be performed after equations 1 through 4 have been cvaluated for all of the links.

Net Forces and Moments
The net force is the sum of all of the forces acting on a link. Likewise, the net moment is the sum of all of
the momenis. Since we know what the accelerations are we can calculate the net forces and net moments for
cach link usiing Newton's law and its analog in rotational dynamics, Newton’s law in this context is
= e
I‘i = mv, i=12..N (6)

where n, is the mass of the link.

3Chapler 7.2 Moving Origin of Coordinates
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Newton’s law can be derived from the fact that the net force is equal to the rate of change of the
momentum. In a similar manner, we can derive the rotational analogy of Newton's law from the fact that the
net mornent is equal to the rate of change of the rotational momentum or

dLi
N. = —_—
1
dt
where
L = Ja.
1 1 1

-

L is the rotational mementum and J; is the moment of inertia of link / around its center of mass. Since we
neced to express the moment with respect to link coordinate origins we change the coordinates of the moment,
The moment coordinate change formulais:

- N\
N. = Ji w,

1

+ B x (13) i=12..N ()

‘I'his is a forin of Fuler’s equation of motion for a rigid body. [10]4

Local Forces and Moments :

tzach link is connected to two other links (except the hand and thg base) which exert forces on that link.
The suin of these two forcc_sk is the net force. For any link 7, the force, fi, that link /-7 excerts on it is called the
1ecai force. Illc net foree, Fi, on link iis the sum of the local force, fi’ and the negative of the local force on
the next link, f wat is

41
= _7 i+1 ¢
K =6-A7
or
3 _ 4+l E L L
£ =AY E L+ F i=N,.2L (8)

Note that we must change the coordinate system Offi+1 before adding it to Fi by premultiplying it by A}"" 1
We can calculate the local forces by solving this cquation itcratively startiag at the hand, where fy L1 I8 the
external force exeried on the hand, and working our way up the arm.

-~
The net moment, Ny, of fink 7 has four components.

1. The local moment of the link, r'fl which is the moment exerted by link ~/ on link i,

2. The negative of the local moment of the next link transformed to the link 7 coordinate system, that
is

-

_aitl
AT

3. The moment caused by the local force acting on the tink at a distance away from the the origin.

4(‘haplcr 11.2 Fuler's Bquations of Motion for a Rigid Body
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A i+1 7
-y X AT L

This is the negative of the cross product of the position vector which points from the -/ to the ¢
coordinate origin and the local forcc on the next link transformed to the link i coordinate system.

4.'I'he moment caused by the net force acting on the center of mass of the link.
(p,+ 87 x F,
-(p,;+s,)xXF,
This is the negative of the cross product of the vector pointing from the link i-/ coordinate system
origin to the center of mass of link / and the net forcc on link i,

By rearranging these componerts to solve for the local moment we get

- __ 1+1 - A l+1—‘ A AX = =
noo= AT AL Py X (AT )+ (P + S X F o+ N, ©)
i=N,.,2L
where ﬁN ‘1 is the external moment exerted on the hand.

We can iteratively solve this equation from the hand back to the base to find the local moments on cach
fink.

Joint Torques

The local moment of link i is the moment that the link exerts on joint i-/. The component of the local
momeat that is along the Z_, axis is the torque exerted on joint i-/. The torque required for a joint to
compensate for the local moment and friction is given by

. o= B-(ANZ) + b8, i=N-1.1 (10)

where bl. is the friction cocfficient of joint i. The friction, bi’ in each of the joints is related to the velocity of
the joint by some nonlincar function. Since the friction in the joints of the CMU DD arm is very small, we
neglect this term in the simulation. [2] [1]

Defining the InvArm Function
We can define the function which evaluates equations 1 through 10 as

7 = IvArm (4, 8, 8)

where T = (775,070, 8 = (01,02,...,0N),é = (él,éz,...,éN), andé = (él,éz,...,éN). This function call is
an actual procedure in the software which implements the algorithms discussed in this paper. The InvArm
function will be uscd later in the Forward Arm.
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DAC Qutput
Once we know the torques, 7, that we must produce, we have to calculate what motor voltages we must

apply in order to generate these torques. In the computer program, the motor voltage calculation is
performed separaicly from the above five steps because when the Forward Arm uscs the [nverse Arm it
requires the torques as output. The motor voltages, computed from the torques and velocitics, can be used
for a feedforward compensation control system. 2]

We assume that the inductance of the motors is negligible so that the equation relating voltage to the
armature resistance and motor specd is
Vi o= RiIi + Kligi
where R, is the resistance of motor 4, Kt is a back EMF constant for motor £, and 1. is the current in motor i.
The torque that the motor produccs is refated to the current in the motor and is given by

T, = Kt l..
11

1
We can rewrite these cquations as

V. =R, 7, /Kt + Kt 6. an

1

Forward Arm

The purpose of this model is 1o allow us to simulate the movement of a manipulator. We can specify the
voltages applied to each of the moators and calculate the resulting movement of the arm. The Forward Ann
mode! algorithm is taken from a paper on manipulator dynamic simulation written by Watker and Orin. [11]}
We use the third method given in the paper. '

The Walker-Orin algorithm is a method for calculating the acceleration of each joint in a manipulator. We
use a third order Runge-Kutta integration algorithim to compute the velocities and positions of the joints from
the accelerations. We have added a model of the motor dynamics so that motor voltages can be converted to
torques. The Forward Ann modcl, which consists of these three parts {calculation of acceleration, integration,
and motor dynamics), takes as input a voltage schedule which is a list of input voltages to be applied to the
motors of the arm over a period of time. The output of the model is the pusitions, velocitics, and aceclerations
that the joints of the arm undergo with the specified input.

We will first describe the motor dynamics equations and then describe the Walker-Orin algorithm in detail.
This discussion will be completed with a description of the Runge-Kutta algorithm as it applics to this
problem.

Motor Dynamics
The motors have characteristics, such as back EMF, which can be modeled as a control system around a
Walker-Orin ann model. (see figure 2)

The voltages applied to the terminals of the motors have the back EMFs of the motors, given by Kti &91
subtracted from them. The result is multiplied by Kt‘./Ri to give the torque that is actually generated and
applied to the joint of the arm. The inductance of the motor is negligible in most cascs, so it is not included in
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this analysis. TTe torque, 7, in terms of the applied voltage, V., and the joint velocity, 8, is given by

r = Ky(V,-Kt8,)/R, - i= 12N, (12)

% 6
v Kt Arm 9
i " TR ' Model

Kt [«

Figure 2: Control System Model of a Motor

The Waiker-Orin Simulation Method
The dynamics of any manipulator can be summed up in one general second-order differential cquation. [6]

r =H(8)8 + C(8.6)8 + G(8) + K@)V f, o + K (@)'Re (13

where H (8 ) is an N x N symmetric nonsingular moment of inertia matrix, C( 8, 8 ) is an N X N matrix
specifying the centrifugal and coriolis effects, G ( 8 ) is a vector of size N specifying the effects of gravity,
K;(g8)and K ( 8 ) are 3 X N Jacobian matrices specifying the torques created at each joint due to external
forces and moments exerted on the hand, f| . . is a spatial vector specifying the external force exerted on the
hand, and ﬁ‘hm 4 s avector specifying the moments exerted on the hand about the X, Y, and Z axes.

The purpose of this part of the Forward Arm model is to compute the accelerations of cach of the joints
given the torques applicd to the joints and the current state (positions and velocitics) of the arm. There are
three parts to this computation: computing the bias vector, finding the H matrix, and solving for the joint
accclerations. The Walker-Orin paper [11] gives four methods of finding the accelerations. The first and third
steps. that is computing the bias vector and solving for the joint accelerations, are common to the first three
methods presented in the Walker-Orin paper. The difference between the three methods is in their
algorithms for computing the H matrix. The third method given for computing the H matrix is used here for
specd.
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Computing the Bias Vector

Ifwe let
. . - T -_— X T RS B
B = C(8.0)8 + G(8) + K(8)'f,. + K (8, (14)
then eguation 13 becomes '
H(8)8 = (z - B). (15)
B is called a bias vector which corresponds to the torgue required to maintain the current state without any
acceleration. ‘The bias vector can be computed with the Inv.Arm function by sciting § = 0 and calling the

routine to calculate the torque. 1f we knew the H matrix then we could solve equation 15 as a set of N
simultancous equations in N unknowns. The g would be the unknowns,

Calculating the H matrix

The H matrix represents an effective moment of inertia for the arm. It is a function entirely of the arm
position since the velocity cffects are accounted for in other terms. The simplest means of calculating the H
matrix is to set one element of 8 io 1 and all of the rest to 0. We can use the InvArm function with d = k =
G (8) = 0 to compute the torque vecter for that acceleration. The computed torque vector is cqual to the
column of the H matrix corresponding to the element of g that was settwoalsinces = H(8) 8 when@ =
G(8) = k = 0 from cquation 15. This is Walker-Orin’s method 1 which is simple, but computationally
slow. '

Method 3 uses a different approach. The same assumption about the acccleration is made, but the
ca'culation of wrques proceeds difterently. The H matrix is synimctrical so only the diagonal and top half of
the off diagonal clerments are computed. If § is set up as before, with the j‘h element sct to 1 and the rest 0, we
natice that the manipulator can be viewed as a singly jointed arm with a "hand” that is madc up of links j
through N and the base made up of links 0 through j-1. The characteristics of the "hand,” its mass, center of
mass, and moment of inerta, can be calculated iteratively using

M= M, +m, j=N-1,.21 (16)
g = i[m S+ M ATHE + D )] j = N-1,...2,1 17)
EEERERVILLL S 1% G5 P J= Nt

}
* j+1 * J j+1 ¥ ~ —_‘: )
P,j = A Ej+1Aj+1 + Mj“[lAj (Cj+1+ ij) ¢ |“1

(AL A VAN T ~ T
(ATHE L+ Py ) =G (AT (G Py ) -6 ) ]

* AR ¥ 2 ;\*— % A‘-_;* T .: _
+Jj +m}.[|sj--cj|1—(sj G, )(sj cj) ] j=N-1,.21 (18)

. . . . . " " . 4 . . . ¥ .
where m, is the mass of link j, M. is the mass of the "hand" that is links j through N inclusive, C, is  the
. 11} " ~* . : M M ” " H
composite center of mass of the "hand,” E. is the composite moment of inertia of the "hand,” and 1 is the
identity matrix. ‘Tiie boundary conditions at link N are

MN = my
- _ A%
v = Sy
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The composite mass. M., is the sum of the masses of links j through N. The composite center of mass, Ej", is
computcd relative to the origin of link jin link j coordmatcs € is a weighted sum of the center of mass of
link j, 5., and the center of mass of cosuposite link j+ 1, C dmdcd by the total mass of the c0mp051(e link
7M. §5iswcighied by its mass, m, and ET ) is weighted by '\/I T The suun of the position vector, p
which points from ll Jink jorigin t the j ~ [ origin and ¢, i+ 1s transformed from j+/ coordmates to J
coordinates io give €, Cit reh'nc to the jcoordinate origin 1n Jcoordinates.

The composite moment of inertia, L, 1s the sum of the moment of incrtia of link J, J7, and the compos:te
moment of inertia of links j through N, E e both moved to the center of mass of composite link j. P | must
undergo a coordinate transformation before it is added to I

To move a mement of inertia tensor we use a form of the parallel axis theorem which gives the moment of
incrtia of an ohject around an arbitrary location when the moment of inertia around the center of mass is
known, [10]S

I, =I;+M[i€21-fiﬁr]

* . . . . - = .
where IL, is the moment of incrtia tensor around the-center of mass, M is the mass of the object, R is the vector
pointing from an arbitrary lecation to the center of mass, and 1 is the identity matrix.

EI; © ;lfs{ transformed to j cooerdtes by pre- and post-multiplication by A" Land its inverse. Then it is
moved o c R is \” L c]+l-l p. i1 )~ E‘J for this move which poiuts from the center of mass of composite
link jto thc center or mass ofcompome link j+ /. JJ is moved o the center of mass of composite link j by the
same means. R is §. - in this case which is a vector from the center of mass of composite link j to the
center of mass of link J.

The net force on the "hand” is the force acting on the center of mass which is the "hand’s” mass times its
linear acccleration. Since the angular acceleration about a joint axis is assumed to be 1, the lincar acceleration
is the cross product of the angular acceleration vector (which is just the Z axis of link j-/ expressed in j
coordinates) and the vecter trom the axis to the center of mass of the link. The net force is given by

iJ M, { A Zy % (8 + B I i=N..21 (19)

LR 1}

The net moment of the "hand" is the moment around the "hand’s” center of mass which is the component of
the moment of inertia matrix, l:j . which is in the direction of the joint axis, or
N =EAlZ i=N..20 ©0)
i i1 0 :
The force that link 7 -1 cxcits on the hand, called the local force, is equal to the net force since the only force
exerted on the "hand” is the local force. The moment exerted on the "hand” by link j-/, called the local
moment, is the net moment plus the moment produced by a force acting at a distance from thc rotational axis.
The force is the net force and the distance is the sum of the center of mass vector of link J, €. , and the position

vector, p .which points from the link j -/ to the link jcoordinate axes.

5Chaptcr 10.5
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§ = i: i=N,..21 Q1)
Bo=N 4 (§+5)x 1?J i=N,..21 22)

The worane required in the joint is the ( j, j ) clement of the H matrix which is equal to the component of the
local inoment in the direction of the link j -7 Z axis, given by
o= (A7 j = N,...1. 23
H,, mo (A7) j - (23)
‘This gives us the diagonal of the H matrix.

The off diagonal elements can be computed by calculating the torques needed in joints 7 through j -/ to
mainiain this static situation. The local forces on each link from / to j -7 arc the same as the local force, f;, on
link j when transformed to the correct coordinate system. The local moment of link 7 is the sum of the local
moment of link -+ / transformed to i coordinates and the moment caused by the local force of link 7+ 7 acting
atadistance p_ ;.

—_ B +1 —'l L ._ g
fo=ATE ‘ 1=j1,..1 (24)
Bo=AlYIE o+ Py x (AIE ) i=j1,..1 (25)

The clements of the off diagonals of the H matrix are the components of the local moments which are in the
same direction as the Z axes of the previous links.

H, =H;=#( A7) i=j1,.21 - j=N..20 (26)
Once we have the H matrix we can calculate the acceleration vector for the given torque, z, and computed

bias vector. B using cquation 15. . Since the H matrix is symmetric an algorithm tailored to such matrices is
used to solve the simultancous ~quations. [9]

Defining the ForArm Function

Like the InvArm function we can define a ForArm function which returns the acceleration of the arm joints
given the positions, velocities, and joint torques. This function is useful in explaining the Runge-Kutta
mtegration and corresponds to a real function in the modcling software. We define ForArm as

é = ForArm (4, é,'l)

where 4. . 8, and 7 are defined in section .

Runge-Kutta Integration

['he ability to calculate the acceleration for a given set of conditions allows us to compute future positions
and velocities of the joints using a Runge-Kutta integration algorithm. A third order Runge-Kutta provides
cnough accuracy without sacrificing too much speed.

If we let

F(8.0.Y) = ForArm (8, 8.[ K{(V-Kt8/R 1)
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where V is the arm vector of applied motor voltages (sce section ) then the first order differential equations
that we are trying to solve are

@)
dt

d(d)

= F(8.8.V)

and

- dt
To usc the third order Runge-Kutta method, we calculate two sets of three coefficients which represent the
current values and estimated future values of @ and §. The new values computed for § and §  are the old
values plus a time increment multiplicd by a weighted sum of the cuirent and estimated future values of 8
and @. [3] The coefficients to be calculated for each new set of values for § and 4 are

& =8
k, = F(8 8, Y)
by
e, =8+—k
h _
X, = F(Q+;gl, & ¥)

¢ = Q+2hk_2'h§1

w
il

where h is a time step. The determination of the correct size for the time step h is a difficult procedure. There
are algorithms for adjusting the stepsize according to the change in § and 8, but these are not currently
implemented. A fixed stepsize of 1 millisecond which is approximately 1/ 15" of the smallest mechanical time
constant in the arm is currently being used.

The iterative equations for calculating the weighted sum and obtaining new values for § and @ are:

h
n+l _ _
"t = 8" + 6(91+4gz+g3)

. . h
n+l __ _
[’} —_01“+6(x1+41sz+k3)

Prcgrams Available

We have implemented the model of arm dynamics which has been described. The software resides on the
CMU-750R VAX in the /usrr0/nms/sim directory. Currently, the software is in the form of an cxecutable
testhed called “sim.” The sim program is CI based with full help functions. The sim program can do the
Inverse Arm on single or multiple scts of data. It can do the Forward Arm on single scts of data or do a
simulation sequence.
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The sim systen is run by typing /ust/nms/sim/sim. The user is then at the CI user interface level. There
are several variabIes which the user can set to different values. They are

gravity The valuc of the gravitational acceleration.
Detaults to -9.80621 meters/ second?

DACTimePeriod The tinie between changes in the reference input to the
control system of the arm

The following variables are vectors which have one component for cach joint in the arm being modcled.

theta The joint angle of each joint in the arm
starting from the base.

omega The joint angle velocitics. This is the
first timae derivative of theta.

alpha The joint accelerations. This is the output
of the Forward Arm model.

torque " The torque cach motor is producing. This
is calculated from the voltage.

voltage The voltage applied or that should be applied to
each joint to satisfy the other conditions

DACOut The Digital to Analog Converter output voltage which is connected to
' the rcference input of the control system of the arm

Any of these variable can be set by saying: variable = valuel value2 ... valueN, where N is the number of
joints in the arm. The torque and voltage variables arc tied together so that sctting one recalculates the other.

The commands allow the user to apply the Inverse Arm or Forward Arm models to different scts of data.
Possible commands are

inversc_.arm Runs the Inverse Arm model on the
theta, omega, and alpha variables. The result is
put in the torque and voltage variables.

forward_arm Runs the Forward Arm modcl of the
theta, omega, and voltage variables. The result is put
in the alpha variable. This command docs not perform
Runge-Kutta integration.
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simulate

plot_sitnuiation

print_simulation

write_graphic_file

open_output_file

closc_output file

database read

15

Stmulates the motion of an arm. Prompts the

user as to whether it should start a new simulation,
set the theta and omega variables to

zcro before doing a simulation, and whether a voltage
schedule file is used. If a voltage schedule file is

used the user is prompted for its name. If a schedule
file is not used the voltage is assumed to be held

“constant at the valuc given by the voltage variable

and the user is prompted for the number of timesteps
over which the simulation is to occur.

Plots the simulation on the dover,
Generates a poof file (see MAN POOF) called
# doverplot.poof and a press file called # poof.press.

Prints the simulation on the user’s
creen if no file is currently open. Prompts the user
for start, finish, and step values.

Writes a file of siraulation results
which is suitabie for input to the graphics
simulation display package on the PERQ.

Opens a file for writing with
print_simulation. Prompts user for filename.

Closes the open file used for
simulation output. Further output is sent to the

terminal after the file is closed.

Recads a database file for an arm which contains

"mass, center of mass, moment of inertia,
Denavit-Hartenburg parameters, and other related factors
which characterize an arm. This command is done implicitly
for the CMU DD Arm when the sim program is started up.

23 November 1982

Further information about the internal workings of the system is in the program documentation.
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Cenecral Equation of Arm Dynamics

()8 + C(0.0)8 + G(8) + K(8) T,y + K, (&) F, (1)

1 =
_ 2 f , T T
B = C(8.0)8 +G(8) + K (O)'F_ . + K ()5, 14)
H(8)8 = (z-B) (15)
Where:
H(E4) 2 An NxN symmetric nonsingular moment of incrtia matrix.
C(8.8) 2 An NxN matrix specifying the centrifugal and coriolis effects.
G((8) & An arm vector specifying the cffects due to gravity.
K ( a) 2 A 3xN Jacobian matrix specifying the terques created at each
joint due to an external force exerted on the hand. '
I(u (8) & A 3xN Jacobian matrix specifying the torques created at each
joint due to an extcrnal moment exerted on the hand.
fhaq d 2 A spatial vector specifing the force exerted on the hand externally.
r'fha“ d = A vector specifying the external moments around the X, Y, and Z axes. .
) = A bias vector which can be computed by equations 1 through 10 with 8

set equal to 0.
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Equations for Cvaluating the Dynamic Motion of a Man'ipulator

B, = AL (8 + "‘Oéi+1) i=0L..N1(D)
B, = N (B + 20+ 3 %78, ) i =01,.N-1 (2)
V., = B, XD, + AT i =0,1,..,N-1 (3)
Vo= B X Py B X (B, x B )+ AT i=01.N1 (@)
Vo= @, x 8]+ 8, x(8,x3)) + ¥ i=12..N (5
FFoo= m« i=12..N (6)
No= 0+ 8 x(38) i=12..N ()
£ = AYYE L+ F Pi=N.21 (8
n, :A}+1ﬁ;+l+f)iX(A§+1€+l)+(ﬁi+gi.)xﬁ—*-—N\i

i=N..,21 )
n o= E-CATZ,) + b6, Ci=NL.l o (10)

Whera:

231 , 3i & 'The angular velocity and acceleration of the link i coordinate system.
V; Y & TheJinear velocity and acceleration of the link / coordinate system.
\.7;' & The linear acceleration of the center of mass of link 4.
?i,_N\i 2 The net force and moment exerted on link i.
=
f,a & The force and moment cxerted on link 7 by link i- /.
T, £ The input torque for joint i,
bi & A number representing viscous damping or friction.
0l , éi . 01 & 'The angle, and its derivatives, through which joint i is turned.
f)l. & Vector frem link i - / origin to link 7 coordinate system origin.
§; 2 Vector from link / coordinate system erigin to center of mass of link i,
Ji 2 Moment of inertia matrix of link 7.
m 2 Mass of link 4.
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Given:
" cgs()Hl -cosaziHsmoOi+1 519 a; ,sin 0};“
Ai = sin 0i+1 co§ a; 08,4 sin L) cos 8, ,
sina; cos a;
N _ ST .
AJa1 < I. The ideniity matrix

The N+ 1" coordinate svstem is the hand coordinate system which is
identical to the link N coordinate.system.

i i+14\T ai+ 1y 1
Moy = T = A
4
P, = r; sin(a,)
ricos(ai‘)
Z, = (001"

By 0y, 7y = 00
W = oog’

g = 9.80621 meters/ sec? if the Z-axis of the link 0 coordinate frame is
pointing vertically up.

g = -9.80621 meters/sec” if the Z-axis of the link 0 coordinate frame
is peinting vertically down.

-

fN 4 =2 The external force on the hand.
n, & The external moment on the hand.

N+1
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Equations for Calculation of H Matrix in Forward Arm Problem

- ' j = N-1,..,2,1 (16
M7 Mt o 21 16
1
vl n i = N-1..21 (1
G = M,[mjsj + My ATTE By )] i=N-1..21 17
h]
S +1 ~ j+1, % ~ —_\* 5
Bl= MTTEL AL+ M DA+ By ) -5 1

t+1 J+1 .x*
—(’\J ( J+1 J+l) )(A (C+1+ p],_l) ) .]

+ Jj‘ + m[| §j‘- aj“|21- ( sj- q?*)(g - g "y 1 j=N-1,..2,1 (18)
fr‘j =M, [ Al 7, X (& + B i=N.21 (19
*’J. =E N7, i= N2l (20)
€ = F] ' i=N-1,..2,1 1)
Ro=N o+ (5 + B x ?‘] i=N.21 0 (22)
Hoo= R - (A Z,) i=N-1.,1 (23)
o= AflE i=jl..1 (29
Bo= AR+ Bx(AYIE ) : i=jl.l (25
I, = H, =& - (A'Z) i=jl..21 i=N..21 (6)

where

Mj & The cumulative mass of links j through N with My, = my,.
é;’ 2 The center of mass of composite link j with ?N' = §;
F; 2 'The moment of inertia of composite link j around its center of mass with E;'—' J;
H. 2 The N X N matrix relating angular accelerations to joint torques.
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