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Abstract 
 

Learning can be an effective way for robot 
systems to deal with dynamic environments and 
changing task conditions. However, popular single-
robot learning algorithms based on discounted 
rewards, such as Q learning, do not achieve 
cooperation (i.e., purposeful division of labor) when 
applied to task-level multirobot systems. A task-
level system is defined as one performing a mission 
that is decomposed into subtasks shared among 
robots. In this paper, we demonstrate the superiority 
of average-reward-based learning such as the Monte 
Carlo algorithm for task-level multirobot systems, 
and suggest an explanation for this superiority. 

 
1. Introduction 
 

Robot learning is the ability of robots to adjust 
to their environment. It can increase flexibility by 
enabling robots to deal with different and 
unexpected situations. Early research in robot 
learning began with one robot and one learning 
entity. Recent improvements in computer speed and 
cost have made multirobot systems a promising 
research topic. A key feature of multirobot systems 
is the potential to cooperate: several robots can help 
each other to accomplish a task faster or better, and 
they can compensate for each other’s weaknesses. 
We define cooperation as a purposeful division of 
labor according to function and/or location. 
Cooperation generally results in higher efficiency. In 
this paper, we differentiate between action-level and 
task-level systems. Action-level systems perform 
missions based on reactive behaviors, whereas task-
level systems perform missions at a higher level by 
decomposing them into subtasks shared among 
robots. The key result of this paper is the insight that 
learning techniques based on cumulative discounted 
rewards, such as the popular Q learning method [5], 
are unable to induce cooperation and therefore give 
suboptimal results in task-level systems, whereas 
learning methods based on average reward, such as 

the Monte Carlo algorithm, are capable of achieving 
the optimal result through cooperation. 
 
2. Previous Work 
 

Early research in multirobot learning began with 
artificial intelligence concepts and no physical 
implementation. In the last decade, there have been 
many real-robot learning experiments. 
Reinforcement learning [4] [9] has been a successful 
learning method for robot systems [1] [6] [9]. One of 
the popular reinforcement learning algorithms is Q 
learning by Watkins [4]. There has been a lot of 
successful use of Q learning on a single robot. 
However, there have only been a small number of 
learning experiments with multiple robots to date. 
Mataric [1] used reinforcement learning to control 
the behaviors of a robot group. Balch [6] performed 
an experiment with different types of tasks to 
explore the effect of diversity in robot groups. Both 
researchers used modified rewards (i.e. shaped 
reinforcement signals or progress estimators) to give 
feedback on progress or specific behavior. However, 
there were variations in performance that depended 
on several factors. In our work, we did not use 
special types of rewards to induce specific 
behaviors. Instead, we performed experiments using 
traditional rewards (rewards at the goal) to see if the 
robots could achieve the optimal result. 
 
3. Approach 
 

We investigated the behavior of a decentralized 
multirobot system performing puck collection, using 
delayed rather than instant rewards. We compared 
performance using local rewards to that using global 
rewards. We also compared performance using Q 
learning, which is based on cumulative discounted 
rewards, to that using Monte Carlo learning, which 
is based on average rewards. The remainder of this 
section justifies these choices. 
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3.1 Centralized vs. Decentralized Multirobot 
Systems 
 

Multirobot systems can be designed based on 
two types of architecture: centralized and 
decentralized. A centralized architecture has a 
central unit that plans for and controls all robots in 
the system. A decentralized architecture does not 
have a central unit. Instead, each robot plans for and 
controls itself. Centralized systems are easy to 
implement, but they lack the robustness and 
scalability of decentralized architectures, which have 
recently received a lot of attention from researchers 
due to these properties. 

 Learning in centralized systems requires a 
single learning entity at the central unit. Because the 
central unit receives all data and commands all 
actions, learning in centralized systems is equivalent 
to single-robot learning. In a decentralized system, 
each robot needs its own learning entity, and the 
multiple learning entities may indirectly influence 
one another by rewards and robot actions. We chose 
a decentralized architecture because it leads to a 
multirobot, distributed learning problem, which is of 
intrinsic interest, and because it yields a more 
scalable and robust system. 
 
3.2 Cooperation and Level of Robots’ Hierarchy 
 

There are six levels in a robot’s hierarchy: 
mission, task, action, robot, joint and physical [11]. 
Learning can be done at any of these levels, but it is 
often performed at the task and action levels. The 
task level is where a mission is decomposed into 
several subtasks. This is where division of labor and 
planning take place. For example, in order to build a 
car, robots have to assemble the engine, the doors, 
the wheels and so on. The action level is where 
robots take low-level actions based on reactive 
behavior. If a robot system is designed with the 
action level as the highest level, the robots will build 
a car by individually assembling everything that they 
can without any plan. The introduction of the task 
level makes the robots’ interaction more efficient by 
enabling robots to effectively share resources and 
duties (i.e., to cooperate). We define cooperation at 
the task level as a purposeful division of labor 
according to function and/or location. 

To illustrate this difference, consider two real 
robot tasks: exploration and robot soccer. Both tasks 
can be solved by going only as high as the action 

level. However, greater efficiency requires the task 
level. In exploration, robots can be programmed to 
have a behavior of wandering around and sensing 
the environment. The more robots, the larger the 
area likely to be covered, although duplication of 
effort is also likely. Although the performance may 
increase, we do not classify this as cooperation 
because it is not a result of purposeful division of 
labor. Exploration can be made more efficient by 
dividing the area into subareas and having the robots 
disperse to explore those subareas. This is classified 
as cooperation because the robots are aware of their 
actions and effects on other robots by choosing to 
explore different subareas. Another example is robot 
soccer. It can be designed at the action level by 
simply having robots find the ball and try to kick it 
into the goal. However, it can be improved by 
introducing goalkeeping, team tactics, passing, and a 
dribbling mechanism. This division of labor occurs 
at the task level. 

We are interested in the ability of learning to 
induce cooperation. Cooperation understood as 
purposeful division of labor can only occur at the 
task level, so we consider task-level, rather than 
action-level, systems in our research. 
 
3.3 Rewards 
 

Rewards are an important component in 
reinforcement learning. They are used as feedback 
signals that tell robots how good their actions are. 
Based on Dudek’s Taxonomy [7], rewards can be 
classified into delayed vs. instant and global vs. 
local. At the task level, because a mission is 
decomposed into a series of subtasks, rewards 
should generally be delayed. An action from a robot 
may have to be combined with subsequent actions 
from other robots to accomplish the mission. 
Therefore, it will take some time for the action from 
the first robot to get a reward. 

 The other classification of rewards is local vs. 
global. Local rewards propagate only to the robot 
responsible for that action. Global rewards, on the 
other hand, propagate to all robots in the group. 
Consider an example in robot soccer. A robot scores 
a goal and receives a reward. If its teammates get no 
rewards, then the reward is local. If its teammates 
also get rewards because of this goal, then the 
reward is global. Unlike the instant vs. delayed 
rewards issue, in which rewards are necessarily 
delayed in task-level systems, we built our system to 



use and compare both local and global reward 
schemes. 
 
3.4 Learning Algorithms: Q learning and Monte 
Carlo Learning 
 

We tested two learning algorithms on a task-
level system. The first was Q learning, which is 
based on a cumulative discounted reward 
framework. The second was Monte Carlo learning, 
which is based on an average reward framework. Q 
learning is a commonly used robot learning method 
due to several advantages it has over others. First, it 
is fast and requires no world model. Second, it can 
handle delayed rewards. Q learning has been 
successfully used with single-robot and action-level 
multirobot systems. Q learning is designed to 
optimize a robot policy (π) that is based on 
cumulative discounted rewards (Vπ). The cumulative 
discounted reward is the sum of rewards that a robot 
expects to receive after entering into a particular 
state. The discount factor (γ) makes rewards that are 
received in the future fade over time. 
  
 
 
where 0 < γ < 1 
 

Q learning defines an evaluation function Q(s,a). 
This function is the maximum cumulative 
discounted reward that can be achieved by starting 
from state s and applying action a as the first action. 
Using Q learning, robots learn and update the Q 
value by the following equation: 

 
 
 

 
where s’ and a’ are the next state and the next 
possible action. 
 

The second learning algorithm tested was the 
Monte Carlo algorithm (MC). We studied the effect 
of the Monte Carlo algorithm, which is based on the 
average reward framework, because Q learning did 
not give good results on task-level systems. 
Research on average-reward learning has been 
minimal. There are few algorithms known to date. 
We chose the Monte Carlo algorithm because it is 
not complex to analyze. Monte Carlo learning was 

invented at the beginning of robot learning and has 
the advantage of the average reward framework. 
However, it has rarely been used because it is slow. 
It uses probability theory to estimate the value of 
actions from experience. Monte Carlo learning is 
used in episodic tasks. The algorithm traces the 
states that have been visited until the end of episode. 
It then gives credits to those states according to 
rewards that the robots receive. There are two 
versions of Monte Carlo learning: first-visit MC and 
every-visit MC. First-visit MC records average 
rewards after the first visit to each state. Every-visit 
averages all rewards after every visit to each state. 
The first-visit MC algorithm looks like the 
following. 
 
Q(s,a) ← arbitrary % Q(s,a)  is an average 

reward after the first visit in 
state s, action a 

π(s) ← arbitrary % π (s) is the policy 
and decision at state s 

Rewards(s,a) ← Empty list 
 
Repeat Forever: 

- Generate an episode using π 
- For each pair s,a appearing in the episode: 

R ← reward following the first 
occurrence of s,a 
 
Append R to Rewards(s,a) 
Q(s,a) ← average(Rewards(s,a)) 
 

- For each s in the episode 
π(s) ← argmaxa Q(s,a) 

 
4. Experiments and Results 

 
Our test problem is the puck-collecting problem, 

consisting of two robots and a rectangular field. 
Pucks are distributed randomly at four predefined 
points at the corners of the field. The robots are 
ordered to investigate and find a puck around these 
points. There is a home region in the middle of the 
field with a bin inside. The task for the robots is to 
move all pucks to the home region and deposit them 
in the bin. Both robots can sense a puck, pick up a 
puck, or drop a puck. The first robot can move to 
and investigate around the points, or it can move to 
the home region and deposit a puck. The second 
robot is restricted to move only in the home region, 
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but it can still sense a puck, pick up a puck, or 
deposit a puck in the bin. Depositing a puck in the 
bin is time-consuming for the first robot, but it is 
easy for the second robot. Therefore, although the 
second robot cannot move around, it can play an 
important role by depositing pucks in the bin. The 
optimal complete sequence is that the first robot 
picks up a puck, comes back to the home region, and 
drops the puck. Then, the second robot picks up the 
puck, and deposits it in the bin. 

 The puck-collecting problem is inherently 
designed at the task level because it is divided into 
series of subtasks required from both robots. The 
first robot has to intentionally drop a puck at the 
home region in order to hand over the task to the 
second robot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter values of rewards and costs are shown 
in the table below. All robot actions result in 
negative rewards (cost) except depositing a puck, 
which gives a big positive reward because it is the 
final goal. These values are based on the relative 
difficulty of the actions. For example, dropping a 
puck is relatively easy compared to picking up a 
puck, which requires sensing and manipulation. 
These reward values can be varied within reasonable 
bounds without changing the result as long as the 
relative magnitudes are preserved (e.g., picking up a 
puck should not become easier than dropping one). 
The table below shows the reward values used in our 
experiment. All values of both robots are the same, 
except when depositing a puck. It costs Robot 1 ten 
times more than it costs Robot 2. This will 
encourage Robot 1 to drop a puck and let Robot 2 
carry out the task. Depositing a puck by Robot 1 will 

cost 2000. If it let Robot 2 handle it, the cost will be 
10(drop) + 200(deposit by Robot 2) = 210. 
However, if we set the cost of depositing a puck to 
be equal, Robot 1 will do the task all by itself. This 
is because the total cost will be higher if it passes the 
task to Robot 2 (overhead from dropping a puck).  

 

Reward Table Robot 1 Robot 2 

Move to point (Distance)  
x (-100) 

(Distance)  
x (-100) 

Pick up a puck -100 -100 

Drop a puck -10 -10 

Deposit a puck to 
the bin -2000 -200 

After the puck is 
deposited (reward) +20000 +20000 

 
Our simulation is shown below. It was written 

with Microsoft Visual C++. Circles represent pucks. 
Two dark rectangles represent two robots.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We performed experiments with both Q-learning 

and Monte Carlo learning on this problem. In 
addition, we used both global reward and local 
reward schemes. In all cases, the robots achieve 
stable results. However, there are two types of 
results. The first type is the optimal result described 
previously, in which both robots cooperate in 
placing a puck in the bin. The second type is a non-
cooperative situation, in which the first robot does 
not drop the puck. Instead, it does everything by 
itself. The first type was only achievable by using 

 

Home 
Region 

x 
Robot 1 

Robot 2 

Puck

State = 
{At?, HavePuck, SensePuck} 
 
Action = 
{Goto?, PickPuck, DropPuck, Store, DoNothing}

x 

x
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the Monte Carlo learning with global reward. This 
result supports our assumption described previously. 
 

Learning 
Algorithm 

Global 
Reward 

Local 
Reward 

Q-Learning Not 
Cooperate 

Not 
Cooperate 

First-visit Monte 
Carlo method Cooperate Not 

Cooperate 
Every-visit Monte 

Carlo method Cooperate Not 
Cooperate 

 
The chart below shows a record of total rewards 

that Robot 1 got in each cycle. These values are non-
discounted and do not include the global rewards 
generated by Robot 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5. Discussion 
 

The experimental results indicate that only 
Monte Carlo learning with a global reward scheme 
can achieve cooperation. In this paper, we claim that 
learning algorithms that are based on cumulative 
discounted rewards, such as Q learning and TD(γ), 
do not induce cooperation and therefore give 
suboptimal results in task-level systems. When there 
are multiple learning entities in a task-level system, 
they will have asynchronous learning time frames. 
An event that benefits the whole system usually 
occurs after the actions of all robots are performed, 
but it is often observed by only one robot. This robot 
will get a reward immediately. It will then take some 

time to propagate to other robots. Because of this 
delay in the cumulative discounted reward 
framework, the other robots will get a smaller 
reward for their actions. This phenomenon 
encourages the other robots to only choose actions 
that yield an immediate reward. However, 
cooperation requires the robots to divide their duties 
and do sequential actions. If all robots compete for 
actions that have immediate rewards, the learning 
space is limited and the system is unlikely to learn 
the best solution. 

To illustrate this phenomenon, consider the 
example of two robots with a sequential task. The 
task consists of two parts in strict order. Only after 
the first part is finished can the second part begin. 
Rewards are given to the robots at the end of the 
second part. Both robots use a global reward 
scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We assume that Robot 1 is more suited to do 
Part 1 than Robot 2. In the best case, Robot 1 
chooses Part 1 and Robot 2 chooses Part 2, which 
will provide a reward of 10 units. The other case is 
when Robot 1 chooses Part 2 and Robot 2 chooses 
Part 1, which will provide a reward of 8 units. 
Suppose the length of Part 2 is three time-steps and 
the discount factor (γ) is 0.9. In the first case, Robot 
1 chooses Part 1 and gets a reward three time-steps 
later of 10*(0.9)3 = 7.3. Robot 2 chooses Part 2 and 
gets a full 10-unit reward immediately. In the second 
case, Robot 2 chooses Part 1 and gets a reward three 
time-steps later of 8*(0.9)3 = 5.8. Robot 1 chooses 
Part 2 and gets an immediate reward of 8 units. The 
total reward of the first case is 7.3+10 = 17.3 and the 
total reward of the second case is 5.8+8 = 13.8. The 

Part 1 Part 2 

Task 

Reward 
given by 
the task 

Time Progress 
Robot 1 does Part 1/Robot 2 does Part 2 

Reward = 10 
 

Robot 1 does Part 2/Robot 2 does Part 1 
Reward = 8 

Before 
the task 

After 
the task 

Doing the task 

Total Local Rewards (non-discounted) of 
Robot 1 in each Learning Cycle (at stable 

point)

16500

17000

17500

18000

18500

19000

19500

Q with local
reward

Q with global
reward

First-visit MC
with local
reward

First-visit MC
with global

reward

Every-visit
MC with local

reward

Every-visit
MC with

global reward

Learning Method
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second case seems inferior, but Robot 1 gets a bigger 
reward (8 instead of 7.3). Therefore, using the 
cumulative discount reward framework, Robot 1 will 
learn the second case, which is a selfish behavior. 

Learning algorithms that are based on an 
average reward framework, such as the Monte Carlo 
algorithm, can solve this problem. We used the 
Monte Carlo algorithm in our experiment due to its 
simplicity. With average rewards, it does not matter 
who gets the reward first, since the reward will not 
be discounted. The reward that each robot receives is 
the sum of all rewards divided by the number of 
time-steps. Therefore, all robots receive equal 
rewards. From the previous example, if the total 
number of time-steps is five, all robots receive an 
average reward of 10/5 = 2.0 units in the first case 
and 8/5 = 1.6 units in the second case. 

When the robots are homogeneous with 
cumulative discounted learning, both robots still get 
a different amount of reward depending on who goes 
first. Consider the example described previously, but 
with a final reward of 10 units in both cases. Using 
Q learning, the robot that does Part 1 will get a 
reward of 7.3 units and the robot that does Part 2 
will get a reward of 10 units. Since Part 2 gives a 
bigger reward, both robots will compete for doing 
Part 2. If they can wait or do some useless actions to 
make the other choose Part 1, they will get a bigger 
reward. Therefore, both robots will learn to wait and 
let the other go first. Again, Monte Carlo learning 
can solve this problem because it yields an equal 
reward for both robots. 

Global and local reward systems are also an 
important factor affecting learning in task-level 
systems. Our experiment indicates that robots cannot 
learn cooperation if we use a local reward system. 
The reason for this result is intuitive: a robot will not 
help other robots if it does not get a reward for doing 
so. Without global reward, instead of cooperating, 
every robot will compete for the goal. 
 
6. Conclusions and Future Work 

 
We have studied different learning algorithms 

on a multirobot system. Our multirobot system is 
fully decentralized, and our learning entities are 
distributed and independent on each robot. 
Multirobot systems can be designed based on the 
action level or the task level. Popular non-average-
reward-based learning techniques such as Q learning 
are effective at the action level, but not at the task 

level, because they do not induce cooperation, 
understood as the division of labor according to 
function and/or location. The main reason is that the 
values of rewards fade over time, causing all robots 
to prefer actions that have immediate rewards. We 
demonstrated that using Monte Carlo learning with a 
global reward scheme solves this problem and 
induces cooperation. Although Monte Carlo learning 
is simple, it is very slow, and makes weak use of 
training samples. In future work, we will include the 
implementation of Sutton’s Dyna architecture [4] to 
speed up the learning process. 
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