
The Necessity of Average Rewards in Cooperative Multirobot Learning

Poj Tangamchit 1 John M. Dolan 2 Pradeep K. Khosla 1
 e-mail: poj@andrew.cmu.edu jmd@cs.cmu.edu pkk@cs.cmu.edu

Dept. of Electrical and Computer Engineering 1, The Robotics Institute 2

Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213, USA

Abstract

Learning can be an effective way for robot
systems to deal with dynamic environments and
changing task conditions. However, popular single-
robot learning algorithms based on discounted
rewards, such as Q learning, do not achieve
cooperation (i.e., purposeful division of labor) when
applied to task-level multirobot systems. A task-
level system is defined as one performing a mission
that is decomposed into subtasks shared among
robots. In this paper, we demonstrate the superiority
of average-reward-based learning such as the Monte
Carlo algorithm for task-level multirobot systems,
and suggest an explanation for this superiority.

1. Introduction

Robot learning is the ability of robots to adjust
to their environment. It can increase flexibility by
enabling robots to deal with different and
unexpected situations. Early research in robot
learning began with one robot and one learning
entity. Recent improvements in computer speed and
cost have made multirobot systems a promising
research topic. A key feature of multirobot systems
is the potential to cooperate: several robots can help
each other to accomplish a task faster or better, and
they can compensate for each other’s weaknesses.
We define cooperation as a purposeful division of
labor according to function and/or location.
Cooperation generally results in higher efficiency. In
this paper, we differentiate between action-level and
task-level systems. Action-level systems perform
missions based on reactive behaviors, whereas task-
level systems perform missions at a higher level by
decomposing them into subtasks shared among
robots. The key result of this paper is the insight that
learning techniques based on cumulative discounted
rewards, such as the popular Q learning method [5],
are unable to induce cooperation and therefore give
suboptimal results in task-level systems, whereas
learning methods based on average reward, such as

the Monte Carlo algorithm, are capable of achieving
the optimal result through cooperation.

2. Previous Work

Early research in multirobot learning began with
artificial intelligence concepts and no physical
implementation. In the last decade, there have been
many real-robot learning experiments.
Reinforcement learning [4] [9] has been a successful
learning method for robot systems [1] [6] [9]. One of
the popular reinforcement learning algorithms is Q
learning by Watkins [4]. There has been a lot of
successful use of Q learning on a single robot.
However, there have only been a small number of
learning experiments with multiple robots to date.
Mataric [1] used reinforcement learning to control
the behaviors of a robot group. Balch [6] performed
an experiment with different types of tasks to
explore the effect of diversity in robot groups. Both
researchers used modified rewards (i.e. shaped
reinforcement signals or progress estimators) to give
feedback on progress or specific behavior. However,
there were variations in performance that depended
on several factors. In our work, we did not use
special types of rewards to induce specific
behaviors. Instead, we performed experiments using
traditional rewards (rewards at the goal) to see if the
robots could achieve the optimal result.

3. Approach

We investigated the behavior of a decentralized
multirobot system performing puck collection, using
delayed rather than instant rewards. We compared
performance using local rewards to that using global
rewards. We also compared performance using Q
learning, which is based on cumulative discounted
rewards, to that using Monte Carlo learning, which
is based on average rewards. The remainder of this
section justifies these choices.

mailto:poj@andrew.cmu.edu
mailto:jmd@cs.cmu.edu
mailto:pkk@cs.cmu.edu

3.1 Centralized vs. Decentralized Multirobot
Systems

Multirobot systems can be designed based on
two types of architecture: centralized and
decentralized. A centralized architecture has a
central unit that plans for and controls all robots in
the system. A decentralized architecture does not
have a central unit. Instead, each robot plans for and
controls itself. Centralized systems are easy to
implement, but they lack the robustness and
scalability of decentralized architectures, which have
recently received a lot of attention from researchers
due to these properties.

 Learning in centralized systems requires a
single learning entity at the central unit. Because the
central unit receives all data and commands all
actions, learning in centralized systems is equivalent
to single-robot learning. In a decentralized system,
each robot needs its own learning entity, and the
multiple learning entities may indirectly influence
one another by rewards and robot actions. We chose
a decentralized architecture because it leads to a
multirobot, distributed learning problem, which is of
intrinsic interest, and because it yields a more
scalable and robust system.

3.2 Cooperation and Level of Robots’ Hierarchy

There are six levels in a robot’s hierarchy:
mission, task, action, robot, joint and physical [11].
Learning can be done at any of these levels, but it is
often performed at the task and action levels. The
task level is where a mission is decomposed into
several subtasks. This is where division of labor and
planning take place. For example, in order to build a
car, robots have to assemble the engine, the doors,
the wheels and so on. The action level is where
robots take low-level actions based on reactive
behavior. If a robot system is designed with the
action level as the highest level, the robots will build
a car by individually assembling everything that they
can without any plan. The introduction of the task
level makes the robots’ interaction more efficient by
enabling robots to effectively share resources and
duties (i.e., to cooperate). We define cooperation at
the task level as a purposeful division of labor
according to function and/or location.

To illustrate this difference, consider two real
robot tasks: exploration and robot soccer. Both tasks
can be solved by going only as high as the action

level. However, greater efficiency requires the task
level. In exploration, robots can be programmed to
have a behavior of wandering around and sensing
the environment. The more robots, the larger the
area likely to be covered, although duplication of
effort is also likely. Although the performance may
increase, we do not classify this as cooperation
because it is not a result of purposeful division of
labor. Exploration can be made more efficient by
dividing the area into subareas and having the robots
disperse to explore those subareas. This is classified
as cooperation because the robots are aware of their
actions and effects on other robots by choosing to
explore different subareas. Another example is robot
soccer. It can be designed at the action level by
simply having robots find the ball and try to kick it
into the goal. However, it can be improved by
introducing goalkeeping, team tactics, passing, and a
dribbling mechanism. This division of labor occurs
at the task level.

We are interested in the ability of learning to
induce cooperation. Cooperation understood as
purposeful division of labor can only occur at the
task level, so we consider task-level, rather than
action-level, systems in our research.

3.3 Rewards

Rewards are an important component in
reinforcement learning. They are used as feedback
signals that tell robots how good their actions are.
Based on Dudek’s Taxonomy [7], rewards can be
classified into delayed vs. instant and global vs.
local. At the task level, because a mission is
decomposed into a series of subtasks, rewards
should generally be delayed. An action from a robot
may have to be combined with subsequent actions
from other robots to accomplish the mission.
Therefore, it will take some time for the action from
the first robot to get a reward.

 The other classification of rewards is local vs.
global. Local rewards propagate only to the robot
responsible for that action. Global rewards, on the
other hand, propagate to all robots in the group.
Consider an example in robot soccer. A robot scores
a goal and receives a reward. If its teammates get no
rewards, then the reward is local. If its teammates
also get rewards because of this goal, then the
reward is global. Unlike the instant vs. delayed
rewards issue, in which rewards are necessarily
delayed in task-level systems, we built our system to

use and compare both local and global reward
schemes.

3.4 Learning Algorithms: Q learning and Monte
Carlo Learning

We tested two learning algorithms on a task-
level system. The first was Q learning, which is
based on a cumulative discounted reward
framework. The second was Monte Carlo learning,
which is based on an average reward framework. Q
learning is a commonly used robot learning method
due to several advantages it has over others. First, it
is fast and requires no world model. Second, it can
handle delayed rewards. Q learning has been
successfully used with single-robot and action-level
multirobot systems. Q learning is designed to
optimize a robot policy (π) that is based on
cumulative discounted rewards (Vπ). The cumulative
discounted reward is the sum of rewards that a robot
expects to receive after entering into a particular
state. The discount factor (γ) makes rewards that are
received in the future fade over time.

where 0 < γ < 1

Q learning defines an evaluation function Q(s,a).
This function is the maximum cumulative
discounted reward that can be achieved by starting
from state s and applying action a as the first action.
Using Q learning, robots learn and update the Q
value by the following equation:

where s’ and a’ are the next state and the next
possible action.

The second learning algorithm tested was the
Monte Carlo algorithm (MC). We studied the effect
of the Monte Carlo algorithm, which is based on the
average reward framework, because Q learning did
not give good results on task-level systems.
Research on average-reward learning has been
minimal. There are few algorithms known to date.
We chose the Monte Carlo algorithm because it is
not complex to analyze. Monte Carlo learning was

invented at the beginning of robot learning and has
the advantage of the average reward framework.
However, it has rarely been used because it is slow.
It uses probability theory to estimate the value of
actions from experience. Monte Carlo learning is
used in episodic tasks. The algorithm traces the
states that have been visited until the end of episode.
It then gives credits to those states according to
rewards that the robots receive. There are two
versions of Monte Carlo learning: first-visit MC and
every-visit MC. First-visit MC records average
rewards after the first visit to each state. Every-visit
averages all rewards after every visit to each state.
The first-visit MC algorithm looks like the
following.

Q(s,a) ← arbitrary % Q(s,a) is an average

reward after the first visit in
state s, action a

π(s) ← arbitrary % π (s) is the policy
and decision at state s

Rewards(s,a) ← Empty list

Repeat Forever:

- Generate an episode using π
- For each pair s,a appearing in the episode:

R ← reward following the first
occurrence of s,a

Append R to Rewards(s,a)
Q(s,a) ← average(Rewards(s,a))

- For each s in the episode
π(s) ← argmaxa Q(s,a)

4. Experiments and Results

Our test problem is the puck-collecting problem,

consisting of two robots and a rectangular field.
Pucks are distributed randomly at four predefined
points at the corners of the field. The robots are
ordered to investigate and find a puck around these
points. There is a home region in the middle of the
field with a bin inside. The task for the robots is to
move all pucks to the home region and deposit them
in the bin. Both robots can sense a puck, pick up a
puck, or drop a puck. The first robot can move to
and investigate around the points, or it can move to
the home region and deposit a puck. The second
robot is restricted to move only in the home region,

∑
∞

=
+++ =+++=

0
2

2
1 ...)(

i
it

i
ttt rrrrtV γγγπ

)','(max),(),(
'

asQasrasQ
a

γ+←

but it can still sense a puck, pick up a puck, or
deposit a puck in the bin. Depositing a puck in the
bin is time-consuming for the first robot, but it is
easy for the second robot. Therefore, although the
second robot cannot move around, it can play an
important role by depositing pucks in the bin. The
optimal complete sequence is that the first robot
picks up a puck, comes back to the home region, and
drops the puck. Then, the second robot picks up the
puck, and deposits it in the bin.

 The puck-collecting problem is inherently
designed at the task level because it is divided into
series of subtasks required from both robots. The
first robot has to intentionally drop a puck at the
home region in order to hand over the task to the
second robot.

Parameter values of rewards and costs are shown
in the table below. All robot actions result in
negative rewards (cost) except depositing a puck,
which gives a big positive reward because it is the
final goal. These values are based on the relative
difficulty of the actions. For example, dropping a
puck is relatively easy compared to picking up a
puck, which requires sensing and manipulation.
These reward values can be varied within reasonable
bounds without changing the result as long as the
relative magnitudes are preserved (e.g., picking up a
puck should not become easier than dropping one).
The table below shows the reward values used in our
experiment. All values of both robots are the same,
except when depositing a puck. It costs Robot 1 ten
times more than it costs Robot 2. This will
encourage Robot 1 to drop a puck and let Robot 2
carry out the task. Depositing a puck by Robot 1 will

cost 2000. If it let Robot 2 handle it, the cost will be
10(drop) + 200(deposit by Robot 2) = 210.
However, if we set the cost of depositing a puck to
be equal, Robot 1 will do the task all by itself. This
is because the total cost will be higher if it passes the
task to Robot 2 (overhead from dropping a puck).

Reward Table Robot 1 Robot 2

Move to point (Distance)
x (-100)

(Distance)
x (-100)

Pick up a puck -100 -100

Drop a puck -10 -10

Deposit a puck to
the bin -2000 -200

After the puck is
deposited (reward) +20000 +20000

Our simulation is shown below. It was written

with Microsoft Visual C++. Circles represent pucks.
Two dark rectangles represent two robots.

We performed experiments with both Q-learning

and Monte Carlo learning on this problem. In
addition, we used both global reward and local
reward schemes. In all cases, the robots achieve
stable results. However, there are two types of
results. The first type is the optimal result described
previously, in which both robots cooperate in
placing a puck in the bin. The second type is a non-
cooperative situation, in which the first robot does
not drop the puck. Instead, it does everything by
itself. The first type was only achievable by using

Home
Region

x
Robot 1

Robot 2

Puck

State =
{At?, HavePuck, SensePuck}

Action =
{Goto?, PickPuck, DropPuck, Store, DoNothing}

x

x

x

the Monte Carlo learning with global reward. This
result supports our assumption described previously.

Learning
Algorithm

Global
Reward

Local
Reward

Q-Learning Not
Cooperate

Not
Cooperate

First-visit Monte
Carlo method Cooperate Not

Cooperate
Every-visit Monte

Carlo method Cooperate Not
Cooperate

The chart below shows a record of total rewards

that Robot 1 got in each cycle. These values are non-
discounted and do not include the global rewards
generated by Robot 2.

5. Discussion

The experimental results indicate that only
Monte Carlo learning with a global reward scheme
can achieve cooperation. In this paper, we claim that
learning algorithms that are based on cumulative
discounted rewards, such as Q learning and TD(γ),
do not induce cooperation and therefore give
suboptimal results in task-level systems. When there
are multiple learning entities in a task-level system,
they will have asynchronous learning time frames.
An event that benefits the whole system usually
occurs after the actions of all robots are performed,
but it is often observed by only one robot. This robot
will get a reward immediately. It will then take some

time to propagate to other robots. Because of this
delay in the cumulative discounted reward
framework, the other robots will get a smaller
reward for their actions. This phenomenon
encourages the other robots to only choose actions
that yield an immediate reward. However,
cooperation requires the robots to divide their duties
and do sequential actions. If all robots compete for
actions that have immediate rewards, the learning
space is limited and the system is unlikely to learn
the best solution.

To illustrate this phenomenon, consider the
example of two robots with a sequential task. The
task consists of two parts in strict order. Only after
the first part is finished can the second part begin.
Rewards are given to the robots at the end of the
second part. Both robots use a global reward
scheme.

We assume that Robot 1 is more suited to do
Part 1 than Robot 2. In the best case, Robot 1
chooses Part 1 and Robot 2 chooses Part 2, which
will provide a reward of 10 units. The other case is
when Robot 1 chooses Part 2 and Robot 2 chooses
Part 1, which will provide a reward of 8 units.
Suppose the length of Part 2 is three time-steps and
the discount factor (γ) is 0.9. In the first case, Robot
1 chooses Part 1 and gets a reward three time-steps
later of 10*(0.9)3 = 7.3. Robot 2 chooses Part 2 and
gets a full 10-unit reward immediately. In the second
case, Robot 2 chooses Part 1 and gets a reward three
time-steps later of 8*(0.9)3 = 5.8. Robot 1 chooses
Part 2 and gets an immediate reward of 8 units. The
total reward of the first case is 7.3+10 = 17.3 and the
total reward of the second case is 5.8+8 = 13.8. The

Part 1 Part 2

Task

Reward
given by
the task

Time Progress
Robot 1 does Part 1/Robot 2 does Part 2

Reward = 10

Robot 1 does Part 2/Robot 2 does Part 1
Reward = 8

Before
the task

After
the task

Doing the task

Total Local Rewards (non-discounted) of
Robot 1 in each Learning Cycle (at stable

point)

16500

17000

17500

18000

18500

19000

19500

Q with local
reward

Q with global
reward

First-visit MC
with local
reward

First-visit MC
with global

reward

Every-visit
MC with local

reward

Every-visit
MC with

global reward

Learning Method

R
ew

ar
d

Va
lu

e
(u

ni
ts

)

second case seems inferior, but Robot 1 gets a bigger
reward (8 instead of 7.3). Therefore, using the
cumulative discount reward framework, Robot 1 will
learn the second case, which is a selfish behavior.

Learning algorithms that are based on an
average reward framework, such as the Monte Carlo
algorithm, can solve this problem. We used the
Monte Carlo algorithm in our experiment due to its
simplicity. With average rewards, it does not matter
who gets the reward first, since the reward will not
be discounted. The reward that each robot receives is
the sum of all rewards divided by the number of
time-steps. Therefore, all robots receive equal
rewards. From the previous example, if the total
number of time-steps is five, all robots receive an
average reward of 10/5 = 2.0 units in the first case
and 8/5 = 1.6 units in the second case.

When the robots are homogeneous with
cumulative discounted learning, both robots still get
a different amount of reward depending on who goes
first. Consider the example described previously, but
with a final reward of 10 units in both cases. Using
Q learning, the robot that does Part 1 will get a
reward of 7.3 units and the robot that does Part 2
will get a reward of 10 units. Since Part 2 gives a
bigger reward, both robots will compete for doing
Part 2. If they can wait or do some useless actions to
make the other choose Part 1, they will get a bigger
reward. Therefore, both robots will learn to wait and
let the other go first. Again, Monte Carlo learning
can solve this problem because it yields an equal
reward for both robots.

Global and local reward systems are also an
important factor affecting learning in task-level
systems. Our experiment indicates that robots cannot
learn cooperation if we use a local reward system.
The reason for this result is intuitive: a robot will not
help other robots if it does not get a reward for doing
so. Without global reward, instead of cooperating,
every robot will compete for the goal.

6. Conclusions and Future Work

We have studied different learning algorithms

on a multirobot system. Our multirobot system is
fully decentralized, and our learning entities are
distributed and independent on each robot.
Multirobot systems can be designed based on the
action level or the task level. Popular non-average-
reward-based learning techniques such as Q learning
are effective at the action level, but not at the task

level, because they do not induce cooperation,
understood as the division of labor according to
function and/or location. The main reason is that the
values of rewards fade over time, causing all robots
to prefer actions that have immediate rewards. We
demonstrated that using Monte Carlo learning with a
global reward scheme solves this problem and
induces cooperation. Although Monte Carlo learning
is simple, it is very slow, and makes weak use of
training samples. In future work, we will include the
implementation of Sutton’s Dyna architecture [4] to
speed up the learning process.

References

[1] Mataric M.J., “Interaction and intelligent
Behavior”, Ph.D. thesis, MIT EECS, 1994.
[2] Parker L.E., “Heterogeneous Multi-Robot
Cooperation”, Ph.D. thesis, MIT EECS, 1994.
[3] Tangamchit P., Dolan J.M. and Khosla P.K.,
“Dynamic Task Selection: A Simple Structure for
Multirobot Systems”, DARS 2000, pp.483-484.
[4] Sutton R.S. and Barto A.G., “Reinforcement
Learning: An Introduction”, MIT Press, Cambridge,
MA, 1998.
[5] Watkins C.J.C.H., “Learning from Delayed
Rewards”, Ph.D. thesis, King’s College, Cambridge,
UK, 1989.
[6] Balch T., “Behavioral Diversity in Learning
Robot Teams”, Ph.D. thesis, Dept. of Computer
Science, Georgia Tech., 1998.
[7] Dudek G., Jenkin M.R., Milios E. and Wilkes D.,
“A Taxonomy for Multi-Agent Robotics”,
Autonomous Robots 3 (4):375-397, December
1996,Kluwer Academic Publishers.
[8] Balch T., “Taxonomies of Multirobot Task and
Reward”, Technical Report Robotic Institute, CMU,
1998.
[9] Kaelbling L., Littman M. and Moore A.,
“Reinforcement Learning : A Survey”, Journal of AI
Research 4, pp.237-285, 1996.
[10] Schwartz A., “A reinforcement learning for
maximizing undiscounted rewards”, Proceedings of
Tenth International Conference on Machine
Learning, pp.298-305, 1993.
[11] McKerrow P.J., “Introduction to Robotics”,
Addison-Wesley, chapter 9 pp. 483-543, 1991.

	The Necessity of Average Rewards in Cooperative Multirobot Learning
	Abstract
	2. Previous Work

	4. Experiments and Results
	5. Discussion
	6. Conclusions and Future Work

