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ABSTRACT 

Abstract 
This report reviews progress at Carnegie Mellon from August 16,1990 to August 15,1991 on research sponsored by 
DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories under contract DACA 76-89- 
C-0014, titled "Perception for Outdoor Navigation". 

Research supported by this contract includes perception for road following, terrain mapping for off-road navigation, 
and systems software for building integrated mobile robots. We overview our efforts for the year, and list our 
publications and personnel, then provide further detail on several of our subprojects. 





INTRODUCTION 1 

1. Introduction 

1.1 Introduction 
This report reviews progress at Carnegie Mellon from August 16, 1990 to August 15, 1991 on research sponsored 

by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories under contract DACA 76-89- 
C-0014, titled "Perception for Outdoor Navigation". 

During this second year of the contract we have made significant progress across a broad front on the problems of 
computer vision for outdoor mobile robots. We have built new algorithms (in neural networks, range data analysis, 
object recognition and road finding); we have integrated our perception modules into new systems (including onroad 
and off road, notably on the new Navlab I1 vehicle); and we have participated in notable programmatic events, 
ranging from generating two new thesis proposals to playing a major role in the "Tiger Team", shaping the 
architecture for the new DARPA program in Unmanned Ground Vehicles. 

This report begins with a summary of the year's activities and accomplishments, in this chapter. Chapter 2,  "3-D 
Landmark Recognition from Range Images", provides more detail on object recognition from multiple sensor 
locations. Chapter 3, "Representation and Recovery of Road Geometry in YARF", discusses geometry issues in 
YARF, our symbolic road tracking system. The last two chapters discuss systems issues that are important in 
providing cues and constraints for an active vision approach to robot driving. "A Computational Model of Driving 
for Autonomous Vehicles", Chapter 4, introduces the complexities of reasoning for driving in traffic. The fifth and 
final chapter, "Combining artificial neural networks and symbolic processing for autonomous robot guidance", 
shows how we combine neural nets with map data in a complete system. 

1.2 Algorithms and Modules 
YARF (Yet Another Road Follower) tracks roads in color images, using specialized feature detectors to find 

white lines, yellow lines, and other road markings. Individually detected features are used to update a model of road 
location and curvature. There are several new ideas implemented in YARF this year. First, the SHIVA system now 
automatically initializes YARF by finding consistent candidate lines and edges in the first image processed. 
Thereafter, YARF can use known vehicle motion between frames to position feature trackers in subsequent images. 

Secondly, YARF now uses robust statistics to reduce its sensitivity to errors in individual trackers. Robust 
statistics methods look for consistent subsets of data, rather than always using all the data as is typical of least- 
squares curve fitting. Thus, a few outliers (mistakes in reported feature location) will be ignored, rather than 
possibly skewing the estimated road location. More details on the geometric reasoning of YARF, and its use of 
robust statistics, are given in Chapter 3. 

Finally, YARF now has the capability to group features detected or noted as missing in multiple images. Finding 
a consistent gap in, for instance, a double yellow center line, is a first step in intersection detection. 

SCARF, or Supervised Classification Applied to Road Following, has been reimplemented and extended. 
SCARF uses color clustering to derive typical colors of on- and off-road pixels in a labeled image, then uses those 
clusters to classify pixels in an unknown image as "most likely road" or "most likely non-road". The classified 
images must them be searched to find the most probable location of the road in the image. Previous 
implementations of SCARF ran in about 4 seconds per image on a Sun-4, or 2 second per image on a 10-cell Warp. 
By making some simplifying assumptions, our current version runs in 0.5 seconds on a Sun4, or 0.1 second 
(without I/O) on a 4 thousand processor MASSPAR. The simplifications come partly from not collecting new color 
classes for each new image, but instead using one set for as long as they are valid. The trick is to determine when 
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road and off-road colors change enough that new color statistics need to be computed. We have investigated several 
methods, with promising but not yet conclusive results. 

ALVINN, the Autonomous Land Vehicle In a Neural Net, continues to expand its capabilities for road following. 
The highlights of its performance this year include new top speed of 20 mph (which is the top speed mechanically of 
the Navlab); runs on new types of road (dirt and 4-lane paved); and driving a new vehicle (the Navlab 11, a 
converted HMMWV). Technically, the biggest new thrust for ALVINN is using multiple nets to handle different 
situations. An individual network, trained for a particular type of road (say a single-lane paved road), will not be 
able to handle different scenes (such as a multi-lane road). Furthermore, a neural net will not usually give a good 
indication of failure; instead, it will cheerfully suggest a steering direction, even if incorrect. Recent work with 
ALVI" shows that it is possible to derive confidences for individual nets on individual scenes, and thus to select 
which network is best for each scene. The intuition behind the approach is to use the output of a network to recreate 
the expected input, and to compare the recreated input with the actual image. If the recreated input is a single-lane 
road, while the actual scene is multi-lane, the images will have a large mismatch, and that network may be ignored. 
The subtleties of making this work have to do with appropriate weighting of each pixel. 

The other continuing effort with ALVINN, detailed in Chapter 5, involves building large systems that include 
both connectionist and symbolic processing. Our approach uses a combination of cues, including map information, 
for vehicle positioning and guidance. 

Obstacle Detection 

The Navlab has been used to demonstrate computationally efficient obstacle detection using sonar and giga-hertz 
radar. Using an array of sonars mounted on the Navlab, the system has demonstrated stopping for obstacles; 
steering around obstacles; and tracking guard rails and parked cars. Each of these applications uses the same 
underlying data structure, a grid of cells in vehicle coordinates containing the location of detected objects. At each 
time step, the object locations stored in the grid are updated to account for vehicle motion. New sonar or radar 
returns are then entered into the grid. A confidence is stored with each entry. If the same grid cell contains an 
object for more than one time steps, its confidence increases. If an occupied grid cell does not get a new return, its 
confidence is diminished. After a user-specified interval, the confidence goes to zero, and the object is considered to 
have disappeared. This gives us a primitive mechanism for handling moving objects. 

Starting with the grid data structure, there are several additional processing steps used by particular applications. 
The obstacle detection module calculates which grid cells the vehicle will sweep as it drives along its intended 
course. If any of those cells are marked occupied, it decelerates the vehicle to a smooth stop before hitting the 
object. Obstacle avoidance uses the same algorithm as obstacle detection, but examines several arcs, and chooses an 
arc that misses the obstacles. This module has been integrated with road following, to track arcs that stay near the 
center of the road while avoiding obstacles. Tracking linear objects, such as guard rails, starts by fitting a line to the 
occupied cells that are near the vehicle's path. If the line fits the data well, and is in approximately the predicted 
location, the module has high confidence that it has correctly tracked the linear feature. It calculates the correct arc 
along which to steer in order to keep the vehicle at the desired distance from the feature. 

Sign Recognition 

We have begun a new effort in recognizing road signs. Our first task was to hand-craft a Stop sign recognizer. 
We use the red color as a cue to sign location, then look for color edges, then use a variety of techniques to fit the 
octagonal shape. A verification step tries to check for an appropriate number of red pixels in the detected shape, 
making allowance for the white lettering. The results are excellent on our small number of test samples. We will try 
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to generalize this work to detect a variety of traffic control and caution signs. Our intent is to build a more general 
program, rather than to handcraft individual recognizers. 

3-D Object Recognition 

We have been working of building maps of the environment of a mobile robot using an laser range finder. Our 
previous work involved building maps of simple objects represented by their location and the uncertainty on their 
location, and using the map information for navigation. We have extended the map building to build explicit 
three-dimensional models of the landmarks and to use those models for navigation by matching the models with 
observed object models. Including explicit shape models allows for selective landmark identification and for a more 
detailed map of the environment. 

The object models are built by gathering range data from several closely-spaced images. The features and data 
collected on each object are used to fit a discrete surface, represented by a mesh of points, which constitutes the 
object model stored in the map. This approach does not involve an explicit segmentation of the observed scene. 
Instead, features extracted from individual range and reflectance images are grouped in clusters corresponding to 
objects in the scene. The features are range and reflectance edges and near-vertical regions. Data points that are 
within a given distance of the cluster are included as well as features. Each cluster is assumed to correspond to one 
object. Clusters are tracked from image to image using a previously developed matching algorithm. For each 
object, the surface fitting process is iterated using data and features from the previous images and from the 
corresponding cluster in the new image. This leads to a refined model of each object in the scene that takes into 
account the new data. This approach to building object models has many attractive features. First, it incorporates the 
natural idea of object refinement since the model is progressively refined as more data is acquired. Second, it avoids 
the problem of segmentation by going directly from only low-level features and data points to object model. Finally, 
it is applicable to a wide class of object shapes since it is not restricted to particular surfaces such as planar surfaces. 
The initial selection of objects in the image may be done automatically by identifying clusters of features, or 
manually by pointing to the approximate locations of the objects. The latter may be appropriate when building a map 
for robot navigation in which only a few landmarks are relevant. 

Once stored in a map, the object models can be used for navigation by using a matching algorithm. The algorithm 
assumes that the approximate position of the vehicle in the map is known so that the approximate location of the 
predicted models in sensor space can be computed. A search through the pose space based on correlation between 
stored model and observed data gives an refined approximation of object position with respect to vehicle. Using this 
approximation as a starting point, a gradient descent yields the final estimate of the transformation between map 
model and observed object. 

We have implemented and tested those algorithms using either Navlab or Navlab I1 as testbed vehicles, and the 
Erim laser range finder as sensor. The Perceptron range finder, which has better spatial resolution, was also used for 
off-line experimentation only. Models of natural and man-made objects were successfully built. The models were 
matched with observations during vehicle travel yielding correct vehicle position. In those experiments, the 
perception system was tested in isolation, gathering image and position data, building and matching models without 
actually sending driving commands or position corrections to the vehicle. Our goal is now to incorporate the 
algorithms in the existing Navlab navigation environment to eventually demonstrate improved mission capabilities. 
Several issues have to be addressed toward this goal. First, model building has to be performed off-line since it is 
currently very computationally demanding. Similarly, even though the time required for matching models is small 
enough that it can be used while the vehicle is in continuous motion, it is currently limited to low vehicle speeds. 
Second, we need to identify a class of objects for which the algorithms performs best so that they can be used as 
landmarks for navigation. Theoretically, the algorithms are applicable to objects representable by a single closed 
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surface. However, their performance vary widely depending on the characteristics of the objects. Third, we need to 
develop ways to automate map building since the initial object selection is currently done manually in order to retain 
only a small number of objects in the map. 

Further information on 3-D data processing is found in Chapter 2. 

Active Vision. We are studying active vision (control of Sensors and focus of attention) in the context of "driving 
models", used to describe perceptual behavior for driving in traffic. Driving models are needed by many researchers 
to improve traffic safety and to advance autonomous vehicle design. To be most useful, a driving model must state 
specifically what information is needed and how it is processed. Such models are called computational because they 
tell exactly what computations the driving system must carry out. To date, detailed computational models have 
primarily been developed for research in robot vehicles. Other driving models are generally too vague or abstract to 
show the driving process in full detail. However, the existing computational models do not address the problem of 
selecting maneuvers in a dynamic traffic environment. 

In our Pharos / Ulysses work we study dynamic task analysis and use it to develop a computational model of 
driving in traffic. This model has been implemented in a driving program called Ulysses as part of our research 
program in robot vehicle development. Ulysses shows how traffic and safety rules constrain the vehicle's 
acceleration and lane use, and shows exactly where the driver needs to look at each moment as driving decisions are 
being made. Ulysses works in a simulated environment provided by our new traffic simulator called PHAROS, 
which is similar in spirit to previous simulators (such as NETSIM) but far more detailed. Our new driving model is 
a key component for developing autonomous vehicles and intelligent driver aids that operate in traffic, and provides 
a new tool both for traffic research and for active vision. 

Details of Pharos and Ulysses are given in Chapter 4. 

1.3 Program 
Theses and Proposals 

During the past year, we have had two new thesis proposals, both of which should be complete within the next 
year: "Neural Network Based Perception for Mobile Robot Guidance", by Dean Pomerleau, and "YARF: A System 
for Adaptive Navigation of Structured City Roads", by Karl Kluge. In addition, we expect the completion within the 
next year of the thesis "A Tactical Control System for Robot Driving", by Douglas Reece. 

Connections with other CMU programs 

The work done on this contract has influenced, and been influenced by, other projects at CMU. The most obvious 
connection is with the related contract "Unmanned Ground Vehicle Systems", which provides the vehicles, 
operations, systems architectures. and some high-speed navigation support. During the past year, the UGV contract 
has built a new vehicle, the Navlab 11. The Navlab I1 is a converted HMMWV. It has k e n  equipped for high-speed 
navigation, both on and off roads. The design includes high-protection occupant seats with 4-point harnesses; 
suspended equipment racks for rough terrain; hard-mounted monitors; and other features for safe high-speed driving. 
It has driven autonomously at speeds greater than 50 mph on highways, 15 mph on dirt roads, and 6 mph on 
moderate off-road terrain. Other work under that contract involves integrating perception results with a planner and 
controller that understand vehicle dynamics, for high-speed cross-country runs, 

Other related projects include the NASA-sponsored AMBLER and NSF work in underwater vehicles. The 
AMBLER is a 6-legged walking machine for planetary exploration. Much of the 3-D terrain mapping work is 
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shared between AMBLER and Navlab. In addition, the AMBLER researchers have done important work on 
calibrating range scanners, which will be very useful in evaluating future sensors for Navlab. Under NSF support, 
we are working on two projects involving cooperation with Florida Atlantic University on underwater vehicles. The 
most direct connection is in the area of underwater map building. The side-scan sonar data available underwater has 
somewhat different characteristics than the 3-D data from the Navlab’s scanning laser rangefinder. In particular, 
side-scan data is reflectance as a function of time, in a narrow vertical plane. Measuring time of reflectance gives 
range in a series of concenmc rings, but does not localize position along one of those rings. So converting range 
data to x, y. z points requires reasoning about surface normals from reflectance, as well as merging multiple scans. 
Some of these techniques are closely related to techniques and insights gained from working with laser data on the 
Navlab. 

Finally, there continue to be strong connections with our basic Image Understanding work. In particular, new 
work this past year in stereo vision and in motion analysis appear to be promising for future Navlab application. 
The stereo work involves multi-baseline stereo, using as many as five images on the same axis to get redundant 
information about depth. The calculations are simple and regular, so this method has good potential for parallel 
implementation. The motion work, which is Carlo Tomasi’s thesis, starts by finding differential motion between 
different points. The difference in motion between adjacent points is algebraically related to the difference in their 
depths. This method directly calculates shape (difference in depth) without first calculating depth, which gives 
much more accurate results. 

Connections with other programs 

The new DARPA program on Unmanned Ground Vehicles will be the framework for this Perception work. We 
have participated in the UGV workshops, including hosting the May 1991 workshop at CMU. In addition, we 
(Thorpe) have been involved in the Tiger Team, created by Erik Mettala to define the architecture of the UGV. The 
Tiger Team met during the summer of 1991 in Denver, in Monterey, again in Denver before the August UGV 
workshop, and numerous times by telephone, email, and FAX. 

In addition, we (Thorpe) organized the DARPA ISAT Summer Study on Autonomous Agents. This study 
investigated the challenges and opportunities in building both physical agents, such as mobile robots, and synthetic 
agents, such as simulated forces in SIMNET. 

1.4 Personnel 
Supported by this contract or doing closely related research: 

Faculty: Martial Hebert, Takeo Kanade, Chuck Thorpe 

Staff: Mike Blackwell, Thad Druffel, Jim Frazier, Eric Hoffman, Ralph Hyre, Jim Moody, Bill Ross, Hans 
Thomas 

Graduate students: Omead Amidi, Jill Crisman, Jennie Kay, Karl Kluge, InSo Kweon, Dean Pomerleau, Doug 
Reece, Tony Stentz 

1.5 Publications 
Selected publications by members of our research group, supported by or of direct interest to this contract. 

Autonomous Navigation of Structured City Roads. D. Aubert. K. Kluge, and C. Thorpe. In Proceedings of SPIE 
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Mobile Robots V, 1990. 

Building Object and Terrain Representation for an Autonomous Vehicle. M. Hebert. American Control 
Conference, June 1991. 

3-D Measurements from Imaging Laser Radars. M. Hebert and E. Krotkov. IROS’91 (also accepted for 
publications in IJIVC). 

Neural network-based vision processing for autonomous robot guidance. D. Pomerleau. In Proceedings of SPIE 
Conference on Aerospace Sensing, Orlando, Fl. 

Rapidly Adapting Artificial Neural Networks for Autonomous Navigation. D. Pomerleau. In Advances in Neural 
Information Processing Systems 3, R.P. Lippmann, J.E. Moody, and D.S. Touretzky (ed.), Morgan Kaufmann, pp. 
429-43 5. 

Combining artificial neural networks and symbolic processing for autonomous robot guidance. D. Pomerleau, 
J. Gowdy, and C. Thorpe. To appear in Journal of Engineering Applications of Artificial Intelligence, Chris Harris, 
(Ed.). 

A Computational Model of Driving for Autonomous Vehicles, CMU-CS-91-122, D. Reece & S. Shafer, April 
1991. 

Toward Autonomous Driving: The CMU Navlab. Part I: Perception. C. Thorpe, M. Hebert, T. Kanade, and 
S. Shafer. IEEE Expert, V 6 # 4 August 1991. 

Toward Autonomous Driving: The CMU Navlab. Part 11: System and Architecture. C. Thorpe, M. Hebert, 
T. Kanade, and S. Shafer. IEEE Expert, V 6 # 4 August 1991. 

Annotated Maps for Autonomous Land Vehicles. C. Thorpe and J. Gowdy. In Proceedings of DARPA Image 
Understanding Workshop, 1990. 

UNSCARF, A Color Vision System for the Detection of Unstructured Roads. C. Thorpe and J. Crisman. In 
Proceedings of IEEE International Conference on Robotics and Automation, 1991. 

Outdoor visual navigation for autonomous robots. C. Thorpe. In Robotics and Autonomous Systems 7 (1991). 
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2.3-D Landmark Recognition from Range Images 

2.1 Introduction 
Landmark recognition is an important component of a mobile robot system. It is used to compute vehicle position 

with respect to a map and to carry out a complex mission. The definition of what is a landmark varies depending on 
the application, ranging from visual features, to simple objects described by their locations, to complex objects. In 
this chapter, landmarks are objects that can be represented by a closed surface. To restrict the definition, the objects 
are assumed to be entirely visible in one sensor frame. This is to rule out cases in which only a small part or the 
object can be visible in one sensor frame. Two issues that have to be addressed in this context. First, the 
representation of the objects must be general enough to allow for a large set of landmarks. Object models are built 
from sequences of images. Second, finding landmark in images must be fast enough to be used while the vchiclc is 
traveling in continuous motion at moderate speeds. 

Many different techniques may be used for modeling and recognizing landmarks. The techniques described i n  this 
chapter are based on a general map-based navigation scenario. In the remainder of this Section, the scenario is 
described in detail in Section 2.1.1. The sensing used in those experiments in briefly described in Section 2.1.2. Thc 
rest of the chapter is divided in two parts, an algorithm for building object models from sequences of range images is 
introduced in Section 2.2, and an algorithm for finding landmarks in range images is described in Section 2.3. 

2.1.1 A Scenario for Map-Based Navigation 
In this chapter, landmark recognition is addressed in the context of map-based navigation defined as follows: A 

vehicle navigates autonomously through a partially mapped environment. The map has been built through prcvious 
traversal of the same environment. The map contains a set of landmarks, that is object models and their location in 
the map. The vehicle has internal sensors that measure its approximate location and orientation. Knowing the lield 
of view of the sensor, it is possible to predict which map objects may be visible from the current vehicle position. 
By comparing the models with the image of the current, the position of the landmarks with respect to the vchiclc 
may be computed. Equivalently, the pose of the vehicle with respect to the map coordinate system may bc 
computed. Recognizing map landmarks as the vehicle travels can be used in two ways in this scenario: First, the 
estimated pose of the vehicle may be updated based on the landmarks, thus correcting for errors in the internal 
positioning system of the vehicle. Second, it can be used to raise an alarm when a specific landmark is reached and 
to take some action defined in the mission description. An example of the first case is a vehicle traveling 
autonomously on a road. As the distance traveled increases, the accuracy of the vehicle's internal estimate of its 
position decreases. The estimate can be reinitialized to a more accurate value, the uncertainty of which docs not 
depend on distance traveled. This is an example of the use of landmarks as positioning beacons. As an example of 
the second case, let us consider a vehicle traveling through a network of roads using a road following algorithm. 
Assuming that the road follower is optimized for a particular type of road, it cannot handle intersections and must 
therefore be turned off as it traverses an intersection. The problem is to accurately predict when the vision system 
should be turned off. This may be achieved by finding a landmark close to the intersection, correcting vehicle 
position accordingly, and turning off vision as the vehicle turns in the intersection. In this example, it is critical to 
have a very accurate position estimate so that the vehicle can go through the intersection relying only on dcad 
reckoning. In general a variety of actions such as switching perception modules, adjusting vehicle speed, or stopping 
may be triggered whenever the vehicle encounters a specific landmark. 

As part of the Navlab project, an initial system was built [lo] in which landmarks are stored as (x ,y )  positions in a 
2-D map. The map is built through an initial traverse of the terrain. In this system, the user can specify "alarms" that 
instruct the perception system to start matching the observed objects with the stored landmarks. The matching may 
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bc used to update the position of the vehicle by combining the current position estimate and the position cstiniatcd 
from landmark matching [l l] ,  or to take some other action defined in the mission [ll].  This first systcin 
demonstrated the use of landmarks extracted from range images for map-based navigation. This system uscd a 
simple representation of the objects, their (x,y) location, and therefore could handle only relatively simple objccts 
such as trees, mailboxes, etc. This chapter addresses the next step, that is to store a more complete description of thc 
objects, and to use those models for landmark recognition, so that the system can handle a larger set of objccts. Thc 
scenario and the infrastructure of the system remain the same, but it will be able to handle general environments. 
The next two sections describe the type of models and the techniques used for landmark recognition in this scenario, 
respectively. 

2.1.2 Sensing 
In this work, object models are built using the Erim laser range finder [ 5 ] .  The sensor acquires 64x256 rangc 

images at a rate of 2 Hz. Its range resolution is 3 in from 0 to 64 ft. In addition to range, the sensor measures the 
intensity, generating what is sometimes called the "reflectance" image. Pixels in the range image may converlcd to 
points in 3-D space by converting @,e,+), p is the range, 8 the horizontal scanning angle, and (I the vertical scanning 
angle, to Cartesian coordinates (x,y,z) in some arbitrary reference frame fixed with respect to the sensor. In thc 
remainder of this chapter, there is no distinction between the two representations in that a pixel in the range image is 
equivalent to a point in space. all the 3-D coordinates are assumed to be defined in a standard reference frame 
attached to the vehicle. Also, the sensor is assumed to be fixed with respect to the vehicle. Coordinates that are 
described as being "with respect to the vehicle", "with respect to the sensor", or "with respect to the current vehicle 
position" are expressed with respect to this standard reference frame. 

2.2 Building Object Models 
Many object representations are possible, from parametric patches such as planes and quadrics, to complex 

parametric shapes such as superquadrics. All those representations approximate objects by a limited sct of 
parametric shapes. Expanding the class of allowable shapes typically requires the use of a larger numbcr of 
parameters, which yields to representations that are computationally expensive and unstable. An interesting attcmpt 
to circumvent this limitation was introduced in the TraX system in which multiple shape representations are uscd. 
Possible representations include 2-D blobs, 3-D blobs, superquadrics, generalized cylinders. The appropriatc 
representation is selected based on the amount of data available for a given object. The system switches from a 
coarse representation to a more detailed one whenever enough data is accumulated from consecutive images. Wc 
also use this idea of representation refinement but, instead of using paramemc shapes, we represent objects by 
discrete surfaces that can have arbitrary shapes. Specifically, an object is represented by a discrete mesh of nodes 
connected by links. The surfaces are "free-form'' in that they can theoretically represent any closed surface. The next 
three sections describe the model building algorithms and implementation in detail. First, the basic model fitting 
algorithm is described in Section 2.2.1. Then, details of the actual implementation are given in Section 2.2.2. Thc 
extension of the algorithm to building models from multiple observations is discussed in Section 2.2.3. Finally, 
performance and systems issues are discussed in Section 2.2.4. Thorough those sections, the emphasis is on the 
specifics of the use of free-form surface models for building landmark models for a mobile robot. In particular, 
Section 2.2.2. describes the implementation issues that have to be addressed in order to tailor the general approach to 
this application. 
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2.2.1 Surface Models 
Given a set of features and data points, a surface model is built by deforming a discrete surface until i t  satisfies 

the best compromise between three criteria: the surface should fit the data closely, it should agree with thc fcaturcs 
in the cluster, and it should be smooth except at a small number of discrete locations (e.g., corncrs). This 
compromise is achieved by representing the influence of features, data points, and surface smoothness by a sct of 
forces acting on the nodes of the mesh. Forces generated by features use a spring model, i.e., proportional to 
distance between node and feature, so that features have an effect only when the model is far from the features. 
Forces generated by the data points follow a gravity model, Le., inversely proportional to the square of the distance 
between node and data points, so that data points affect model shape only when it is close to the data. Additional 
internal forces are included to ensure overall smoothness of the resulting model. Those forces are independcnt of 
feature and data. Given those forces, the model behaves as a mechanical system composed of a set of nodcs with 
nominal masses. The mechanical analogy gives a relation between the motion of each node and the set of forces 
applied to the node. The shape of the model is computed iteratively by moving each nodc at cach timc stcp 
according to the mechanical model. The final shape is obtained after a maximum number of iterations is reachcd, or  
after the shape does not change significantly. The model is initialized as sphere placed near the center of thc object. 
This approach to model fitting has many desirable properties. In particular, this definition of feature and data forces 
leads to a natural model fitting sequence: Features define the overall shape during the initial iterations, whilc the 
model is still far from the data, then data controls the local shape as the iterations proceed and the model comes 
closer to the data. Another important feature is that the algorithm uses directly three-dimensional data that may be 
expressed relative to any arbitrary reference frame. In particular, the algorithm is not dependent on the existence of a 
2-D reference image coordinate system, or on a 2-1/2D surface model of the form z = f (x ,y) .  This becomes an 
important consideration when data from multiple images is used, in which case there is no natural mapping bctwccn 
3-D data points and 2-D image points. Deformable surfaces have been used in the past to build models of curved 
object from range or intensity image data [8][12]. A complete presentation of the theory and implemcntation of 
deformable surfaces on which this chapter is based can be found in [3]. 

2.2.2 Implementation Issues 
Several implementation issues have to be solved in order to use such a technique in this application. First, features 

have to be extracted from the range and reflectance images to control the model fitting. Second, the position and 
radius of the sphere used to initialize the surface must be computed from image data. Such a surface should be 
initialized "near" every object in the scene. Third, only part of the surface model is reliable since only part of the 
object is visible. It is therefore necessary to quantify the reliability of each node on the surface model. Finally, 
model fitting as described in the previous section may be very expensive computationally because of thc largc 
number of points and features. Solutions to each of those problems are discussed in the remainder of this scclion. 
The model fitting algorithm is illustrated by computing a model from the range image shown in Figure 2.1. This is a 
relatively simple case since there is a single isolated object in the scene. A more complex example involving 
multiple objects is discussed in the next section. 

Figure 2.1: Range Image 

The features are currently edges in the range and reflectance images. Edges in range image are extractcd using a 
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Canny edge detector modified to take into account the typical pattern of pixel values in a range image. Specifically, 
the variation of range between adjacent pixels is greater at the top of the image than at the bottom. Therefore, the 
sensitivity of the edge detector varies from top to bottom of the image. Edges in the reflectance image may bc due to 
surface markings or to shape changes. They are also extracted using a Canny edge detector. The cdgcs are 
represented by line segments. It is important to note that a complete set of edges is not needed for the modcl fitting 
to work. Only the major features of the object are needed so that the model can converge to the right shape. As a 
result, conservative thresholds are used to extract edges in order to retain only the major discontinuities. In addition, 
a detailed description of the graph of features is not needed, the list of line segments is sufficient. Figurc 2.2 (a) 
show the features extracted from the image of Figure 2.1. 

Figure 2.2: (a) Features Extracted from the Image of Figure 2.1; (b) Feature and Data Cluster; 
(c) Overhead View 

To initialize the model fitting, sets of features and data points that correspond to individual objects must be 
extracted from the image. This is essentially a segmentation problem in that the range image must be segmented into 
regions such that each region corresponds to one object. In practice, it may be hard to reliably compute an exact 
segmentation. To avoid the segmentation problem, nearby features are grouped into clusters and each feature cluster 
is assumed to correspond to a single object. To facilitate the clustering operation, regions that correspond to slanted 
surfaces are used as well as edges. The regions are extracted by grouping pixels with similar surface normals into 
connected regions. As in the case of edge features, an accurate and complete region segmentation is not necded as 
long as the largest regions composing each object are found. The regions provide additional information on thc 
location of potential objects since those surface are normally found on objects. They are used to facilitate the 
detection of feature clusters but they are not used in the actual model fitting. A sphere of radius R, is initialized at 
the center of each feature cluster and is used to start the model fitting. The data points used in the model fitting arc 
those within a fixed radius R,  of the center of the cluster. The geometry of model fitting initialization is summarized 
in Figure 2.3. The radii R, and R, are nominal values determined from the average size of the objects expected in thc 
environment. In the examples presented in this chapter. Rs is one meter. and Rd is three meters. Those values need 
not be very accurate as long as all the data points are included in the model fitting for a typical object and as long as 
the initial sphere lies within the object. Here, the only assumption is that the average size of typical objects is known 
in advance. Although somewhat resuictive, this is a reasonable assumption for the current application, This 
technique for initial object identification may generate initial clusters that do not correspond to actual objccts, or it 
may merge two objects into a single cluster if they are close enough. Those errors are corrected by merging multiplc 
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observations as described below. This approach to finding potential objects of interest in a rangeheflectance 
alleviates the need for an accurate segmentation by relying on a few, easy to find, features. Figure 2.2 (b) and (c) 
show the region that is used for fitting a model to the object of Figure 2.1. In Figure 2.2(b), the white pixels are the 
data points used in the model fitting. Figure 2.2 (c) is an overhead view of the same scene with the grey points being 
the data points used in the fitting, along with the features of Figure 2.2 (a). 

active data points 

Figure 2.3: Initializing Model Fitting from Feature Clusters 

Given a cluster and the initial sphere, the model fitting proceeds as described in Section 2.2.1. The force 
generated by an edge segment at a node of the model is computed by integrating the forces generated by the points 
of the segments over the entire segment. The 3-D coordinates of the end- points of the segment are used in this 
computation. Similarly, the 3-D coordinates of the data points are used to compute the data force at a node of the 
model surface. This involves finding the data point closest to the node, computing the distance, and the 
corresponding force. The coordinates of both edge segments and data points may be expressed in any arbitrary 
reference frame. In the results presented in this chapter, the model surface is based on 500-point tessellation. This 
number of nodes is sufficient for this set of experiments, although additional work is needed to determine lhc best 
mesh resolution for this application. The number of iterations is limited to 200. 

The model fitting may be quite expensive because the distance between each node and the data points and 
between each node and the features have to be computed at each iteration in order to evaluate the external forces. To 
reduce the computation time, I use the fact that the distances do not change significantly from one iteration to the 
next if the node moves by a very small amount. In particular, the forces need not be recomputed if the position of a 
node differs from its previous position by an amount that is small compared to the resolution of the sensor. In 
practice, the forces, and thus the distances between node, data, and features, are recomputed only if the node has 
moved by more than 1 cm since the previous iteration. This reduces the computation time drastically towards the 
end of the iterations since most nodes are very close to their final positions. This test has little effect at thc 
beginning of the iterations since the surface tends to move faster subject to the influence of the features. During this 
phase, however, most nodes are too far from the data points for the data forces to have any influence. 

The next issue is that only part of the object is visible, even after merging multiple images as described in the next 
Section. As a result, parts of the model correspond to region where no data is available. Clearly, those parts are less 
reliable since they are smooth interpolations between parts of the model where data is available instead of being 
good approximations of the object. Therefore, model nodes in those regions should be given a smaller confidence 
than in other regions. This is computed by finding the data point from the original data set that is the closest to each 
node. If such a data point exists and its distance is smaller than a threshold, the node is considered rcliablc, 
otherwise it is considered unreliable and a lower weight will be used for this node in  the landmark recognition 
algorithm. 
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Finding the distance between data points and model nodes can also be time consuming. The brute force approach 
would consist in traversing the list of all data points for every node and find the closest ones which is obviously 
unacceptable. A more efficient approach is based on the observation that the data point closest to a node should be 
close to the line L defined by the node and its surface normal. Therefore, only the set data points that are closc to this 
line is searched for the closest point. To minimize the amount of search, all the data points are first projected on a 
2-D discrete grid, then, for each model node, the line L is also projected. Finally, only the data points whosc 
projection lies within a cone around the line are taken into consideration (Figure 2.4). The projection of thc data sct 
onto the grid has to be computed only once because the data is static and does change during the model fitting. In 
this application, there is a natural plane for the grid, the ground plane on which the vehicle travels. The resolution 
should be chosen so that the grid cells are small enough so that only the data within the cone of interest arc scarchcd, 
and large enough so that the grid does not contain too many empty cells which would slow down the search. A cell 
size of 20 cm realizes a good compromise in the current implementation. This implementation reduces the set of 
data points to a small subset which makes the computation of the closest data point efficient. Instead of projccling 
the data set onto a 2-D plane, it could be stored as a three-dimensional array. Theoretically, this would givc better 
performance since only the data points that are inside the 3-D cone around L are taken into consideration, whereas 
points that are close in 2-D but far in 3-D may be taken into consideration in the current approach. In practicc, 
however, a 3-D grid would be mostly empty and most of the time would be spent exploring empty spacc insidc thc 
cone of interest yielding worst performance than using the 2-D projection. 

search 

reference 

Figure 2.4: Computation of Closest Data Point 

2.2.3 Refining Surface Models by Merging Observations 
Using data from multiple images to build a model is necessary for several reasons. First, as pointed out in thc 

previous section, the feature cluster approach to extracting objects from images may make occasional errors. Thosc 
errors can be corrected only by checking the consistency of the feature clusters across images taken at different 
locations. Second, only a partial view of an object is obtained from a given viewpoint, thus yielding a partial model. 
A more complete model may be obtained by merging data acquired from other locations around the object. Finally, 
as pointed out in [2], an initial model can and should be refined by accumulating data to yield the most accurate 
model. In this application, multiple observations are obtained by acquiring range images from vehicle positions 
separated by small distances, typically 50 cm. The requirement of small displacement is necessary to ensure that an 
object is visible in a large enough number of images, and to ensure that the estimate of the displacements betwecn 
vehicle positions are accurate enough. The merging of observations is a three-step process: identify common clusters 
between images, remove incorrect clusters, and merge data and features from matched clusters. 
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Given a current set of clusters, corresponding clusters in the next image are searched to find candidatcs for 
matches. The set of possible matches is traversed to find the best set of matches between the two sets of clusters. 
Common clusters are matched by predicting where an existing cluster should appear in the next image. In this 
application, this can be done by using the estimate of vehicle displacement between the position for thc new image 
and the reference position. This estimate is quite accurate for small displacements of the vehicle from image to 
image. As a result, there are typically very few possible matches, and most often only one, for each clustcr, thus 
reducing the search from potentially combinatorial to close to linear in most cases. Incorrect clusters are removed by 
maintaining a confidence number defined as the ratio of the number of time a cluster is matched versus the number 
of time it is predicted to appear in the images. The confidence is low if the cluster does not correspond to an actual 
object and therefore appears in only one, or a few, of the images of a sequence. Therefore, clusters with low 
confidence are removed while clusters with high confidence are retained. 

For each cluster, the features from all the images in which it appears are grouped into a single list. Similarly, all 
the data points from all the images in which the cluster appears are grouped into a single list. Once this matching 
and merging of clusters is completed, a sphere is initialized at the center of each cluster and used as a starting point 
to the model fitting as described above. Figure 2.5 (left) shows a sequence of range images taken in parking lot, the 
objects on the left are parked cars, Figure 2.5 (right) shows how the clusters corresponding to the objects arc trackcd 
between images. In this display, the extremities of the black and white line segments are at the centers of the clustcrs 
and join matching clusters. Three sets of clusters are correctly merged into three objects on the right sidc of thc 
images. An erroneous cluster is detected on the left side but is discarded since i t  is not matched consistently in this 
sequence. This example shows that extracting, matching, and merging clusters of features yields a good initial list of 
objects from the range image even in the absence of actual segmentation of the image. 

Figure 2.5: Sequence of range image (left); Tracking of objects between images (right) 

One implementation issue is that simply grouping the features from several images in one list is very inefficient 
since several slightly different copies of a feature may be present in the list. In addition, this would effectively give a 
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higher weight to duplicated features, thus introducing a bias toward this feature in the deformation process used in 
model fitting. The obvious solution is to identify common features between observations within each cluster. Since 
all the coordinates of all the features are expressed in the same coordinate frame, edge segments corresponding to 
the same physical feature should be close to each other in this reference frame. A natural way to merge redundant 
features is therefore to search the set of overlapping features to find groups of segments that are nearly collinear and 
that have large overlap with each other. Segments within a group are merged into a single segment by first 
computing the least-squares line fit to all the vertices and by projecting the vertices onto this line. The two cxtrema 
of the projections along with the line describe the resulting segment (Figure 2.6). This algorithm is bascd on 
heuristics for defining the "best" combination of features, which is sufficient for the current application. However, 
more rigorous algorithms based on optimal estimation should be used in the future. 

segments from multiple imag 

Figure 2.6: Merging Line Segments 

A similar issue is that merging the sets of data points from several images into one list may lead to grossly 
oversampled surfaces. For example, a surface patch that has a thousand data points measured on it would end up 
with ten times that number if it is fully visible in ten successive images. Clearly, such a large amount of data is 
unnecessary. It slows down the model fitting drastically, and it does not improve the resulting model. It is therefore 
important to have a strategy to add data from new observations only when it might improve the model. One possible 
strategy is to add a data point from a new observation only if the density of existing data points in its vicinity is 
small enough. The threshold on data density is relative to the resolution of the sensor, in this case threc inches, 
because adding points in a region where the average distance between data points is much smaller than sensor 
resolution does not add any information. Although the results presented in this chapter were obtained using this 
strategy, it is not optimal because it would be better to keep the most recent measurements and discard the old ones 
if the density becomes high enough, or better yet to combine data points using an optimal estimation technique 
based on the uncertainty on the measurements. 

As an example, Figure 2.7 shows the set of models computed from the image sequence of Figure 2.5. The display 
shows an overhead view of the set of data points and of the tessellation associated with each object. The line 
segments correspond to features from the images. Only the data in the right part of the images in displayed. Since 
only part of each object is visible, only the model nodes that are close to the data are taken into consideration latcr 
on in the matching. 

This is a "batch" approach to merging observations in that all the images in a sequence are processed first, and 
then the model fitting is applied to clusters that contain data and features from all the images. A recursive approach 
would be more natural: Each time a new image is available, the current object model for each cluster is modified 
according to the features and data from the new image. The recursive approach is a natural implementation of the 
idea of model refinement which is more efficient than the batch approach since only a few additional iterations of 
model fitting are needed each time a new image is taken. However, it is not clear that the gain is significant sincc 
redundant features and data cannot be eliminated as easily using a recursive approach. Also, some of the 
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Figure 2.7: Models Built from the Sequence of Figure 2.5 

optimizations described in Section 2.2. require that all the data be available at the beginning of the model fitting. 
The current approach demonstrates the use of multiple observations and the model building capabilities but more 
work is needed to find the optimal strategy for combining multiple observations and model fitting. 

2.2.4 Performance and Systems Issues 
Using free-form discrete surface has several advantages. First, it is very general since it does not rely on a 

particular set of geometric primitives. Second, a given model can be refined in a natural way by simply adding new 
data and iterating the surface fitting process. Third, it does not require an exact segmentation objectlbackground as 
an input, thus being able to use a crude segmentations as input. In addition, it does not take into account spurious 
features and data that may be included in a cluster. The main drawback of this approach is that the surface model 
provides a good approximation of the overall shape of an object but may not yield as good a local approximation as 
other techniques. For example, sharp surface discontinuities such as comers may be recovered best by local surfacc 
analysis, whereas the method described here will tend to smooth those features. 

Another issue is the computation time required by the model fitting algorithms. Building a model of a typical 
object from a sequence of ten images may take several minutes on a Sun4 workstation. This includes converting 
range pixels to 3-D coordinates, extracting features, grouping feature into clusters, merging clusters from multiple 
images and doing the actual iterative model fitting. As a result, this technique can be used in a scenario in which a 
sequence of images is first collected and then processed off-line to produce the object models, but it cannot be used 
to generate models in real time as the vehicle rravels, even at low speed. Currently, this is not a major limitation 
since most scenarios can accommodate off-line model building. 

2.3 Finding Landmarks in Range Images 
In the scenario introduced in Section 2.1.1, the object models stored in the map are matched with observations to 

correct vehicle position and to identify locations at which the vehicle must take specific action. This problem can be 
stated as a pose determination problem: Find the pose of a model that is most consistent with the data in a range 
image taken at the current vehicle position. The geometry of the problem is illustrated in Figure 2.8: A model 
represented by a discrete surface as described in Section 2. is predicted by the navigation system to be within the 
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Xscene initial pos 

field of view of the vehicle at its current location. The problem is to find the pose of the landmark with rcspcct to the 
vehicle coordinate system defined by the six parameters P = (x,y,z,e,@,y). Knowing P ,  the vehicle posc with rcspcct 
to the map coordinate can be easily derived. If several models are predicted at once, the algorithm must be able to 
compute the correct mapping between image regions and landmarks. Unlike model building which is an off-line 
activity, landmark finding must be executed on-line as the vehicle is traveling. This implies that computational 
efficiency is critical in landmark finding. This is a hard problem in general but the navigation scenario of Section 
2.1.1. introduces constraints that make pose determination possible. In this Section, I describe the approach to pose 
determination and discuss some implementation issues. Section 2.3.1 gives an overview of the algorithm in the 
context of the map-based navigation scenario. The algorithm is divided into two parts: initial pose estimation and 
pose refinement which are discussed in sections 2.3.2 and 2.3.3. Performance and possible extcnsions o f  thc 
algorithm are discussed in Section 2.3.4. 

Xmap 
estimate 

Figure 2.8: Geometry of the Pose Determination Problem 

2.3.1 Overview 
This recognition problem is very hard in general if there is no apriori information. In particular, it is very hard if 

there is no information on the expected pose of the model in the image. Fortunately, the navigation sccnario 
introduces strong constraints on the problem that render the landmark recognition problem manageable. There are 
basically three constraints that can be exploited. First, the objects are known to be on the same terrain on which thc 
vehicle is traveling. Second, the position and orientation of the vehicle with respect to the reference frame in which 
the map is represented is known within some small uncertainty. Third, the objects are static and their locations in thc 
map is assumed to remain constant. The first constraint implies that the elevation z, and the angles @ and y, of thc 
object with respect to the vehicle are very close to their values in the map. The second constraint implies that thc x,y 
location and q orientation of the model with respect to the vehicle can be predicted within a small uncertainty. This 
is a reasonable assumption since the vehicle pose can always be estimated from other sources, such as dead 
reckoning and road tracking, for example. The third constraint guarantees that there is a rigid transformation 
between object in vehicle reference frame and model in map reference frame. As a result of those three constraints, 
only a small subset of the pose space has to be searched in order to find the best model pose. The size of pose space 
is defined by the expected variation in terrain for the z, @, and y degrees of freedom, and by the expected maximum 
uncertainty in vehicle pose for the x, y, and 8 degrees of freedom. The numbers currently used are plus or minus 5 
degrees for @ and y, plus or minus 1 meter for the z component, plus or minus 3 meters for the x and y componcnts, 
and plus or minus 20 degrees for the 8 component. Those numbers are overestimates of the expected uncertainty on 
vehicle pose that were chosen to demonstrate the system. A detailed analysis of the actual uncertainty in the current 
system is described in [lo]. In the future, the actual uncertainty on vehicle pose should be used directly instcad of 
those arbitrary values to make the system more efficient. 
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Having defined the possible poses of the model with respect to the vehicle, the next step is to find the best model 
pose within this space by matching the model representation with the image data. A natural way of doing the 
matching would be to extract object models from the image as described above, and compare them with the stored 
model. Another approach is to directly compare the stored model with the image data directly. Although the first 
approach is closer to the traditional object recognition approach, in which the same representations are used for 
observed and stored models, it is more computationally expensive because of the time required to extract and build 
models from the image. Furthermore, the pose constraints make the second approach feasible even though i t  would 
be impractical in the general case. Another advantage is that does not require any preprocessing of the image except 
for some initial filtering. In particular, it does not require an exact segmentation of the scene. In this approach, the 
pose determination is a two-stage process. First, the pose space is discretized and a measure of similarity is 
evaluated for each possible pose Pi in the discretized pose space. The pose PimLn that corresponds to maximum 
similarity is retained. This first step gives a coarse approximation of model pose. In the second step, the minimum of 
the similarity measure is found through a gradient descent in pose space, taking Pimtn as a starting point. 

Similar approaches to pose determination have been used in other perception systems for navigation. As an 
example of the initial pose determination step, in [7] landmark pose is determined by comparing the prcdictcd 
appearance of a superquadrics model surface with a range image of a scene. As an example of the pose refinement 
step, a gradient descent technique is used in [6] to minimize the distance between a stored terrain map and the terrain 
map observed by a laser range finder at the current vehicle position. Although based on different models and slightly 
different scenario, those two systems contain the two major building blocks of our approach: initial pose 
determination through search of pose space, and gradient descent through estimation of the derivatives of a 
similarity measure with respect to pose parameters. 

2.3.2 Initial Pose Determination 
There are two components that affect the performance of this algorithm: the resolution of the discrctizcd pose 

space, and the similarity measure. The resolution of the pose space should be coarse enough so that not too many 
poses are evaluated, but it should also be fine enough so that PimLn is close enough to the actual minimum for the 
second step to converge properly. The resolution depends also on the average size of the objects and on the 
resolution of the sensor. For the objects used in the currant experiments, resolutions of 0.5 m for the translational 
degrees of freedom, and 50 for the rotational degrees of freedom realize a good compromise. This involves 
computing the similarity measure at about 1800 different poses in the worst case. The similarity measurc is defined 
as the sum of mean square distances between each node of the model and the corresponding point from the image 
weighted by the surface area represented by that node. The sum is taken over the set of nodes that is predictcd to be 
visible in the image for a given pose. There two problems with this initial definition of the similarity measurc. First, 
if a few image points are far from the surface the similarity measure becomes very high even though Lhc pose may 
be correct. This can happen because of occasional erroneous range measurements, or, more commonly, because part 
of the predicted model intersects the background in the image. This problem is solved by not including distances 
that are greater than a threshold in the summation. The threshold is again related to the expected size of the objects, 
or, more precisely, to the minimum distance between object point and background at an occluding edge. A pose is 
retained for further consideration if more than 50% of the expected visible area of the model is included in the 
summation according to the threshold. The complete algorithm for initial pose determination is illustrated in Figure 
2.9. 

The 50% threshold is used to reduce the computation time of the similarity measure. More prccisely, thc 
computation of the similarity is stopped as soon as the percentage of surface area that remains to be evaluatcd plus 
the percentage that has already been included in the summation is lower than 50%. This stopping condition incans 
that even if the computation were carried through, it would be impossible to include the minimum 50% of visible 
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Figure 2.9: Initial Pose Determination 

area, and therefore the pose would be rejected. This optimization of similarity computation speeds up the search of 
pose space by a factor of two on average. 

The computation of similarity for all poses would still be very expensive if model nodes had to be converted to 
pixel positions in image for every possible pose. In the actual implementation, the positions of the model nodcs in 
the range image are computed off-line for every pose in the discretized pose space. They are computed only once 
and stored along with the model. To facilitate the computation of similarity, the expected model appearance for a 
given pose is stored as an image, that is an array of points registered with the range image, by interpolating between 
nodes. Similarity can then be evaluated by adding up the distances between individual points in the range image and 
points in the predicted image of the model. Precomputing and storing the model appearance for all the poses is 
clearly an improvement in terms of computation time but it may require a large amount of storage space. In practice, 
however, a typical model requires a thousand points per pose on average for a total size of two to three Megabytes 
on average. This model size is acceptable in the navigation scenario since only a small number of models may be 
active and loaded in the system at a given time. 

2.3.3 Pose Refinement 
The initial pose Pim1" is only a coarse approximation of the best pose since its estimation is limited by the 

resolution of the pose space. A natural way of refining the pose estimate is to use a gradient descent technique to 
optimize similarity, taking Pim'" as a starting value. Since both data and model are based on a discrete 
representation, the gradient must be estimated numerically. This is done by computing the difference betwcen the 
similarity measure at the current pose and similarity at poses obtained by varying the parameters by a small amount. 
Those dlfferences are estimates of the derivatives of similarity with respect to pose parameters. The pose is updated 
by moving in the direction of the gradient by a small amount. The steps used for computing the gradient and for 
updating the pose are 10 cm and 0.5 degree in translation and rotation, respectively. Those two values also define 
the accuracy of the resulting pose. Those numbers are larger than in other recognition systems but they reflect the 
resolution of the sensor and based on estimates of the best accuracy that can be reasonably expected from this 
sensor. 

A known problem with this type of techniques is that there is a cross-talk between the translational and rotational 
parts of the pose parameters. Specifically, a small A0 may have the same effect on the similarity measure as a small 
variation in translation Ax. To minimize this effect, (x,y,z) and ( 0 4 , ~ )  are updated separately at alternating 
iterations. Also, this approach could lead to local extrema in general. In this case, the starting pose Pimln is close 
enough to the best pose that the algorithm converges rapidly toward the optimum. The iterations stop whcn the 
similarity does not improve significantly by changing the pose. In practice, only two or three iterations are neccssary 
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to find the best pose. 

2.3.4 Performance and Extensions 
The entire pose determination procedure takes between 100 and 500 ms on a Sparc2 workstation depending on the 

model. This computation time makes it possible to use this technique to accurately locate landmarks in the 
environment while the vehicle is traveling in continuous motion at moderate speeds. The basic operations used in 
pose determination may be easily distributed over multiple processors since most of them are point-by-point 
operations. This would yield real-time operation of the system. Figure 2.10 shows where one of the models of Figure 
2.7 is found in a range image. The top image shows the superimposition of the outline of the visible part of the 
model, shown as a black contour. The visible part is defined as the portion of the model that is used to evaluate the 
similarity at this pose. The bottom image show only the predicted appearance of the model. Only the part that is 
close enough to the data, that is the part that contributes to the similarity measure, is shown. In this example, an 
artificial error of one meter in translation was introduced in the initial estimate of pose, which is corrected by the 
pose determination algorithm. 

Figure 2.10: Pose Determination for a Single Object 

The pose determination described so far assumes that a single model is to be found in the image. In prxtice, 
however, several landmarks may be predicted to appear in the field of view of the sensor leading to ambiguous 
interpretations of the scene. This situation is addressed by computing Pim”’ for, each of the predicted models, and 
verifying that the resulting set of poses is consistent with the relative positions of the models in the map. Figure 2.1 1 
shows the identification of two models in a range image. The format of the display is the same as in Figure 2.10 
except that the bottom image shows the predicted appearance from both models. An additional problem with 
multiple model is that the map objects may occlude each other if they are close enough to each other. As mentioned 
before, the amount of occlusion can be predicted and used to compute a more accurate similarity measure, although 
this is not yet implemented. 

2.4 Conclusion 
Modeling objects based on free-form surfaces is a promising approach to modeling and identifying landmarks for 

map-based navigation. It makes few assumptions about the shapes of the objects, it can model refinement based on 
merging multiple images, and the resulting models can be identified in range images using the algorithms of Section 
2.3. However, a number of issues remain to be addressed before this becomes part of a complete navigation system. 
Most importantly, the current implementation is based on assumptions that could be relaxed. For example, the 
average size of the objects is assumed to be known and is used to compute cluster and initial surface radii. This 
assumption is acceptable when only few objects are expected in the environment. However, to be able to deal with 
richer environments, the algorithms should be able to estimate those radii from the feature cluster itself. Another 
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Figure 2.1 1: Pose Determination for Two Objects 

improvement is that the models should include more explicit information about their expected accuracy. Currently, 
they include a measure of confidence at each node based on how far the node is from the original data. This measure 
should be defined more carefully and should take into account data uncertainty. In addition, it should be taken into 
account explicitly in the landmark finding algorithm. Currently, nodes that have a low confidence are simply 
discarded. The implementation and the experiments have focused on single object identification without 
representing the interaction between objects form the map. In particular, the expected occlusions between objects 
given a pose should be explicitly computed and used in the landmark finding algorithm. Finally, the computation 
time required for finding landmarks in images must be reduced so that landmarks may be identified while the 
vehicle uavels in continuous motion at normal speeds. 
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ROAD GEOMETRY 

3. Representation and Recovery of Road Geometry in YARF 

3.1 Introduction 
Recovery of road structure from segmentation data poses two issues which must bc adtircsscd i n  designing ;I road 

following system: the nature of the representation of road structure and the nature of the proccss which dctcriiiinc.\ 
the model parameters given a particular set of segmentation data.' Selection of an appropriatc road rcprcscnlntion 
and data fitting scheme requires balancing a number of conflicting criteria: 

The accuracy with which the class of models selected reflects the actual structure of the road; 

The computational cost of extracting the model parameters from segmentation results; and 

The robustness and stability of the fitting process in the presence of noise in the segmcntation. 

YARF adopts a representation scheme in which the ground is assumed to be locally flat, and thc rood is motlcllcd 
as a one dimensional set of features swept perpendicular to a spine curve. The spine curve is approxiniatcd locally a s  

a circular arc for computational efficiency. Examination of alternative methods of representation in usc suggcsls tha t  
this type of road model is the best currently available for balancing the above criteria. 

YARF incorporates two methods for extracting the spine arc parameters given a set of feature positions on thc 
ground plane: standard least squares fitting and least median of squares fitting. Least median squarcs is ii rolwst 
cstimation technique [12] which attempts to eliminate the influence of contaminating data points on thc cstinialc ol' 
thc model parameters. Such a technique is useful in cases where false positivc rcsponscs f rom scginciiiaiiori 
algorithms result in outlying data points which would otherwise corrupt the fit of thc modcl paranictcrs. 

This chapter begins with an examination of the various road representation schcmcs and paramctcr rccovcry 
methods that have been used in previous systems. We argue that low order paramctric modcls arc the best 
rcprescntational scheme currently available based on a comparison of existing systems. In particular, rcprcscnting 
thc road as a circular arc has proven very effective. 

We hen present an analysis of the errors introduced in linearizing the circular arc modcl and describc how thcsc 
errors are dependant on the coordinate system chosen for the data fit. Simulation results are prescntcd to show tliat 
the magnitude of the errors introduced by linearizing the circular arc model are small in the rangc of curvatures ol' 
intcrest when the data is rotated into a "natural" coordinate system before fitting. 

The chapter closes with a description of Least Median of Squares fitting. Examplcs arc shown to illustraic tlic 
nccd for outlier detection for road following and to show the ability of LMS to eliminatc discordant obscrv;itioiis 
which would otherwise corrupt the estimate of road shape. 

3.2 Techniques for recovery of road model parameters and methods of road representa 

3.2.1 Methods for recovering model parameters 

backprojection, voting in the model parameter space, and statistical fitting techniqucs. 
Thrce main methods have been used to recover road model parameters given imagc scgmcntiition dnia: twu 

ion 

tlary 

In  boundary backprojection, features detected by the segmentation are backprojcctcd onto thc (assumed) grouiitl 

'This chapter is a version of a chapter from Karl Kluge's thesis, "YARF A System for Adaptive Navigation of Structured City Iloatls" 
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plane, and consistency constraints are applied to determine which features are part of thc road. This is thc iiiclliotl 

uscd in the VITS [14], FMC [7], and U. Bristol [13] systems. Algorithms which rccovcr thrcc ditncr1sion;d road 
structure using assumptions of constant road width and zero road bank [3] 141 backproject I'caturc poinls  sing 
assumed image projection geometry. The backprojection process doesn't cnforcc any highcr lcvcl constraints on 
rclative feature location, and as a result errors in the image segmentation can producc arbitrary errors in  lhc 
rccovered road shape. 

In parameter space voting techniques, detected feature locations vote for all possible roads they arc consistent 
with. This method is used in the SCARF [2], ALVINN [ll],  and U. Michigan [8] [lo] algorithms, and in sotnc of 
the LANELOK [5] [6] algorithms. The main advantage of these techniques is their robustness in thc facc ol' Inrgc 
amounts of noise in the segmentation results. The main disadvantage is the difficulty of using voting for  niodcls 
which have more than two or three parameters, resulting in large multidimensional Hough spnccs. Also. p x k  
dctcction in the accumulator space can be difficult. 

In statistical fitting procedures, road model parameters are fit using the obscrvcd d a ~ i  points and tlic cqml ions  o l  
the road model. Standard techniques such as least squares or robust techniques which are less scnsitivc to outlying 
data observations can be used, Vah4oRs [9], YARF, and other of the LANELOK algorithms usc this typc 01' 
technique. Of the available techniques for model parameter recovery, statistical fitting methods havc a numbcr o f  
advantages. They are computationally efficient and they have a vast literature of theory, techniques, anti tools 
associated with them. 

3.2.2 Methods for modeling road structure 
A variety of schemes has been proposed for representing roads. In order of increasing nuinbcr ol piriiinctci \ in  llic 

model, they are: by steering direction; by linear road segments; by circular arc road segmcnts; by Ilat rood xgrncwl\ 
with locally parallel edges; and by three dimensional roads constrained to have constant width and no banking. 

The simplest road representation is to summarize the segmentation data by a steering direction, indcpcndcnt o f  tlic 
actual road geometry. This is the approach taken in the ALVINN neural net road followcr. In principlc, ALVINN 
could learn appropriate steering commands for roads which change slope, bank, etc. In practice, to expand lhc raiigc 
of training images, images are backprojected onto a flat ground plane and reprojected from diffcrent points ol' view. 
In order to generate synthetic training data from images with significant variations in ground slope ALVINN \voultl 
have to recover the road geometry explicitly, in which case the system could drive without the ncural nct. This niay  
prove to be a limiting factor on hilly roads. 

The next simplest road representation is to model the road as linear on a locally flat ground planc (or cqutvalctitly, 
as a triangle in the image plane). The road has three parameters, the road width and two pararnctcrs describing ilic 
orientation and offset of the vehicle with respect to the centerline of the road. LANELOK and SCARF ukc this 
approach. Tests with YARF fitting a linear road model to detected feature points suggest that the stccring behavior 
observed is similar to that produced by modeling the road centerline as a circular arc, the main deficicncy o f  a linc:ir 
road model being inaccuracy in predicted feature locations on roads with noticeable curvature. The main l i m i t  of this 
type of scheme is the need to move a sufficiently small distance between fits so that the straight path bcing driven 
along does not diverge too much from the actual road. 

Modeling the road as a cross-section swept along a circular arc explicitly models road curvaturc but rclnins tlic 
flat earh assumption used in linear models. VaMoRs, YARF, and the U. Bristol systctn usc this approach. Ttic 
cquations describing feature locations can be linearized to allow closed form least squares solutions for  thc road 
hcading, offset, and curvature, as well as the relative feature offsets. 
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A more general model of road geometry retains the flat earth assumption, but requires only that road ctlgcs bc 
locally parallel, allowing the road to bend arbitrarily. This can be done by projection onto the ground plniic (VITS 
and the FMC system), or in the image plane (work at U. Michigan cited above). The lack of higher order coiiwaint 
on the road shape can lead to serious errors in the recovered road shape when there are errors in thc rcsults of ilic 

underlying image segmentation techniques. 

Several algorithms have been developed to recover three dimensional variations in road shapc undcr ilic 

assumption that the road does not bank [3] [4]. These current algorithms use information from a lcrt anti right road 
edge, which precludes integrating information from multiple road markings. Evaluation of a n  early zcro-bank 
algorithm by the VITS group as part of the ALV project suggested that such algorithms may be very scnsitivc to 
errors in feature location by the segmentation processes. This is due to the assumption of constant road width, which 
leads to errors in road edge location being interpreted as the result of changes in the terrain shape. 

Circular arc models would appear to be the technique of choices in the absence of algorithms for the r c c o \ ~ ~ y  ol 
three dimensional road structure which are robust in the presence of noise in the segmentation datn. They Iiii\rc ;I 

small number of parameters, they impose reasonable constraints on the overall road shape, and statistical rnctliods 
can be used for estimating the shape parameters, with all the statistical theory and tools that use o f  such mcthods 
allows the system to apply to the problem. 

Figure 3.1 summarizes the position of existing road following systems in the space of road representation schciiics 
and parameter recovery mechanisms. 

Figure 3.1: Road representations and parameter recovery techniques used in various systems. 

3.3 Road model and parameter fitting used in YARF 
YARF models the road as a one-dimensional feature cross-section swept on a flat ground plane perpendicular to ;I 

spine curve (hereafter referred to as a generalized stripe model). Such a model lends itself to parameter cstiinution 
using statistical fitting techniques and seems to work reasonably well even in the presence of mild variations in 
ground plane orientation (gentle hills, for instance). Figure 3.2 shows an image of a two lane divided road. Fcaiurc 
points have been detected along both white lines and the double yellow line in the center. Figure 3.3 s h o w s  ilic 

recovered road shape on the ground plane. 
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Figure 3.2: Road image with trackers on lane markings 

Figure 3.3: Reconstructed road model 

YARF assumes that the spine curve can be approximated by a circular arc. In ordcr 10 hovc ;I syslcrn \vliicli is 
linear in its parameters a parabolic approximation is made to a circular arc. This parabola rcprescnts 11ic biiloinial 

series expansion of the circular arc equation. The term representing the displacement of a dctcclcd lkalurc poiill 

from the spine is also linearized. The final linear model that results from thcse ~ipproxiriiatioils is 
x =  0.5 xcurvuture Xy2+headingxy+spinetruns- offset, where (x,y) is the position on thc ground plnnc of ;I 
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dctccted feature point, offset is the offset of the feature from the road spine, curvature is the curvature of the spine 
arc, heading is related to the tangent of the spine arc at the x-intercept, and spinetrans is the x-intcrccpt of the spine 
arc. 

Given a set of data points lying on different features is the road model, standard statistical fitting techniques c;in 
be used to recover the spine arc parameters of curvature, heading, and spinetrans. YARF uses eithcr stantinrd least 
squares fitting or least median of squares fitting. The next section discuss the errors introduced by mnking t h c  
approximations used to derive a linear system, giving an analysis of the magnitude of thc crrors iiitroduccd. AI'ic'r 
that fitting techniques are discussed, with an explanation of least median of squares litting and  why i t  is prcl'cral~lc in  
some cases to standard least squares. 

3.4 Errors introduced by linear approximations in YARF 
There are two sources of error introduced by the linearizations. The first arises from the approximation of I I  

circular arc by a parabola. The second arises from translating points parallel to the x-axis to movc thciii onto the 
spine. These sources of error are discussed below. 

3.4.1 Approximating a circular arc by a parabola 
Consider the equation of a half circle centered at the origin, x=d?-y2. This can bc cxprcsscd ;IS ;I sc.ric\s, 

x = c o + c l  x y + c 2 x y 2 +  .... Performing the binomial series expansion to solve for thc cocfl'icicnts rcsults i n  tlic 
solution co=r, c1 =0, C 2 = - 0 . 5 X F 1 ,  and in general C , = ( C , - ~ X ( ~ - ~ ) ) / ( ~ X ? ) .  Ignoring terms bcyond y2 yiclds thc 
parabola x = r + 0 . 5 x y 2 x r - ' .  Introducing translation in x simply changes the interpreution of thc constant tcrin o f  
the series from co=r to cO=r+xcenfer. Translation in y makes the coefficient of the y term in thc scrics nonzcro b y  
substituting y'=y-yceder into the parabola equation above. 

The y value about which the series approximation of the spine arc is implicitly being cxpandcd is the axis 01' the 
parabola. The further from that axis data points lie, the greater the divergence betwccn the cstiinatcd arc paramc'tcrs 
and the actual arc parameters. Since the fit constrains the axis of the parabola to be parallcl to ihc x axis, roiaiirig tlic 

data so that the x axis passes through the mean y value of the data points rcduccs thc fraction 01' i l ic arc 
circumference spanned by the fit, and increases the accuracy of the estimate of the spine arc piir;tiiictcrs. 

3.4.2 Translating data points perpendicular to the Y-axis rather than perpendicular to the arc 
Data points from features offset from the spine have to be translated to lie on the spine in ordcr to f i t  the spine 

parameters. The translation is made parallel to the x axis rather than perpendicular to the (unknown) spinc arc i n  
ordcr to keep the problem linear (see Figure 3.4). The error introduced by this approximation is 
error = (x - xceder) - ofset + d(x -  x ~ ~ ~ ~ ~ ) ~ -  offset2- (2 x offset x radius) 

The magnitude of this error is also dependant on the coordinate system chosen for the fit.  Again, roiaiirig i l ic  d x i  

so that the x axis is roughly perpendicular to the predicted road at the mean y valuc of the data \prcati\ t l i c  C ' I I O I  

more evenly among the points and reduces the size of the error for the points with larger y valuca. 

3.4.3 Evaluation of error introduced by linear approximations to circular arc model: Simul:ilion 
results 

Simulations were performed in order to provide quantitative estimates of the crrors introduced by the 
lincarizations described above, and to show the importance of fitting the data in a "natural" coordinate system in 
which the x axis is perpendicular to the road at the mean y value of the data points. We call such rotation of ilic (lati\ 
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y 4  data point corrected 
to lie on spine curve 

featureoffset 

Figure 3.4: Error introduced by translating points to road spine parallel to thc X axis 

bcfore model fitting virtual punning. The camera and road geometry models from an actual Navlab run  wcrc uscci to 
generate synthetic road images of specified curvature, and YARF was run on the synthetic imagcs to gathcr data on 
the difference between the estimated road shape and the actual road shape. 

The simulated vehicle drove 2 meters between images, keeping centered in the lane with the rcar axlc 
perpendicular to the spine curve. The simulator was set up to use the same road and camera models to gcncratc tlic 
images and to backproject and fit the data, and the image data is idealized. This eliminates sourccs of crror othcr 
than the approximations described above. After allowing the simulation to run for 10 frames to allow tlic systcin to 
settle into a steady state, the fits from the eleventh to twentieth frames were averaged a n d  cornparcd to thc kiiowii 

model. 

The error measure chosen was distance from the true lane center to the estimated lanc ccntcr a t  a givcn tlistancc 
along the estimated lane center arc. The error was plotted for distances along the estiinatcd lanc ccntcr starting a t  tlic 
rear axle of the vehicle and extending out to 40 meters. The front end of the vehicle is about 3.5 mctcrs in front of 
the rear axle. 

Figure 3.5 shows the results for the first set of simulations, in which the parameter fits were donc in thc vchiclc 
coordinate frame. Note that in all cases the error in the range of 5 to 15 meters from the rear axle is very small. Thc 
asymmetry of the results is due to the pan of the camera and the offset of the camera from thc ccntcr linc ol' tlic 
vchicle. 

Figure 3.6 shows the results for the second set of simulations. In this set of simulations the dala was rorurcd so 

that the x axis was perpendicular to the predicted road at the mean y data value. The vcrtical scalc of thcsc plots is 
not the same as in Figure 3.5 in order to improve readability. Notice that the magnitude of the crror is kcpt uiidcr SO 
crn. at all distances out to 40 meters along the estimated lane center. and for all radii of curvature down to +/- 30 
meters. This shows the improvement in fit accuracy achieved by rotating the data into a "natural" coordinatc systcni. 



ROAD GEOMETKY 

Q, c -2.00 s 3 -2.50 ' -3.00 

2 -3.50 
E 
*r 

8 
8 
E 
b k 
E 

')r t 
z 
8 -7.00 

')r E 

Q, 

7.00 w 

0.00 
Q s 

2 
9 
Q, -2.00 3 
b 
E 
0 -3.00 k 
8 
8 E 

C 
4.00 

0' -5.00 

* 5 
IL -6.00 

-7.00 

- ... - 30 meter radius - .I - 40 meter radius --- 50 meter radius -.- 60 meter radius . . . . . . . . . 70 meter radius 
80 meter radius 

-0. 

9. 

\ 

**. 
' 

\ 

\ 

\ 

- ... - -30 meter radius - .I - -40 meter radius --- -50 meter radius -.- -60 meter radius 
-70 meter radius 
-80 meter radius 

. . . I I.. . . 
I I \ \ 

\ 

\ 

\ 

\ 

\ 
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3.5 Parameter estimation by Least Median of Squares fitting 

3.5.1 Robust estimation: terminology and the LMS algorithm 
Data can be contaminated by observations which do not come from the process whose paramctcrs arc k i n g  

estimated. Such observations are called outliers. Their presence in a data set can rcsult in pararnctcr fits tliat arc 
grossly incorrect when standard least squares techniques are used as estimators. Outliers pose a particular problcm 
for thc YARF system. They will arise when there is a false positive response from a tracker. Becausc thc trackcr 
windows are placed at the predicted road position, they will not be random and may pull the fit incorrcctly towards 
the prediction and away from the actual road. 

There are two approaches to making estimation insensitive to outliers. The first, outlier detection, attcmpts to 
identify the contaminating data points and eliminate them before performing a standard least squarcs I‘it to tlic 
remaining data. A good survey of techniques for outlier detection can be found in [l]. Thc sccond approach, r - o / ~ / ~ v ~  

estimalion, attempts to design estimators which are less sensitive to the presence of outlicrs than siiintlartl Ic:ist 
squares estimation. 

An increasingly popular robust estimation techniques is called Least Median ojSiquares (or LMS) cstiniation [ 121. 
Consider the linear system yi=J.3xi+c, where J.3 is the vector of parameters to be estimated, and c is a noise term. 

Standard least squares finds the estimate J.3’ which minimizes x r i ,  where ri is the residual ri=J3’xi-yi. Least 
Median of Squares tries to find the estimate J.3’ which minimizes rnedian(r3. To give a simplc gcoincuic intuilion l o r  
what the LMS estimate is, picture the two dimensional linear case. The LMS estimate is the line such tha t  ;I l m d  
ccntcred on the line which contains half the data points has the minimum height in y (thc depcndcnt variahlc) (see 
Figure 3.7). 

2 

Figure 3.7: Example LMS fit 

The computation of the LMS estimate is straightforward, and is similar to Bolles’ RANSAC algorithm. Random 
subsels of the data are chosen. The standard least squares estimate of the parameters is made for each subset, and tlic 
mcdian squared residual for that estimate is computed. The estimate which produced the lowest mcdiaii sciuarcd 
residual is selected as the final estimate. 

The breakdown poinf of an estimator is the smallest fraction of the data that need to bc outliers in  order lo r  tlic 
parameter estimates to be arbitrarily bad. In the case of standard least squares, the breakdown point is asyinptotically 
zcro, since a single outlying observation can cause pull the fit arbitrarily far from the correct rcsult. Thc brcaktlown 
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point of LMS estimation is 50%, the maximum achievable. 

The relative efficiency of an estimator is the ratio of the lowest achievable variancc for the cstimntcd Iiaraniclcrs 
(given by the Cramer-Rao bound) and the variance achieved by the given cstimator. In the casc of Lh lS  cstiiiiation 
the relative efficiency is 2/x=0.637. In practice, the variance in the paramcter estimates ciiii tic rctluccd by usiiis 
the value of the median squared residual to estimate the variance of the noise in thc data, cliniinating data points 
more than three standard deviations away from the initial LMS fit, and refitting thc rcrnaining daia points using 
standard least squares. 

Two phenomena complicate the task of identifying outlying observations. The first, masking, occurs whcii thcrc 
arc multiple ouliers in the data which jointly influence the fit  in such a way that their residuals do not look unusual. 
The second, swamping, occurs when outliers influence the fit in such a way that valid data points hnvc suspiciously 
large residuals which make them appear to be outliers. Selecting a robust estimation techniquc which shows low 
sensitivity to masking is important in the YARF domain because outliers will occur ncar thc prcdictcd road locaiion, 
and will therefore tend to influence the fit in a consistent way. LMS estimation shows littlc scnsitivity i o  iiinskirig. 
anothcr factor in its favor. 

3.5.2 Examples showing the effects of contaminants on road shape estimation 
Contaminating data points can arise from a number of sources. False positive responses from the low lcvcl image 

segmentation techniques are the most obvious source, but changes in road appearance present anothcr sourcc. 
Figure 3.8 shows an example of this. In this experiment a human drove Navlab I1 on a local highway at a spccd of 
45 miles per hour while YARF attempted to track the lane. Three successive fit results are shown from Icft to right. 
At the top of the first frame the right white stripe begins to curve off to the right for the exit ramp. The road is 
actually straight, but the fit curves off slightly. This error results in incorrect predictions for thc fcaturc locatioiis iii 
the middle frame. The white stripe on the right is located as it veers off on the exit ramp, h i i t  the white strip% oii tlic 

left has been lost (the asterisks represent the predicted feature locations where thc trackcr returned I'iiilurc). I n  ilic 
third frame on the right YARF is now tracking the exit lane while the vehicle continues in its lanc, rcsulting in tlic 
lcft edge of the reconstructed lane passing through the vehicle. While the data in this example is not dcnsc enough 
for LMS to detect the error, it shows the way in which the contaminants can be highly structured. 

The second example (Figure 3.9) shows a case in which the outliers are the result of errors in thc scgmcntation. 
Thc lane being followed has a double yellow line on the left side and a single solid white line on thc right sidc. Duc 
to error in the predicted road location some of the trackers for the double yellow line are off thc road on grass and 
return false feature locations. The road actually curves off to the right, explaining the tendency of the points I'roni tlic 
lcft lane edge to fall to the right of the fit in the middle of the diagram, and the failurc of tlic whitc stripe tr:ickcr io 
locate the right lane edge in that same area (the points marked with asterisks). The LMS fi t  o n  the right sIio\vs tlic 
correct road fit, with the erroneous feature points at top far off to the left of thc lanc. 

3.6 Conclusion 
In this chapter we have explained the motivation behind YARF's selection of road representation and niodcl 

fitting algorithms. We have shown how an analysis of the errors introduced by linearizing the circular arc road 
model leads to the idea of performing virtual panning on the data to reduce the errors in the modcl paramctcr 
estimates, and presented quantitative results from simulation runs to show the improvcmcnt from virtual panning. 
Also, we have explained the motivation for using least median squares estimation to avoid crrors cnuscd by outlying 
data points 

Future work would involve an attempt to characterize the errors induced in thc paramctcr cstlmatcs 1 1 1  cats \vIic~c 
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Figure 3.8: Led astray by the exit ramp 

Figure 3.9: Comparison of least squares fit (left) and least median squares 

the flat ground plane assumption doesn’t hold. Also there is a need for the development of algorithms which can 
recover three dimensional road structure with less sensitivity to noise than current algorithms, and  which c;in 
incorporate information from road features other than the edges of the lane being followed. 

fit (right) of data with outliers 
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Characteristic Example Existing model 

1 

4. A Computational Model of Driving for Autonomous Vehicles 

Static; abstract Strategic I 

4.1 Introduction 
Driving models are needed by many researchers.l Intelligent vehicle designers need them to makc driver aids tha t  

work in dynamic traffic situations. Robot vehicle builders need them to drive vehicles autonomously in traffic. 
Traffic engineers need them to improve rhe safety of highways. To be most useful, a driving model must be rlcfctileti 
and complete. A detailed model must state specifically what decisions must be made, what information is nccdcd, 
and how it will be used. Such models are called computational because they tell exactly what computrltions thc 
driving system must carry out. A complete driving model must address all aspects of driving. In the course o f  o u r  
research in robotics, we have developed a computational model that addresses a level of driving which has not been 
previously addressed. We have implemented this model in a system called Ulysses. 

Planning a route; Planning programs 
Estimating time for trip (Artificial Intelligence) 

The driving task has been characterized as having three levels: strategic, tactical and operational [271. Thcse 
levels are illustrated in Table 4.1. The highest level is the strategic level, which develops behavioral goals for the 

Determining Right of Way; 
Passing another car Tactical Dynamic; physical I I Human driving 

models 

Operational I Tracking a lane; Robot control 
Following a car systems Feedback control 

Table 4.1: Characteristics of three levels of driving. 

vehicle. These goals may be based on route selection and driving time calculations, for example. The strategic 
goals are achieved by activities at the middle, tactical, level, which involves choosing vehiclc mancuvcrs within the 
dynamic world of traffic and traffic control devices (TCD's). The maneuvers selected at the tactical lcvcl arc carricd 
out by the operational level of speed and steering control. 

Substantial progress has been made in automating various parts of the driving task, particularly at the strategic 
and operational levels, but no system has yet implemented the tactical level. At thc strategic levcl, planning 
programs in the Artificial Intelligence community are quite good at planning errands, finding routcs, and pcrl'ormirig 
other abstract tasks. However, they do not solve the problems of vehicle maneuver selection bccausc they arc not 
designed to work in a dynamic domain and without complete knowledge of the problcm. At the opcrational Icvcl, 
several robot projects have demonstrated the ability to drive a vehicle on roads that arc csscritially devoid ol' trnt l ic  
and TCD's. These systems can track lanes, but have no real knowledge of driving laws and gcncral vchiclc 
bchavior. Thus, they too avoid the problems of maneuver selection that form the tactical lcvcl of driving. 

Traffic engineers and psychologists have long studied the driving task, including lactical driving, and Iluvc 

'An earlier version of this report appeared as technicam report CMU-CS-91-122. authored by Douglas Reece and Stevcn Shalcr 
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devcloped many good theories and insights about how people drive. Unfortunately, thesc modcls of h u m a n  driving 
do not explain exactly what and how information is processed-what features of the world must be obscrvcd, what 
driving knowledge is needed and how it should be encoded, and how knowledge is applicd to producc actions. A 
model must answer these questions before it can be used to compute what actions a robot should take. 

Our driving program, Ulysses, is a computational model of tactical driving. The program cncodcs knowlctlgc of 
speed limits, headways, turn restrictions, and TCD’s as constraints on acceleration and lanc choice. The constrninls 
are dcrived from a general desire to avoid collisions and a strategic driving goal of obeying traffic laws. Ulysscs 
cvaluates the current traffic situation by deliberately looking for important ualfic ol)jccts. The obscrwtioiis, 
combined with the driving knowledge and a strategic route plan, determine what accclcrations and lanc cliangc:s iirc 
pcrmitted in this situation. The program then selects the one action that allows the robot to go a s  fast ;IS possiblc. 
While this model has limitations, it dnves competently in many situations. Sincc it is a computational niodc.l ,  
Ulysscs shows exactly what information a driver needs at each moment as driving decisions arc matic. Furthcniiorc, 
the program can be tested objectively on a real vehicle. 

Our eventual goal is to use Ulysses to drive a real vehicle. At this time, however, thc model has only l m n  
implemented in computer simulation. We have constructed a microscopic traffic simulator callctl PHAROS (for 
Public Highway and Road Simulator) [30] for our driving research. PHAROS represents thc strcct cnviroiiiiicnt in 

detail, including the shape and location of roads, intersections, lines, markings, signs, a n d  signals. The cars i n  

PHAROS are driven using a simplified version of the dnving model. The simulator gcncratcs a n  anima[ccl diq’lay 
of traffic that can be used to observe driving behavior. PHAROS performs the perccption and conlrol functions for  
Ulysses so that Ulysses can drive a robot through a road network in simulation. 

This chapter describes our driving model for robots in detail. The next section reviews existing driving modcls, 
including both robot driving systems and human driving models. We then present Ulysses, and dcscribc the 
important features of PHAROS. The chapter concludes with a discussion of possible extensions to thc model and 
other future research. 

4.2 Related Work 

4.2.1 Robots and Planners 
Computers have been used to automate several aspects of the driving task. Various research groups havc bccn 

investigating vehicle steering and speed control for at least 30 years [5, 13, 15,24,28,34]. This work gcncrally 
assumes that special guides are placed in the roads, so the vehicles are not completely autonomous. I n  thc 198O’s, 
robots began driving on roads autonomously [9,20,22,29,36,37,38.39,42]. The different robots havc strengths 
in  different areas; some are fast (60 mph), while others are very reliable in difficult lighting or tcrrain conditions. 
Autonomous vehicles can also follow other vehicles, with or without a special guide dcvicc on ilic Icad 
vehicle [4,7, 14, 19,21,36]. 

These existing robot systems address only the operational level. Consider the driver approaching thc intcrscction 
in Figure 4.1 from the bottom. A robot with current operational capabilities could track thc lanc to the intcrscction, 
find a path across the intersection. and then start following a new lane. The robot could also perhaps dctcct the car 
on the right and stop or swerve if a collision were imminent. However, in this situation a driver is rcquirctl to 
interpret the intersection configuration and signs and decide whether it should pass in front of the othcr car. Currcni 
robot driving programs cannot perform this tactical task. Nevertheless, it is the success of automonous vchiclcs a t  
thc operational level that motivates us to study the tactical level. 
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Figure 4.1: Example of tactical driving task: driver approaching crossroad. 

Computers have also been used to automate strategic driving functions. Map-bascd navigation systcins linvc 
advanced from research projects to commercial products in the last decade [3, 11, 18,32,35,41 I .  Ai-lificial 
Intelligence programs have been applied to many abstract problems, including the planning of driving crrantls I I7 I .  
These planners work on static problems using information conveniently encoded in a database ahcad of time. Let 11s 
consider again the driver of Figure 4.1. A strategic planner may have already determined tha t  this drivcr is going LO 

a pizza store, and that he must turn left at this intersection, and that he should drive quickly becausc tic is hungry. 
However, the planner (probably) does not know ahead of time what TCD's are present at this intersection, and 
certainly cannot predict the arrival of cross traffic. Since the situation is unknown ahead of time, thc drivcr must gct 
data by looking for signs and cars when he gets to the intersection. This data must be interpreted to form abstract 
concepts such as "the other car is stopping." In general, the world is uncertain and dynamic a t  this level, and the 
driver must continually use perception to assess the situation. Strategic planners are not designed to dcal with thcsc 
tactical problems. 

4.2.2 Human Driving Models 
Psychologists, traffic engineers and automotive engineers have studied human driving a great dcal. Tlicir goal is 

to make cars and roads safer and more efficient for people. The result of this work is a multitudc of tiriving models 
spanning all levels of driving. Michon identified seven types of models [27]: task analysis, inforination flow 
control, motivational, cognitive process, control, trait, and mechanistic. Each has different charactcrislics a n d  
addressed different aspects of driving. 

7hsk analysis models. A task analysis model lists all of the tasks and subtasks involvcd in driving. Thc p m g o i i  
of these models is McKnight and Adam's analysis [26].  Their work provides an exhaustivc brcakdown 01' :ill 

activities on the tactical and operational levels. We have found this listing very useful for dctcrmining \vhctlicr o u r  
model performs all of the necessary subtasks in various situations. However, a list of tasks alonc is not sul'licicnt l o r  
describing a driving model. This is because a task list does not address the dynamic rclations betwccn tasks. 'fhc 
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list does not specify how the driver chooses a task in a given situation, or whether one task can intcrrupt another, or 
how two tasks might be performed simultaneously (especially if they require conflicting actions). Thc McKnight 
work also leaves situation interpretation vague. For example, two tasks require a driver to "obscrvc pcdcstri:ins ant1 
playing children" and "ignore activity on the sidewalk that has no impact on driving." However, thcrc i11-c 110 

computational details about how to discriminate between these situations. 

Information flow control models. Information flow control models are computer simulations o f  driving bcIixrior. 
Early computer models of drivers were essentially implementations of task analysis models [27]. As such, they Iiavc 
the same weaknesses as the task analysis models. More recent microscopic traffic simulators such as  SIMRO [ ( , I ,  
TEXAS [16], and NETSIM [12,43] do not have these weaknesses because they pcrform multiple tilsks 
simultaneously. They also have the ability to start and stop tasks at any time in response to traffic. For cxatnplc, 
NETSIM evaluates the traffic situation frequently (every second) and makes a fresh sclcction of  aplxopriatc 
subtasks. NETSIM is not intended to be an accurate description of human cognitive proccssing, bu t  i t  Iirotluccs 
reasonable driver behavior in many situations. NETSIM is a direct ancestor of our system, PHAROS, which wc 
dcscribe later in this chapter. 

NETSIM cannot be used as a complete driver model because it lacks several necessary componcnts. Tlicrc aIc 
gaps in its behavior; for example, cars are discharged from intersection queues into downstrcam strccts without  
having to accelerate and drive normally to and through the intersection. Neither docs NETSIM contain knowlcdgc 
of how to interpret traffic conditions from observable objects. We also found unmodified NETSIM inadcquatc as ;I 

simulator testbed for robotics research because it cannot represent physical information such as road gcomctry, 
accurate vehicle location, or the location and appearance of TCD's. 

Motivational models. Motivational models are theories of human cognitive activity during driving. Van dc r  
Molen and Botticher recently reviewed several of these models [40]. The models generally dcscribc mcntal s u k s  

such as "intentions," "expectancy," "perceived risk," "target level of risk," "need to hurry" or "tiistractions." 'I'licsc 
states are combined with perceptions in various ways to produce actions. Since motivational models irllcmpt to 
describe the general thought processes required for driving, one would hope that thcy would form ii basis lOr ;I 

vehicle driving program. However, the models do not concretely show how to represcnt driving knowlctlgc, Iiow to 
pcrceive traffic situations, or how to process information to obtain actions. Van der Molcn and Bottichcr attcinptctl 
to compare the operations of various models objectively on the same task [33,40], but the modcls could be 
implemented only in the minds of the model designers. Some researchers are addressing this problcm by dcscrihiiig 
cognitive process models of driving (for example, Aasman [l]). These models are specified in an appropriate 
symbolic programming language such as Soar [231. 

The remaining types of models have limited relevance to tactical driving. Control models attctnpt to dcscribc h e  
driver and vehicle as a feedback control system (e.g., [31]). These models are mainly useful lo r  lanc keeping and 
other operational tasks. Trait models show correlations between driver charactcristics and driving actions. For 
example, drivers with faster reaction times may have a lower accident rate. This corrclation docs not dcscribc rhc 
mechanism by which the two factors are related. Finally, mechanistic models describe thc bchavior of trallic ;IS ;in 

aggregate whole. These models express the movement of traffic on a road mathematically as a flow of I'luid 1101. 
This type of model cannot be used to specify the actions of individual drivers. 

4.2.3 Ulysses 
In this chapter we present a new computational model of driving called Ulysses. It is computational because it 

cxplains how to compute driving actions from sensed data. Ulysses encodes knowledge for pcrl'orming ii \wic>ty  0 1  

tactical driving tasks, including maneuvering in traffic on multilane highways and ncgotiating intersections. Likc 
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the information flow control models, Ulysses performs all appropriate tasks simultaneously. Ulysscs gocs beyond 
models such as NETSIM because it describes how to drive in the transitions between states (e.g. bctwccn (rcc Ilow 
and enqueued). Unlike existing models, Ulysses makes decisions based on observable phenomena. Thc pcrccptual 
part of driving is therefore described in terms of looking in specific areas for specific objects. This explicit situation 
assessment is much more concrete than the "risk perception" in the motivational models. Ulysscs opcrationalizcs 
concepts such as "risk avoidance" in these models with specific constaints on lane selcction antl  spcctl. Since 
Ulysses is implemented as a computer program (in the language Allegro CommonLisp), it can be analyzcd antl 
tested objectively. It can be used in various driving situations to study the perceptual and information proccssing 
requirements of the task. And ultimately, Ulysses can be used to compute actions for an actual vchiclc driving in  
traffic. 

4.3 The Ulysses Driving Model 
We have implemented a computational driving model in a program called Ulysses. Ulysses dcfincs a complctc 

system for driving - what a driver must look for, how situations are evaluated, what practical knowlcdgc is nccdcd, 
and how this knowledge is encoded and applied. Figure 4.2 is a schematic of the entire driver modcl. O n l y  1lic 
tactical level is implemented in detail in Ulysses. The model treats the operational and stratcgic Icvcls a b s ~ r a c ~ l y  
since the details have already been addressed by other work. These levels are discusscd a t  thc crid 01 '  tlic scclion. 

Figure 4.2 shows that at the tactical level, Ulysses performs several perception and decision (unctions. Ulysscs 
uses the route plan created at the strategic level as a guide in scanning the road ahead along the intendcd routc. The 
portion of the strategic route plan that is actually visible to the robot is called the corridor in our modcl. Ulysscs 
identifies the corridor at the tactical level so it knows which signs, signals and other cars are important. The corridor 
is built up incrementally as the Ulysses finds intersections and chooses which direction to look further. As thc 
corridor is found, implicit goals to drive lawfully and safely cause constraints to be generated. The constraints arc 
triggered by the presence of various traffic objects. Ulysses must look for all objects that could triggcr a constraint. 
After all constraints have been applied, Ulysses chooses an acceleration and lane-changing action from the available 
choices. This selection is based on the implicit goals of driving quickly and courteously. Statc variablcs ;ire uscd 10 

rccord decisions such as accepting gaps in traffic that affect actions for a period of time. Tablc 4.2 suiiiiiiai-izcs tlic 
state variables used in Ulysses; these will be explained later in this section. 

In order to be able to respond quickly to unpredictable events, Ulysses frequently repeats its visual scarch anti 
evaluation of the current situation. The decision cycles have a period of 100ms. This rapid polling simulatcs thc 
responsiveness of perceptual interrupts. However, the polling scheme allows constaint evaluations to activatc 
perception rather than the other way around. Ulysses uses this demand-driven perception at thc kictical lcvcl to 
provide a mechanism for focusing its perceptual attention. Focusing perception is irnporunt lo r  robots bccousc 
machine perception is very difficult; it would be impossible to perceive and analyze cvcrything in thc field o l  view 
in 100ms. 

In the remainder of this section we explain the specific driving knowledge in Ulysscs by dcscribing a scrics 01' 

scenarios of increasing complexity. The scenarios include a simple highway with only one lanc, intcrscctions w i t h  
various traffic control devices, and finally multi-lane roads. The section concludes with a discussion of  pcrccption, 
strategic plans and operational control. 
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Figure 4.2: Schematic of the Ulysses driver model 

4.3.1 Tactical Driving Knowledge 

4.3.1.1 A Two-Lane Highway 

but there are several constraints on speed. 
Figure 4.3 depicts a simple highway driving situation. In this scenario no lane-changing actions arc ncccssary, 

The first two constraints are derived from general safety goals-i.e., self-preservation. The spced of thc vchiclc 
must be low enough to allow it to come to a stop before the end of the road is reached; the specd on a curvc must 
keep the vehicle’s lateral acceleration below the limit imposed by friction between the tires and road surhcc. 
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State Variable 

Speed Limit 

In intersection 

Wait 

Lane Position 

Values 

<current speed limit> 

Street, Intersection 

Normal, Wait for gap, Wait for merge gap, Accept 
~~ ~ 

Follow lane, Init-left (-right), Changing-left (-right) 

Table 4.2: Ulysses state variables. 

KEY: 

Acceleration 
constraint: 

I- 

Robot: 

Figure 4.3: The two-lane highway scenario. 

Although it is possible that these constraints can be met by the operational level systems of thc robot, thc prcciiction 
of future speed constraints from observations of distant conditions is in general a tactical activity. This is cspccinlly 
true if future conditions are detected not by tracking road features but by reading warning signs. Ulysscs gcncratcs 
the road end and road curvature constraints by examining the corridor. The robot must be stopped at thc cnd of thc 
road if the road ends; furthermore, at each point of curvature change, the robot’s speed must bc lcss than tlint 
allowed by the vehicle’s lateral acceleration limit. Ulysses also scans along the right side of thc corridor for signs 
warning of road changes, and creates a speed constraint at the relevant signs. 

These constraints-a maximum speed at a point somewhere ahead in the corridor-are typical o f  llic inolion 
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constraints generated by various driving rules. Given the robot's current speed, we could compute a constant 
acceleration value that would yield the desired speed at the desired point. However, it is also possible to satisfy thc 
constraint by driving faster for a while and then braking hard. Figure 4.4 shows these two possibilitics as curvcs X 
and Y on a graph of speed versus distance. The figure shows that any speed profile is possible as long as i t  stays 

Speed 
S 

Time T + one decision cycle period 
0 

Deceleration at maximum braking 
ratea ( a B  <O): 

~ O D O ~  srarr 
state ( D ,  ,S, ) 

time To 

6 - - - - . . . . . . 
Constraint: 

C 
at distance D, 

I I Distance 
Dc d 

KEY 

X: Constant deceleration from initial state to constraint state 
Y: Constant speed, then deceleration at maximum braking rate 
2: Acceleration for one decision cycle period, then maximum braking 

Figure 4.4: Deceleration options plotted on speed-distance graph 

below the maximum braking curve. The profile that maximized vehicle speed would rise instantly to thc maximum 
braking curve and then follow the curve to the constraint point. However, the program cannot changc tlic 
acceleration command at arbitrary times; it looks at situations and changes acceleration only at discrctc intcrvals. 
Therefore Ulysses computes an acceleration that will cause the robot's speed to meet the maximum dccclcration 
curve exactly at the next decision time. This is curve Z in the figure. 

While the high-acceleration, high-deceleration policy shown by curve Z maximizcs vehiclc spccd, it sccms to 
have the potential to cause jerky motion. In fact, the motion is usually smooth becausc the consuainls rclax as thc 
robot moves forward. For example, suppose that the robot's sensors could only detect the road 150 fcct ahcad. 
Ulysses would constrain the robot to a speed of 0 at a distance of 150 feet. However, when thc robot movctl 
forward, more road could be detected, so the constraint point would move ahead. Figure 4.5 shows how this "rolling 
horizon" affects speed. The robot starts at distance 0 with a speed of 45 fps. A decision interval of 1.0 scconds is 
assumed in order to show speed changes more clearly. The dashed lines show deceleration constraint curvcs (- 15 
fps2) at the first four decision times. The solid line shows the robot's speed. After a small ovcrshoot, thc spcctl 
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Figure 4.5: Robot speed profile (solid line) as it adjusts to a rolling road horizon. 

Maximum deceleration is -15.0 fps2, decision time interval 1.0 sec, horizon at 150 fcct. 
The four dashed lines show, for the first four decision times, the maximum-dccelcration 

profile to the current horizon. 

reaches an equilibrium and remains constant. 

The next constraint illustrated by Figure 4.3 is that generated by legal speed limits. Ulysscs mairiluins ;I sI:itc 
variable which records the current speed limit. The vehicle is allowed to accelerate so tha t  it rcachcs tlic spccd liriiit 

in one decision cycle period. Furthermore, Ulysses scans the right side of the corridor lor "Spccd Limil" signs. 
Whenever the system detects a speed limit change, it creates an acceleration constraint to bring ttic robot's spccd 10 

the limit speed at the sign (as described above). As the robot nears the Speed Limit sign, Ulysscs also updatcs thc 
speed limit state variable. 

The final acceleration constraint is generated by traffic in front of the robot. The safety goal implicit to Ulysscs 
requires that an adequate headway be maintained to the car in front of the robot in the same lane. Ulysscs thcrclorc 
scans the corridor to monitor the next car ahead. If the lead car were to suddenly brake, it would come to a stop 
some distance ahead. This is the consuaint point for computing an acceleration limit. The program iiscs thc Icatl 
car's speed, its distance, and its assumed maximum deceleration rate to determine where it would stop. This activity 
is commonly called "car following." 

After all acceleration constraints have been generated, they are combined by taking thcir logical intcrscction. Tlic 
intersection operation guarantees that all constraints are met simultaneously. Figure 4.6 illustrates this proccss. 
Since the constraints in effect allow a range of accelerations between the negative limit (the braking capability o f  thc 
robot) and a computed positive value, the intersection results in a range from the negative limit to the smallcst 
computed positive value. Ulysses chooses the largest allowed acceleration in order to further the implicit goal of 
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Figure 4.6: Combining acceleration constraints. 

getting to the destination as quickly as possible. 

The perception system may not be able to detect objects beyond some range. Ulysses dcals with thc resulting 
unccrtainty by making two assumptions: first, that there is a known range within which perception is ccrlain; and 
second, that objects and conditions that trigger constraints are always present just beyond this rangc. This latter 
assumption is the worst case. For example, Ulysses always assumes that the road ends just beyond road-dctcclion 
range, that the speed limit drops to zero just outside of sign-detection range, and that therc is a stopped vchiclc just 
beyond car-detection range. In this way Ulysses prevents the robot from "over-driving" its sensors. 

4.3.1.2 An Intersection Without Traffic 
The next traffic scenario we consider is a simple intersection with only one lane on the robot's appro:ich, no otlicr 

traffic, and no pedestrians. Figure 4.7 illustrates this scenario. Ulysses detects intcrsections when i t  visually lraclis 
a lane ahead and finds that the markings end or the road branches. Other clues, such as traffic signals or signs (or  
cars, in a different scenario), may be detectable at longer ranges; however, since thc robot is constraincd to slop 
anyway at the end of the detected road, Ulysses does not consider these clues. Futurc vcrsions of Ulysscs may 
model the uncertainties of machine perception in more detail and use several clues to confinn observations. 

Whcn the robot is actually in an intersection, Ulysses can no longer detect a lane directly in front of thc robot. 
Whcn this first happens, Ulysses changes the In Intersection state variable from Strect to Intersection. Later, wlicn 
thcre is a lane in front of the robot, the state is changed back again. These state changes mark the robot's progrcss i i i  

i ts  strategic route plan. 

Finding the corridor is more difficult at an intersection than it is on a simple highway bccausc the corridor no 
longer follows clearly marked lanes. The perception system must recognize the other roads at thc intcrscction and 
identify the one on which the robot's route leaves. Figure 4.8 shows that the perception systcm must identify tlic 
"left" road if the strategic route plan requires the robot to turn left at this intersection. Ulysses can thcn cxlcnd thc 
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Figure 4.7: An intersection without traffic; detection by tracking Inncs. 

corridor by creating a path through the intersection from the end of the robot's approach road to tlic skirt 01 '  ~lic 
proper lane in the road on the left. 

With the corridor established through the intersection, Ulysses generates the same acccleration constraints ;is I'or 
the highway case. Figure 4.9 shows several examples of how these constraints may apply at an intcrscction. 
Constraints may apply to conditions before, within, and beyond the intersection. 

The next task for the driving program is to determine the traffic control at the intersection. In this scenario the 
only important TCD's are traffic signals, Stop signs and Stop markings. Thus, as shown in Figure 4.10, Ulysscs 
requests the perception system to look for signs and markings just before intersection and signal heads at w-ious 
placcs around the intersection. When the intersection is beyond the given detection rangc for thcsc okjccts, Ulysscs 
assumes the worst and constrains the robot to stop at the intersection; however, within thc dctcction rangc Ulysscs 
assumes that all existing traffic control devices will be found. 

Figure 4.1 1 diagrams the decision process for traffic signals required at this simple intersection. First, Ulysscs 
must determine what the signal indication is. If there is an arrow in the direction of the corridor, thc program tnkcs 
this as the effective signal; otherwise, the illuminated solid signal is used. If the signal indication is red, Ulysscs 
gcneratcs an acceleration constraint that stops the robot at the entrance to the intersection. N o  consir;iirii is 
gcncratcd if the signal is green. If the signal is yellow, then Ulysses determines whcthcr the robot caii bc stopped ;II 

thc intersection using a reasonable braking rate. If so, then the program generates a constraint iis if thc light w c x  
rcd. 
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Figure 4.8: Finding the corridor for a left turn. 

KEY: 

Acceleration 
constraint: I 

Figure 4.9: Examples of acceleration constraints from road features at 
an intersection. 

Stop signs require not only speed constraints, but a short sequence of actions. A vehicle approaching a stop sign 
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before 
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Figure 4.1 1: Traffic signal logic for intersection without uaffic. 

0 
must come to a complete stop, look for traffic, and then proceed when the way is clear. Figurc 4.12 shows how 
Ulysscs performs these actions with a "Wait" state variable. When a stop sign is detcctcd, Ulysscs gcnclatcs a 
constraint to stop the robot just before the sign. Later, Ulysses finds that the robot is stopped anti tha t  i t  is \'cry i i c x  
thc sign, so it changes to a "wait for gap" state. In this scenario there is no traffic, so Ulysscs immcdiatcly niovcs on 
IO the "accept" state and releases the robot from this traffic control constraint. 
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KEY: Condition: Robot is stopped 
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Figure 4.12: State transitions in Stop sign logic. 

4.3.1.3 An Intersection with Traffic 
Ulysses considers thrce kinds of traffic ;it 

intersections: cars in the same corridor as the robot, which must be given headway; cross traffic blocking tlic 
intersection; and cars approaching the intersection on other roads which may have to bc givcn the Row. H u m a n  
drivers arc sometimes taught to watch the traffic behind them, in case another car is following too closcly or 
approaching very fast. In such a case the driver could accept lower gaps or make more aggrcssivc judgcmcnu :\I an 
intcrsection, thereby continuing through the intersection and not stopping quickly in lront of the following car. 
Ulysses does not make such judgements, and thus does not look for traffic behind the robot. 

We will now add traffic to the simple intersection scenario. 

Figure 4.13 illustrates the first kind of traffic that Ulysses considers. The driving program must gcncratc 
car-following constraints from a lead car either in or beyond the intersection. If the lcad car is turning off the 

robot’s path, the robot must still maintain a safe headway until that car is clear of the path. Similarly, thc robot must 
maintain a safe distance to cars that merge into its path. 

Thc sccond hnd of traffic that Ulysses looks for is cross traffic in the intersection. This includes cars silting 
across the robot’s path or about to cross it, as shown in Figure 4.14. Since thc law rcquircs tha t  ;I vcliiclc yiclt l  ilic 

Row to vehicles already in the intersection, Ulysses looks for such vehicles and stops the robot txlorc the 
intcrscction if it finds one. Ulysses does not currently search beyond the closest car to f i n d  a gap. Futurc cxtcnstons 
to  Ulysses may try to time the robot’s arrival at an intersection to the presence of an upstrcam gap. However, this 
type of behavior could only be allowed if it were safe-that is, if the robot could still stop at the intcrsection i f  traffic 
changcd unexpectedly. 

Thc third type of traffic is traffic approaching the intersection on other roads. The driving program annlyzcs 
ncarby TCD’s and this approaching traffic to determine if the robot has the ROW. After Row is dctcrtnincd, 
Ulysscs may generate an acceleration constraint and change the Wait state of the robot. Figurc 4.15 illustratcs this 
proccss. 
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Figure 4.13: Potential car following conditions at an intersection. 

Figure 4.14: Cars blocking an intersection. 

Trusfic Control Devices. First, Ulysses detects and analyzes signs, markings and traffic lights. I n  addition IO tlic 
TCD's needed for the previous scenario, the program now must recognize Yield signs and dctcrininc h o w  m a n y  
lancs are in the roads. The lane count is used to determine if the robot is on a "Minor Road"-that is, il '  [tic robot's 
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Figure 4.15: Generation of constraints from traffic and traffic control. 

road has only one or two lanes and the other road has more lanes. In the United States traffic on a h4inor Ro:id 
generally yields the ROW to other traffic, so in effect has a yield sign. This is a practical rule, not a legal one. 

Tablc 4.3 summarizes the meanings of the various TCD's. The figure groups the TCD's into lour cqui\xlcricc 
classes. Yellow signals are treated as either red or green, depending on the robot's state and speed. I f  the robol I S  111 

a "wait for gap" state, a yellow signal is always treated as green. This practical rule allows the robot t o  prc)cccd 
through an intersection just before the signal turns red. This allowance prevents the robot from being stuck I'orcvcr 
in heavy traffic with no gaps. Cars with a given TCD normally yield the ROW to traffic with a TCD i n  ii highcr 
priority class, as will be explained below. Note that some actions in the figure do not depend on other car.\; I'or 
example, red lights always stop the robot. 

Approaching traffic. The second part of ROW evaluation is analyzing the robot's situation relative to other cars. 
This situation depends on the position and speed of the robot and other cars, and the relative position of the approach 
roads. Figure 4.16 shows how this information is combined with traffic control information to decide the RoW with 
respect to each car. For each approach, Ulysses looks up the road to find the first car in cach lane. The road to llic 

right is ignored if the robot is turning right, as is the directly opposing road unless the robot or approaching car arc 
turning left. Looking "up the road" essentially requires the perception system to find a corridor along a tliI'li.rcnt 
road. If the perception system does not find a car, Ulysses makes ROW decisions as if there were ;I car a t  tlic riiiigc 

l imi t  of the sensors or of sight distance. This hypothetical car is assumed to be going a littlc I'iistcr tIi;iii tlic 

prevailing speed of traffic. If the approaching car is going too fast to stop before the intersection (assuming ;I 
nominal braking rate), Ulysses always yields the ROW. On the other hand, if the car is very far away froin llic 

intersection, Ulysses will ignore it. "Very far away" means that the time it will take the robot to cross the 
intersection at its current acceleration rate is less than the time it will take for the other car to reach the intcrscclion. 

If none of the above conditions exist, then Ulysses further analyzes ROW based on traffic control ticviccs ;irid ilic 

movements of the other cars. First, Ulysses guesses the traffic control for the approaching car. To do this, thc  
perception system must look at the side of the approach road for a sign (the back side of a sign). If here is 110 sign, 
and the robot is facing a traffic light, Ulysses assumes that the approaching car also has a traffic light. I f  thc car is 
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Green signal I OR Nothing 

5 1  

Use ROW rules 
(see Figure 3-1 5) 

I Action Traffic Control 

Yield sign, 
OR 

Nothing and on Minor Rd 

Yield to traffic with Green or 
no traffic control; 
otherwise use ROW rules 
(see Figure 3-15). 

I Red signal 

Stop sign, 
OR 

turning right at Red 
signal when allowed. 

Stop at intersection 

Stop at intersection; 
then proceed using 
ROW rules (see 
Figure 3-15) 

increasing priority 

IF Wait-state is "normal" 
AND 
robot can stop at intersection 

THEN 
treat as Red signal 

ELSE 
treat as Green signal. 

Table 4.3: Actions required by four classes of Traffic Control Devices. 

approaching from a cross street, the light is assumed to be red (when the robot's is green), and otherwise grccn.' 
Once the program has an estimate of the approach car's traffic control, it compares the control to t h a t  facing ilic 

robot. If they are not equivalent, then the vehicle with the lowest priority signal is expected to yield the Row. 

If the traffic control for the approaching car and the robot are equivalent, Ulysses performs further analysis o f  tlic 
situation. If the approaching car is close to the intersection and stopped, the program assumes that it is waiting for  a 
gap in traffic. In the case of a Stop sign, the robot takes the ROW if the approaching car is not yet waiting. 
Othcrwise, if one or both vehicles are moving, then the robot yields the ROW to cars on the right, and to cars alicad 
when the robot is turning left. If both the robot and the approaching car are stopped and waiting lo r  ;I gap, [lien tlic 
drivers must use some deadlock resolution scheme to decide who goes first. In human drivers wc have itlcn~ificd 
four such schemes, as illustrated in Figure 4.17. Humans use different schemes, dcpending on the local custom :ind 

thc driver. Ulysses bases its decision only on road configuration; it will use thc first-arrive, first-leave tcchniquc :is 
well when we better understand how to recognize the same cars in images taken at different times. 

Aftcr determining the requirements of the traffic control devices and evaluating the traffic situation, Ulysscs may 

I 

2'Ihis is a particularly clear example of how the explicit, computational rules in Ulysses elucidate the infonnation rcquircrncnt.; 01' driviiig 
Drivers must make assumptions about the TCD's controlling other cars, and sometimes make errors if their assumptions are wrong. 
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I 

Base ROW on 
road configuration 

Figure 4.16: Right of Way decision process. 
’R’ is the robot, ’C’ is the other car. 

t 
R 

create an acceleration constraint and update the wait state. Figure 4.18 shows the conditions for changing st;itcs and 
for constraining the robot to stop at the intersection. Note that once the program has decided to accept ;I gap and 
take ROW, only the presence of new cars in the robot’s path will cause it to stop again. 
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Yield to car on right Left turn yields to 
opposing traffic 

a. Road Configuration 

c. Opportunity. Car A is blocked by car 
B, so car C can proceed. 

b. Order of arrival. ( t# is the 
time of arrival) 

d. Driver aggressiveness. Driver in car 
A is most aggressive. 

Figure 4.17: Right of Way deadlock resolution schemes. 
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Figure 4.18: Changes in the Wait state at an intersection. 

4.3.1.4 A Multi-lane Intersection Approach 
The driving situations considered so far have not included streets with multiple lanes. With this complication, 

Ulysses must generate lane use constraints and make lane selections. We first consider the simple case of multiplc 
lanes at an intersection, as depicted in Figure 4.19. In this scenario there is no other traffic on the same road as thc 
robot. 

As the robot approaches an intersection, constraints on turn maneuvers from different lanes-which we gcncriilly 
rcfer to as lane chunnelizution- determine the lane-changing actions that Ulysses can take. Ulysscs dctcrmincs i f  
thc channelization of the robot’s current lane is appropriate, and looks for a better lanc if i t  is not. Channclization is 
cstimated first by finding the position of the current lane at the intersection. If i t  is thc Icft-most lanc, then ~ h c  
program assumes that a left turn is allowed from the lane; similarly with right turns if i t  is thc right-most hnc. 
Through maneuvers are allowed from any lane by default. Ulysses also looks for signs and road markings to inotlil‘y 
i l s  assumptions about channelization. 

If the robot’s intended maneuver at the intersection is not allowed by the channelization of the robot’s ctirrcnt. 
lane, Ulysses generates an acceleration constraint to stop the robot before the intersection. Figure 4.20~1 illuslratcs 
this constraint. Ulysses estimates the minimum distance required to change lanes (from the width of thc laiics and 
thc robot’s minimum turn radius) and stops the robot that far from the intersection. The program next dccidcs in 
which direction the robot should move to correct the situation, and looks to see if there is a lanc on that sidc of tlic 
robot. If there is a lane, Ulysses constrains the robot to take a lane-change action in that direction. As a pIactical 
mattcr, solid lane lines are ignored, because making a turn from the correct lane is morc importanl Lhan stricily 
obeying these lane-change restrictions. Since there is only one allowed action, no sclcction prcfcrcnccs nccd tc  
considered. 

Once a lane-changing action is started, Ulysses makes sure that the robot completes the maneuvcr bcforc i t  cntcrs 
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Figure 4.19: Robot observation of lane positions and markings at a multiple 
lane intersection approach. 
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a) Constraint before lane change b) Constraint during lane change 

Figure 4.20: Channelization acceleration constraints. 
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thc intcrsection. The program does this by generating an acceleration constraint that slows thc robot t o  21 l o w  \pcctl 
a t  the minimum lane changing distance described above. Figure 4.20b shows this constraint. The low spccd I \  wt 
to kccp the lateral acceleration on the robot below a certain threshold when turning with min imum radius. 'T'lic 

lanc-changing constraint is conservative, but our model of operational control does not provide Ulysscs with cnough 
information about the lane changing maneuver to predict just when it will be complctc (SCC description of 
operational level, below). By driving at a speed low enough to use the minimum turn radius whilc far cnough froni 
the intersection, Ulysses guarantees that the maneuver can be completed. 

With multiple lanes the driving program recognizes that there may be different signal indications for  d i l ' l c w n t  
lanes. Ulysses looks across the intersection from right to left and attempts to find all of thc signal hcnds. It' tlic 

robot is turning, Ulysses uses the indication on the head on the side of the turn. Othcrwisc, Uysscs trics to I'iiid IIic 
hcad most nearly over the robot's lane. 

When Ulysses decides to initiate a lane change, it sets a Lane Position state variablc to Init-Left or Iiiit-Right 
appropriately. Figure 4.21 shows these state transitions. The program does not consider lanc sclcction in  lurtirc 

*Tactical level finds robot 
back in one lane again 

I I 
(Right) ( W t )  

t 

Follow Lane lnit Left b Changing Left 
I- - 

Tactical level initiates 
lane change 

Tactical level sees 
robot crossing lane line 

Figure 4.21: State changes during lane changing. 

dccision cycles while in one of these states. This state variable also helps to guide the perception functions when Ihc 
robot is between lanes. Once a lane change is initiated, the operational control subsystem moves thc vchiclc to the 
ncw lane without further direction from the tactical level. When the robot is straddling a lane line, the stiitc changcs 
to Changing Left (Right). When tactical perception no longer sees the robot between lanes, thc statc rcvcrts to 

Follow Lane. 

4.3.1.5 A Multi-lane Road with Traffic 
The next scenario is a highway far from an intersection. Unlike the first scenario abovc, this om is coniplicatcd 

by multiple lanes. Figure 4.22 shows some of the new considerations involved. First, a lane m a y  end cvcn wirliotii 
an intersection. Ulysses detects this in much the same way as it detects a complete road end, and crcatcs an 



Figure 4.22 Multiple lane highway scenario. 
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acceleration constraint to stop the robot before the end of the lane. This constraint disappears aftcr thc robot 
changes lanes. Multiple lanes also make car following more complex. If the car in front of the robot is bctwccn two 
lanes, Ulysses maintains a safe headway to that car but also looks for another car in the lanc. If thc robol is ilscll 
changing lanes, the program looks ahead for cars in both lanes until the robot has clcared the old lanc. 

The three lane actions available to the robot are following the current lane, moving 10 thc right, o r  or moving lo 

thc left. Moving to the left does not currently include moving into the opposing lanes; thus Ulysscs cnnnot ycl 
ovcrtake when there is only a single lane in each direction. Ulysses generates contraints a n d  prclcrcnccs for  
changing lanes if certain traffic conditions exist. Figure 4.23 shows the important conditions: a(ljaccnt lanes, gaps 
in traffic in adjacent lanes, blocking traffic in the robot’s lane and blocking traffic in adjacent lanes. In this sccnario, 
the program does not need to consider channelization. 

Table 4.4 shows the constraints and preferences for each traffic condition. Thc abscncc of adjaccnt lanes o r  
broken lane lines or gaps in traffic eliminates the option to move to adjacent lanes. Ulysscs gcncrally prefers ilic 

rightmost lane to others. Traffic blocks the robot if the acceleration allowed by car following is signil’icun~ly less 
than acceleration allowed by other constraints. Blocking traffic creates a preference for an adjaccnt lanc 1 1  ilic 

acceleration constraint in that lane is significantly higher than the car following constraint in thc ciirrciit I;m. 
Ulysscs estimates the allowed acceleration in the adjacent lane by hypothesizing what the car following conslrainl 
would be and combining this with the speed limit, lateral acceleration and road end constraints. Thc program 
combines the constraints from various conditions by taking their logical intersection-rctaining only actions tha t  
appear in all constraints. If there is more than one lane action available after constrainls havc bccn combincd, 
prcferences determine which action is chosen. Preferences due to blocking traffic are given priority ovcr thc 
rightmost lane preference. 

Ulysses judges gaps for changing lanes based on two criteria: first, the deceleration requircd of thc robot to CIC;IIC 

a safe headway to the lead car in the other lane; and second, the deceleration rcquircd of thc following c;ir to IC:I\T 
spacc for the robot. The program does not search for a gap farther back in traffic i f  thc adjaccnt one I \  no1 b ~ g  
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Position of robot's 

Figure 4.23: Traffic objects that affect lane changing decisions. 

cnough. However, if the robot is blocked, traffic in the adjacent lane will tend to pass the robot, Lhercby providing 
new merging opportunities. Ulysses also does not have the ability to use a physical "language" (beyond dircctional 
signals) to communicate to other drivers that it is anxious to change lanes. It is thus possiblc that the robot will 
nevcr find a gap if traffic is congested. 

4.3.1.6 Traffic on Multi-lane Intersection Approach 
The next scenario combines the previous two multi-lane cases. This situation, illustrated in Figure 4.24, adds 

channelization constraints to traffic considerations. When the adjacent lane does not permit the robot's iicxt turn ,  
Ulysses must decide whether a pass can or should be made. Similarly, if the robot needs to move to a turn lanc tha t  
has traffic in it, Ulysses must decide whether to merge immediately or wait. Table 4.5 lists the constraints and 
preferences that must be added to those in Table 4.4. When combining preferences, Ulysscs gives the 
channelization demands the highest priority unless the robot is far from the intersection. 

When the robot is near the intersection (d e DFa, in Table 43, it is not allowed to changc lancs to ino\'c away 
from an acceptable ("OK") lane. Thus Ulysses will not attempt to pass a blocking car near an intersection urilcss 
multiple lanes are acceptable. This restriction may cause the robot to get stuck behind a parked vchiclc, b u t  it avoids 
the problem of deciding whether the lead vehicle is really blocking the road or just joining a qucuc that  extends all 
the way to the intersection. 

The "Far from intersection" (d > DFaJ condition in Table 4.5 depends on a distance threshold DFar. When the 
intersection is at least DFar away from the robot, Ulysses can pass blockers rather than staying in a turn lanc. Thc 
threshold distance is properly a function of traffic-how far traffic is backing up from the intersection, whether thcrc 
are gaps in the traffic ahead of the blocker, and how long (distance) the robot would take to complctc a p s s .  
Ulysses determines DFar by estimating passing distance and adding a margin to cover thc othcr conditions. Thc 
margin is a function of the speed limit, but does not explicitly incorporate downstrcam qucuing conditions. 111 ow 
simulated world we have found that the margin needed to minimize inappropriate passing in;incwcrs puis ilic r'otloi 
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AND (R 5 C) 

All I Move Right 

KEY : 

Ti : Arbitrary threshold value. 
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~~~~~ ~ ~~ 

Table 4.4: Lane action preferences for a highway with traffic. 

increasing 
Priority 

2:. 
.:.:. 

in the "near intersection" condition soon after it detects the intersection. 

The presence of traffic introduces additional factors into the tests of blocking conditions. When Ulysscs 
dctermines what acceleration is possible for the robot in an adjacent lane, it must considcr constraints f r o m  lanc 
channelization and intersection traffic control. In effect, Ulysses must hypothesizc the robot in  thc xljaccnt lanc, 
look ahead in a new corridor, and recompute all of the acceleration constraints from that lane. 

When the robot wishes to change lanes because of channelization, but cannot because that lane changc action is 
not allowed (for example, because a gap in traffic is not available), Ulysses changes the robot's Wait statc to "wait 
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Figure 4.24: Decisions at a multiple lane intersection approach with traffic. 

for merge gap.“ This action signals a standing desire to change lanes. When the robot is in this smc, Ulysscs 
adjusts the calculation of the car-following constraint so that extra space is left in front of the robot for mancuvcring. 

4.3.1.7 Closely spaced intersections 
The final complication comes with multiple intersections spaced closely enough togethcr tha t  thcy all aflcci ihc 

robot. Figure 4.25 depicts multiple intersections ahead of the robot and on cross strects. Thc driving knowlcdgc 
alrcady described is sufficient to get the robot through such a situation. This sccnario illustratcs, though, thc 
nccessity of tracing a comdor ahead through multiple intersections, analyzing traffic and traffic control a t  cvcry 
intersection along the corridor, and looking through intersections on cross streets for approaching cars. 

4.3.2 Tactical Perception 
Tactical driving decisions require information about roads, intersections, lanes, paths through intcrscctions, lanc 

lines, road markings, signs, signals, and cars. Our driving model assumes that the robot has a pcrccption subsystem 
that can detect these traffic objects and determine their location and velocity. In addition, thc perccption system 
must estimate the distance to objects, the distance between objects, and the vclocity of cars. Thcrc is niorc 
pcrception at the operational and strategic levels, but we do not address it in this model. 

Tactical driving requires information about spatial relations between objects. When Ulysses looks for a n  ol)jcct, i t  
is rcally interested in objects that have a specific relation to another object. Figure 4.26 illuswales this conccpt. I n  
thc figure, Ulysses is at a point in its analysis where it is looking for cars on the right-hand approach roud at thc 
second intersection ahead. There are at least two ways to find the objects in the desired relations. One way would 
be to detect all cars, and then test each car to see if it was on the road to the right at the intersection. “Thc road to 
the right” would itself be found by finding all roads and checking to see if they connected to the the robot’s road ai  

thc intersection in question. This method would be very difficult because there may bc many cars and roads in rlic 
robot’s field of view, and each one requires significant computation to find and test. 
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OK: Channelization allows robot's intended route 

Table 4.5: Lane action constraints and preferences at an intersection 
with traffic. 

Ulysses uses a different technique to relate objects to one another. The perception subsystcin uses the rcl'crciicc 
object and a relation to focus its search for a new object. In the example above the robot would track the corridor 
ahead to the second intersection, scan to the right to find the approach road, and then look along the road for a car. 
The car detection process is thus limited to a specific portion of the field of view, determined by the ltxcation of the 
road. All objects found are identified implicitly by their current relation to the robot. (This objcct idcntiL'icntion 
method has been called "indexical registration" by Agre and Chapman [21.) Ulysses gathers almost all  of its data 
using these perceptual routines. Table 4.6 lists the perceptual routines used by the program. Although i t  may scciii 
that driving decisions could be made with simpler, more general sensing functions, Figure 4.26 shows that very 
simple sensing is not sufficient; "detect converging objects to the right," for example, cannot distinguish bctwccn the 
two intersections. 

Thc perception subsystem uses markers to provide reference points for the perceptual routincs. O u r  simplc niodcl 
of sensing currently assumes that one image-a snapshot picture of the world-is taken each tiinc Ulysscs rcpcats 
its decisions. Markers are placed in an image as a result of running perceptual routines that can mark cars, lane 
cndings or beginnings, signs, markings, signal heads, or other locations. The markers are essentially names tha t  
different perceptual requests can use for the objects in an image. In the example of Figure 4.26, various routincs 
would put markers in the corridor where it enters and leaves intersections. When Ulysses analyzcd tlic sccond 
intcrscction, a routine would mark the approach roads. Finally, when Ulysses had to look for the approaching car ;II 

tha t  intersection, it would start a car detection routine and provide the marker for the approach road on thc riglit. 
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Figure 4.25: Visual search through multiple interscctions 

Even using the routines described above, perception remains very difficult for a robot. Tactical perception in  
Ulysses is a focus of our ongoing research. 

4.3.3 Other Levels 

3.3.3.1 Strategic Level 
The strategic level of our model is very simple and serves only to provide a route plan to the tactical Icvcl. Fiyrrc 

4.2 shows that perception at the strategic level looks for landmarks that mark the progrcss of thc robot along illc 

route. Ulysses currently assumes that the route at every intersection is provided by some map-bascd planncr, ml 
thcrefore uses only intersections as landmarks. A more sophisticated route maintaincr would usc street signs, roiltl 

configurations, buildings, etc. to locate the robot in the map. 
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Figure 4.26: Searching for a car approaching a downstream intersection 
from the right. 

4.3.3.2 Operational Level 
The operational level makes emergency reactions and executes commands passcd down from thc Lietical Icvcl. 

The operational level is assumed to have its own perception functions to detect emergencies and provide fccdback to 
the actuator controllers. Emergency reactions include avoiding collisions with nearby objects and kecping thc 
wheels away from road hazards. These are considered emergencies because the tactical level is rcsponsiblc Tor 
finding problems in the distance. The tactical model uses four operational functions to execute the commands it 
generates. These functions are maintaining an acceleration, tracking a lane, changing lanes, and mvcrsing a n  
intcrsection. 

Acceleration. The operational level keeps the vehicle’s acceleration at the value cornmandcd by thc tnctical Icvcl. 
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Find current lane 

Profile road 

Mark adjacent lane 

Track lane 

Find next lane mark 

Flnd next sign 

Find next car 

Find path in intersection 

Find next car in intersection 

Find intersection roads 

Find signal 

Find back-facing signs 

Find crossing cars 

Distance between marks 

Table 4.6: Perceptual routines in Ulysses. 

Spccd control is not used because an instantaneous change in speed requires an infinite iinpulsc of forcc, wliilc a 
change in acceleration requires only a step change in force. Vehicle dynamics dictate that an operational conLrollcr 
is more likely to achieve the latter. The choice of control variables is not crucial to the model. However, wc cxpcct 
that it might be difficult in some robot implementations to provide frequent command updates at thc tactical Icvcl, 
so acceleration commands would prove to be more convenient. 

Lane Tracking. The operational level is assumed to be able to drive the robot down a lane without intervcntion 
from the tactical level. This function involves only steering, as do lane changing and interscction travcrsal. As 
dcscribed earlier, the tactical level adjusts the speed independently to keep lateral accelcrations within limiis on 
turns. 

Lane Changing. Lane changing requires the operational level to detect the adjacent lanc and begin ii tloublc-curvc 
mancuver to move the robot over. When the robot reaches the new lane, lane tracking automatically lrikcs o\w. At 
most speeds, the steering angle is adjusted to limit the robot’s lateral acceleration to a safe value. This constraint 
rcsults in a lane change maneuver that takes a roughly constant amount of time, independent of spccd. Thc ri\ctic:\l 
level can use this fact to estimate the length of a lane change. However, if the robot is changing spccds (c.g., 
braking while approaching an intersection), it is impossible to predict exactly how far the robot will travel during thc 
mancuver. At low speeds, robot can only increase the steering angle to the physical stops of the vchiclc. This ariglc 
dctcrmines the minimum lane change distance for a given road width. 

Intersection Traversal. Since intersections generally do not have marked lanes, h e  operational systcm is rccluircti 
to find a path to the given departure lane and drive the robot along the path. As with the olhcr operational funciions, 
there are several ways this may be accomplished. We expect that the robot would follow an imaginary path crcatctl 
from general knowledge about the size of the intersection, and then start up lane tracking when the new lanc bccamc 
clearly visible. 
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4.3.4 Summary 
Ulysses is a computational model of driving implemented as a computer program. I t  emphasizcs thc tncticiil 

Icvel. Strategic functions are limited to providing a route plan step at every intersection. The opcrutioual Icvcl 
abstractly implements tactical commands. 

Ulysses can drive the robot in traffic on multi-lane roads, through intersections, or both. Driving knowlcdgc is 
cncoded as constraints and preferences. Ulysses looks for lane endings, curves, spced l i m i t  signs, anti other cars to 
constrain the robot's acceleration on a road. When approaching an intersection, the program dirccts llic pcrccption 
subsystem to look for signs, signals, markings, other roads, and approaching traffic as well as lhc gcncral road 
features just mentioned. Ulysses determines the semantics of the traffic control devices and the road con figurntion 
and decides whether the robot has the right of way to enter the intersection. Stop signs and conflicting trallk ciiusc 
the robot stop and then enter a waiting state until traffic clears or the signal changes. The program also cvalua~cs 
lane channelization, potential speed increases in adjacent lanes, traffic in adjacent lanes, and lane position to clccidc 
whether the robot should change lanes. Additional acceleration constraints prevent the robot from approaching ihc 
intersection in the wrong lane or in the middle of changing lanes. 

Ulysses uses demand-driven perception. The robot looks at the world frequently so that it can rcspond quickly io 

changing traffic situations. The model uses perceptual routines and visual markers to find traffic ot).iccis \villi tlic 
appropriate spatial relationships to the robot. 

4.4 The PHAROS Traffic Simulator 
Our motivation for creating a driving model was to describe how to drive an autonomous vchiclc. Actually 

driving a vehicle requires that the driving model be made concrete. The model must spccify how all knowlcdgc is 
cncoded and how information is processed. In the preceding section we described how this is donc in our modcl. 
However, the proof of the pudding is in the eating- descriptions cannot drive real vehicles. Our first siep toward 
using our model on a real robot has been to implement the model in a computer program, Ulysscs, and drive ii 

simulated robot in a simulated traffic environment. PHAROS is the traffic simulator wc devclopcd for this w o r k .  

There are several advantages to driving in simulation before trying to drive an actual vchiclc. First, a siniulalor is 
flexible. It is possible to generate almost any traffic situation to test various kinds of driving knowledgc. Tlicsc 
situations can be recreated at will to observe how new driving knowledge changes a vehicle's bchavior. Simulalors 
arc also convenient, because simulated driving is not dependent on working vehicle hardware, convcnicni test sitcs, 
or weather. Finally, simulated driving is safe and avoids the problem of placing other drivers at risk whilc tcsling 
the robot. 

Figure 4.27 shows how PHAROS and Ulysses work together. PHAROS maintains a database describing ilic 

strcci environment and records for each car. PHAROS also controls the behavior of thc simulatcd cars, which \vc 

call zombies. The simulator executes a decision procedure for each zombie to determine its actions, and ihcn iiio\x\s 
il along the street. A robot is simulated by replacing the decision procedure wiih an inicrfacc to Ulysscs. Ulys.sc.s 
runs as a separate program-sometimes on a different computer-and gets perccptual informalion by sending 
rcqucsts to PHAROS. The interface simulates the perceptual routines described exlicr. Aficr Ulysscs has the 
information it needs, it sends commands through the interface to the vehicle record. PHAROS thcn inovcs the robot 
using the normal movement routine. The requests for (simulated) perception and the commands for (simulatcd) 
conlrol are the only communications between Ulysses and PHAROS. This arrangement ensures that Ulysscs cannot 
"cheat" by examining the internal state of the simulator. 

The remainder of this section discusses the representation of the street environment, the driving dccisioiis inatlc 
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Figure 4.27: Ulysses control of a vehicle in PHAROS. 

by the zombies, and the general operation of the simulator. 

4.4.1 The Street Environment 
PHAROS is a model of the street environment. All models of the world use abstractions so they can capturc just 

the important characteristics of a problem. Model designers must find a compromise between model accuracy and 
excess complexity. We have attempted u, encode many characteristics of the strect domain into PI-I AROS, 
including enough geomemc information to study the perceptual requirements of driving. Whilc PHAROS includes 
many traffic objects, it uses strong abstraction and structure to simplify their description and use. 

PHAROS represents traffic objects with abstract symbols augmented by a few parameters to providc important 
details. Figure 4.28 illustrates how some objects are encoded. A curved road segment is describcd by a cubic spline 
(8 parameters) and a road width. A sign is represented by a type (one of 8), an identifying number, and a position 
along the road. The general shape and color of the sign is determined by its general type; the lateral distance from 
the road edge is assumed to vary only a little, so is not encoded at all. PHAROS describes a signal hcad by its 
location at the intersection (one of 5 generic positions), whether it is vertical or horizontal, the numbcr of Icnscs, thc 
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I 
I 1 I 

Location Orientation # Lenses Lens symbol Lens color 

Red 0 Yellow 
Green 

(or 
combination) 

Figure 4.28: Examples of traffic object encodings. 

symbols on the lenses, and the color of the lenses. 

PHAROS groups traffic object symbols into structures to give them meaning for driving. It would bc difficult  to 
determine how streets connected or whether a car could move to an adjacent lane if the lane and line objccis i n  thc 
database were not organized. PHAROS connects objects to one another to form hierarchies and networks of rclatcd 
objects. Figure 4.29 shows how different street objects are connected to one another. 

The abstraction and structure used in PHAROS limit the accuracy with which i t  can simulatc thc world. For 
cxample, PHAROS cannot easily simulate roads without marked lanes. PHAROS vehicles cannot abandon thc I:w 
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Intersection 

Lane -width 

I 

Figure 4.29: Structure of street objects. 

abstraction to drive around a broken down vehicle at an intersection. However, our rcprcscntiition schcnic docs 
allow PHAROS to simulate many common traffic situations on highways and arterial strccls. Wc also I‘ccl that thc 
scheme could be extended to deal with situations that are beyond the current abstraction. Similarly, thcrc arc scvcral 
types of traffic objects missing from PHAROS’ world-pedestrians, cyclists, blinking signals, ctc. Futurc versions 
of PHAROS may include such objects. 

4.4.2 PHAROS Driving Model 

are several differences between Ulysses and the PHAROS-controlled zombies. 
perception, interpretation, and speed control. 

The driving decisions made by the zombies are based on the logic in the Ulysses driving modcl. Howcvcr, ilicrc 
Thc key differences ;ire in 

Perception. Zombies are not required to use simulated perception to get information from the siinulatcd world. 
When PHAROS is running the decision procedure for the zombies, it uses the data structures directly. For cxaniplc, 
to find a vehicle across the intersection from a zombie, PHAROS traces symbolic links from thc zombic to its road, 
to the connecting road ahead, and to the rearmost car on that road. Tracing these pointers in the data structures is 
similar in concept to running perceptual routines, but much simpler in practice. 

Interpretation. Several traffic situations that Ulysses encounters are difficult to interpret. Some situations, such 
as determining the traffic signal for other approaches or the intended turn maneuver of anothcr car, are problcmalical 
for Ulysses because they cannot be observed directly. This type of problem is simple for PHAROS, t ~ c c n u ~ c  
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zombies have access to the entire database and are not limited by what they can see. This acccss cxtends cvcn to 
cxamining the internal state of other zombies. Other situations, such as deciding which signal hcad applics to the 
robot's lane, require several observations followed by a reasoned guess. Some situations arc complcx cnough t h a t  
wc cannot yet describe how to recognize them. For example, we stated earlier that Ulysscs cannot tell whctlicr ;I 

blocking car in front of the robot is really broken down or merely part of a queue that extends to thc intcrscctioii. 

PHAROS shortcuts these difficult interpretation problems by encoding the semantics ol' situations directly iiiio t l i c  

database. For example, the traffic control for each lane is provided as part of the input data for the simulation and is 
storcd with the other characteristics of the street. Lane channelization is also providcd extcrnally and stored. 
Zombies determine if the car in front of them is in a queue simply by checking that car's "Queue" suitus; a zoiiihic 
sets its own status to "enqueued" if it is close to the car in front and the car in front is already in a qucue. Thc direct 
cncoding of interpreted information, as well as the availability of physically unobservable statc inrormation, allows 
PHAROS to move zombies realistically without the complete expertise of a human driver. 

Speed control. PHAROS drivers are allowed perfect perception and access to special information so that they can 
choose actions as realistically-i.e., with human competence-as possible. However, zombics txhavc 
unrealistically if they are allowed to control speed too well. Therefore, PHAROS incorporates a reaction dclay into 
zombie speed control. When zombies wish to decelerate quickly, they must switch to a braking "pcdal" (SIiiIc), and 
when they wish to accelerate again they must switch to an accelerator "pedal." Thcrc is a dclay of 0.8 s, on : iv~mgc, 
in switching between pedals. This imposed reaction delay, when combined with thc car-following la\v a l r c x l y  
discussed, results in fairly realistic behavior during car following, free-flow to car following transitions, frcc-llow to 

cnqueued transitions, and queue discharge. 

4.4.3 Simulator Features 
Inpuf. PHAROS generates a street database from a data file that it reads in at the start of cach siinulaior run .  

Since PHAROS can represent a lot of detail in a variety of traffic objects, the data file can bc fairly complcx. Tlic 
PHAROS user must encode the desired street environment into symbols and numbers and typc thcrn in to  ilic file. 
Figure 4.30 shows an example of how one face of a traffic signal head is encoded. The terms "I'acc" and "lcns" ;ire 

face vertical 5 L9 LEFT-MARGIN 0 0 
lens RED SIGNAL SC-SOLID 8 1 1 1 1 1 0 0 1  
lens AMBER SIGNAL SC SOLID 8 0 0 0 0 0 0 1 0  
lens GREEN-SIGNAL SC-SOLID 8 0 0 0 0 0 1 0 0  
lens AMBER-SIGNAL SC-LEFT TURN 8 0 0 0 0 1 0 0 0  
lens GREENISIGNAL SCILEFTITURN 8 0 0 0 1 0 0 0 0  

Figure 4.30: Example of signal head encoding in PHAROS data file. 

keywords. The first line indicates that there are 5 lenses on this face of the signal head, that thcy arc arriingcti 
vcrtically, and that the head is located on the left shoulder of the street named "L9." If the head wcrc dirccily ovcr ;I 
lanc, the last two numbers on the first line would indicate which lane and where along thc lane thc hcnd wiis located. 
The remaining lines describe each lens. The information includes the color, symbol, a n d  diamcter ol' the Icns, ;ind 

whcther the lens is lit in each phase. 

Encoding and typing this information is tedious and error-prone for multi-intersection networks. A future vcrsion 
of PHAROS should include a graphical input interface that generates the file automatically from pictorinl 
dcscriptions. 

7i'me. PHAROS has features of both a discrete time and a discrete event simulator. Some events, such as zonibic 
crcation and traffic signal changing, happen at irregular intervals; others, such as updating the positions o f  \~cliiclcs, 
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occur at regular intervals. PHAROS maintains an event queue that keeps track of both types of events. Tlic 
position-update events compute the vehicles' new positions exactly from their (constant) accclcrations ovcr tlic 
preceding time interval. 

Display and user interaction. The output of PHAROS is an overhead view of the street environment with an 
animated display of the vehicles. This graphical output provides us with our primary means of cvaluating thc 
behavior of both zombies and robots. Figure 4.31 is a picture of the computer screen while PHAROS is running. 

Figure 4.31: The output display of PHAROS. 

The figure shows a black-and-white approximation of the computer's high-quality color display. In the lowcr-lclt 
comer is a window showing the entire street network schematically. A portion of the network (enclosed by a small 
rectangle in the schematic) is drawn at larger scale in the top-center of the screen. Cars are visible as whilc 
rectangles, with dark regions at the rear showing brake lights and directional signals. The small window to the riglit 
of the network schematic shows simulator time. A user can interactively pan and zoom around the slrccts to 
examine various areas in more detail. It is also possible to select individual zombies and trace thcir dccision 
processes. The simulator can be paused or stepped one decision cycle (100 ms) at a time. 

To simulate a robot, a user selects the "button" on the screen marked "create;" PHAROS then pauses a n d  asks 
where the robot should be injected into the street network. The robot is rendered in a unique color. Wc havc crcatcd 
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various displays to study the activity of Ulysses, including the location of each mark created by the perceptual 
routines, a count of the number of perceptual requests, and a chart of perceptual activity in each direction. 

Performance. The simulator is written in C and runs on a Sun workstation under Sunview. A Sun 4/40 can drive 
about 30 zombies 3 times faster than real time. With Ulysses driving a robot, the simulation runs much slowcr t h a n  
real time. The slowdown is due to the large number of messages that must be passed between the Ulysscs and 
PHAROS and the frequent switching of control between the programs. 

PHAROS has be invaluable for us in our research on robot driving. It allows us to test driving decision 
procedures and examine perception and information flow in Ulysses. PHAROS has been sent to several other sitcs 
doing research in driving, robotics, and artificial intelligence. 

4.5 Conclusions 
Research in autonomous vehicle technology in the past 30 years has provided vehicles that can compctcntly 

perform operational driving tasks. Although computers can also plan errands and find routes, they cannot makc the 
immediate decisions necessary to drive in traffic. Ulysses is a model for driving that describes how to pcrform thcsc 
tactical tasks. Ulysses incorporates driving knowledge that describes how various traffic objects and situations 
constrain a vehicle’s actions. This knowledge recognizes situations from specific relations among physical objccts. 
Ulysses includes tactical perceptual routines for finding these objects in the world and relating them to the vehiclc. 
The model is implemented as a computer program so that it may be developed and tested objectively; it is currcntly 
used to drive a robot in the simulated world of PHAROS. 

Ulysses was designed to drive safely in the PHAROS world. Our goal was to prevent the simulated robot I’rom 
having or causing accidents, and from unnecessarily constraining itself to stop. We have achieved this goal for 
several traffic situations, including different types of intersections, multiple lane roads, and freeway intcrchangcs 
with light traffic. Future improvements to Ulysses might include new behaviors such as overtaking, improvcd 
merging, or “edging“ into an intersection while waiting for a gap. A more significant improvemcnt in tiriving 
knowledge that we have not yet examined closely is the analysis of nearby traffic to predict how other cars will 
move. This analysis would involve the detection of many other cars, the abstraction the relative motions of the cars, 
and the projection of the motions into the future. Eventually the model must be combined with a strategic driving 
program; the parameters in Ulysses would then be determined by variable strategic goals, such as time strcss, 
pleasure in driving, worry about citations, fuel efficiency, etc. PHAROS and Ulysses could also be expandcd to 
include more objects such as blinking signals, activated signals, bicycles, pedestrians, roads without lanes, and 
different vehicle types. 

Rather than adding more sophisticated driving knowledge, our more immediate goal is to determine how ii rcal 
robot can perform the basic tactical tasks. As Ulysses drives a robot in PHAROS, it generates many pcrccptual 
requests. Machine perception is very expensive computationally, so it is important to find ways to minimize thc cost 
of the requests. We are studying ways to take advantage of the coherence of situations over time and the diffcrcncc 
in criticality of constraints to eliminate unnecessary requests. In the future we will study how a resource-limited 
robot might choose the best perception and constraint-generation actions to perform when it cannot perform thcm 
all. We would also like to model uncertainty in sensing and interpretation explicitly, and empower Ulysscs to 
choose actions with the maximum expected utility. Finally, a truly intelligent driving model should bc ablc to lcarti 

how to improve it behavior as it gains experience driving. 

Ulysses has four major strengths as a driving model: it comprises many driving tasks; it models individual 
drivers; it is grounded in (perceived) physical objects and operational maneuvers; and it specifies how to comptiic 
actions from perceptions. Of these characteristics, physical grounding and explicit computation are probably thc 
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most important. They allow the model to be designed and used objectively, independent of human interpretation. A 
computational model can help to detect problems that human designers may not see. For example, we describcd 
carlier how Ulysses looks at the backs of Stop signs facing the cars on cross streets. We did not plan to includc such 
a perceptual action in Ulysses, but after the intersection rules were encoded it became clear that this information is 
necessary for determining right of way. None of the driving task descriptions we studied-including the McKnighl 
analysis [26], and the official driver's manual [8] and vehicle code [25] for our state-call for this action. A model 
such as Ulysses can predict a driver's real information needs in any situation. 

The characteristics described above make Ulysses uniquely suitable for driving an autonomous vehicle. l'hcy 
also give Ulysses the potential to contribute to general driving research. Research in driving seeks to answer many 
questions that apply equally to a robot and human driver, such as "How can a driver learn to make better decisions?" 
and "what information should be provided along roads to make driving easier?" We can answer these questions if 
we have an accurate, concrete driver model. We feel that computational driver models will prove to bc invaliiablc 
tools for driving research. 
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5. Combining artificial neural networks and symbolic processing for autonomous 
robot guidance 

5.1 Introduction 
Artificial neural networks are commonly employed as monolithic non-linear classifiers.’ The techniquc, oftcn 

used in domains such as speech, character and target recognition, is to train a single network to classify input 
patterns by showing it many examples from numerous classes. The mapping function from inpuLs to outpu~s in  
these classification tasks can be extremely complex, resulting in slow learning and unintclligiblc intcrnnl 
representations. 

However there is an alternative to this monolithic network approach. By training multiple nctworks on diffcrcnt 
aspects of the task, each can learn relatively quickly to become an expert in its sub-domain. This chaptcr dcscribcs ;I 
technique we have developed to quickly train expert networks for vision-based autonomous vehicle control. Using 
this technique, specialized networks can be trained in under five minutes to drive in situations such as singlc-lanc 
road driving, highway driving, and collision avoidance. 

Achieving full autonomy requires not only the ability to train individual expert networks, but also the abiliiy to 
integrate their responses. This chapter focuses on rule-based arbitration techniques for combining multiple drivi i ip  
experts into a system that is capable of guiding a vehicle in a variety of circumstances. Thcsc tcchniqucs ;ire 
compared with other neural network integration schemes and shown to have a distinct advontagc in domains M Iii\rc 

symbolic knowledge and techniques can be employed in the arbitration process. 

5.2 Driving Module Architecture 
The architecture for an individual ALVINN driving module is shown in Figure 5.2. The input layer consists of a 

single 30x32 unit “retina” onto which a sensor image from either the video camera or the laser rangc findcr is 
projected. Each of the 960 input units is fully connected to the hidden layer of 5 units, which is in iurn fu l ly  
connected to the output layer. The 30 unit output layer is a linear representation of the currently appropriatc siccring 
dircction. The centermost output unit represents the “travel straight ahead” condition, while units to ihc left and  
right of center represent successively sharper left and right turns. The steering dircction dictatcd by tlic nciworh 
may serve to keep the vehicle on the road or to prevent it from colliding with nearby obsiaclcs, dcpcnding on ilic 
type of sensor input and the driving situation the network has been trained to handle. 

To drive the Navlab, an image from the appropriate sensor is reduced to 30 x 32 pixels and projectcd onio tlic 
input layer. After propagating activation through the network, the output layer’s activation profile is translatcd into 
a vehicle steering command. The steering direction dictated by the network is taken to be the center of mass of ihc 
“hill” of activation surrounding the output unit with the highest activation level. Using the center of inass 01‘ 
activation instead of the most active output unit when determining the direction to steer permits fincr stcering 
corrections, thus improving ALVINN’s driving accuracy. 

’A previous version of this chapter is accepted for publication in the Joumal of Engineering Applications of Artificial Intelllgencc, u ith Ihc 
same title. authored by Dean Pomerleau. Jay Gowdy. and Charles Thorpe 



78 ANNUAL KEI’OKT 1991 

straight sharp 
Ahead Right 

Figure 5.1: The archilecture for an individual ALVINN driving module 

5.3 Individual Driving Module Training And Performance 
We have developed a scheme called training “on-the-fly” to quickly teach individual modules to imitate tlic 

driving reactions of a person. As a person drives, the network is trained with back-propagation using the l a m t  vidco 
camera image as input and the person’s current steering direction as the desired output. To facilitate gcncralization 
to new situations, additional variety is added to the training exemplars by shifting and rotating the original caiiicra 
image in software to make it appear thar the vehicle is situated differently relative to the environment (SCC Figure 
5.3). The correct steering direction as dictated by the driver for the original image is altcred for cacti of illc’ 

H. 

p1 e.. 

Shifted and Rotated Images 

Figure 5.2: The single original video image is shifted and rotated to create multiple training exemplars in which 
the vehicle appears to be at a different locations relative to the road. 
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transformed images to account for the altered vehicle placement. Adding these transformed patterns to thc training 
set allows the network to learn to recover from driving mistakes, without requiring the human traincr to  explicitly 
stray from the road center and then return. For more details about the technique and purpose of training on-the-fly, 
see [ 71. 

Running on three Sun4 Sparcstations, training on-the-fly requires about five minutes during which a pcrson 
drives the Navlab at about six miles per hour over a 1/4 to 1/2 mile stretch of training road. Once it has learned, thc 
network can accurately traverse the length of road used for training and also generalize to drive along parts of tlic 
road it has never encountered under a variety of weather conditions. In addition, since determining the stecring 
direction from the input image merely involves a forward sweep through the network, the system is able to process 
20 images per second, allowing it to drive at up to the Navlab's maximum speed of 20 miles per hourVootnotc(Thc 
Navlab has a hydraulic drive system that allows for very precise speed control, but that prevents thc vchiclc f r o m  
driving over 20 miles per hour.). This is over twice as fast as any other sensor-based autonomous system has tlrivcii 
the Navlab [6,3]. 

Figure 5.3: Video images taken on three of the roads ALVINN modules have been trained to handlc. Thcy arc, 
from left to right, a single-lane dirt access road, a single-lane paved bicycle path, and a lincd 
two-lane highway. 

The flexibility provided by training on-the-fly has facilitated the development of individual driving networks to 
handle numerous situations. Using video camera images as input, networks have been trained to drive on singlc- 
lane dirt roads, single-lane paved roads, two-lane suburban neighborhood streets, and lincd two-lane highways (Sec 
Figure 5.3). 

By replacing the video input with alternative sensor modalities, ALVINN has learned other intcrcsting bchaviors. 
One such sensor onboard the Navlab is a scanning laser range finder. The range finder provides imagcs in  which 
pixel values represent the distance from the range finder to the corresponding area in the scene. Obstuclcs such ;IS 

trees and cars appear as discontinuities in depth, as can be seen in the simulated range finder image at the bottom of 
Figure 5.3. Using this sensor, separate ALVINN modules have been trained to avoid collisions in obstacle-rich 
environments and to follow alongside rows of parked cars. 

A third type of image used as input to ALVINN modules comes from a laser reflectance sensor. In this type of 
image, a pixel's value corresponds to the amount of laser light that reflects off the corresponding point in thc sccnc' 
and back to the sensor. The road and off-road regions reflect differently, making them distinguishable in the image 
(see Figure 5.3). Laser reflectance images in many ways resemble black and white video images, but have thc 
advantage of being independent of ambient lighting conditions. Using this sensor modality, wc have trained ;I 

network to follow single-lane roads in total darkness. 
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Figure 5.4: Images taken of a scene using the three sensor modalities the system employs as input. From Iclt to 
right they are a video image, a laser range finder image and a laser reflectance image. Obstacles like 
trees appear as discontinuities in laser range images. The road and the grass reflcct dillcrcni 
amounts of laser light, making them distinguishable in laser reflectance images. 

5.4 Symbolic Knowledge And Reasoning 
Despite the variety of capabilities exhibited by individual driving networks, until recently the system has bccn f x  

from truly autonomous. First, the one driving network architecture shown in Figure 5.2 was capablc of driving only 
on the type of road on which it was trained. If the road characteristics changed, ALVINN would oftcn bccomc 
confused and stray from the road. In addition, a real autonomous system needs to be capablc of planning a n d  
traversing a route to a goal. The neural network driving modules are good at reactive tasks such as road lollo\ving 
and obstacle avoidance, but the networks have a limited capability for the symbolic tasks ncccssary I’oI ;in 
autonomous mission. The system of networks cannot decide to turn left at an intersection in ordcr to rcacli a go;il. 
After making a turn from a one lane road to a two lane road, the system does not know that it should stop listcniiig 
to one network and start listening to another. Just as a human needs symbolic reasoning to guide reactivc proccsscs, 
the networks need a source of symbolic knowledge to plan and execute a mission. 

Ideally. the symbolic knowledge source would reason like a person. It would use its knowledge of thc world to 
plan a sequence of observations and corresponding actions to traverse the route. For instance, to achieve lhc goal of 
reaching a friend’s house, the mission description might be a sequences like, “Drive until the sign for Scncca Road  
is seen, and turn left at that intersection. Then drive until the third house on the left is secn, and stop in  front of i t . ”  

In this ideal system, once the mission is planned, the symbolic knowledge sourcc would rely cntirclj, OII  

perception to control the execution of the mission. In other words, the symbolic resource modulc would bc ahlc io 
recognize events and use what it sees to guide the interaction of the networks. The symbolic rcsourcc modulc would 
be capable of reading the street sign at an intersection and making the appropriatc turn to continuc on to irs 
destination. It would also be able to identify the new road type and choose the appropriate network for driving on 
that kind of road. Unfortunately, the perception capabilities required by such a module are beyond Lhc currcnr sutc 
of the art. 

In order to bridge the gap between mission requirements and perception capabilities, we use additional geomctric 
and symbolic information stored in an “annotated map”. An annotated map is a two dimensional data struciurc 
containing geometrical information about the area to be traversed, such as the locations of roads and landmarks. I n  

the map. For example, as far as the annotated map is concerned, a mailbox is simply a two dimensional polygon ai  ;I 

particular location with some extra bits associated with it. The “extra bits” might reprcsent thc thrcc dirncnsional 
shape of the the mailbox, or even the name of the person who owns it. The module which manages thc annotalcti 
map does not interpret this extra information, but rather provides a mechanism for client modulcs to access tlic 

addition, each object in the map can be annotated with extra information to be interpreted by the clicnLs thar ‘CCC‘SS ‘I 
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annotations. This reduces the knowledge bottleneck that can develop in large, completely centralized systems. 

The annotated map is not just a passive geometric database, but instead is an active part of our systcni. Bcsitlcs 
having a 2D representation of the physical objects in a region, annotated maps can contain what arc callcd alarms. 
Alarms are conceptual objects in the map, and can be lines, circles, or regions. Each alarm is annolatcd with a list of 
client modules to notify and the information to send to each when the alarm is triggered. When the annotatcd map 
manager notices that the vehicle is crossing an alarm on the map, it sends the infomation to the pcrtinent modulcs. 
Once again, the map manager does not interpret the information: that is up to the client modules. 

Alarms can be thought of as positionally based production rules. Instead of using perception based production 
rules like, “If A is observed, then perform action B”, an annotated map based system has rules of the form, “If 
location A is reached, then perform action B”. Thus we reduce the problem of making high level decisions from thc 
difficult task of perceiving and reacting to external events to the relatively simple task of monitoring and updating 
the vehicle’s position. 

The first step in building an annotated map is collecting geometric information about the environnicnt. We build 
our maps by driving the vehicle over roads and linking the road segments together at interscctions. At thc siinic 
time, a laser range finder is used to record the positions of landmarks such as mailboxes and telephonc polcs. 
Planning a particular mission requires adding specific instructions to the map in the form of “trigger annolations”. 
This is currently a process performed by the person planning the mission. For example, the human expcrl knows 
that when approaching an intersection, the vehicle should slow down, so the expert chooses the appropriatc location 
to put the trigger line. The trigger line goes across the road at that point, and is annotated with a suing of bits t h a t  
represents the new speed of the vehicle. During the run, when the vehicle crosses the trigger line, thc map managcr 
sends the string of bits to a module that interprets the information and slows the vehicle to the dcsircd spccd. I n  tlic 
current system, alarms are interpreted as commands, but there is no predefined “correct” way for a modulc to rc;icI 
to an alarm. Depending on its content, an alarm could also be interpreted as a wakeup call, or evcn as simply 
advice. 

Because position information is so critical to an annotated map system, we use multiple techniques to dctcrniinc 
the vehicle’s current location. We use an Inertial Navigation System (INS) which can determine the vchiclc’s 
location with an error of approximately l\% of distance traveled [ll.  To eliminate positioning error tha t  
accumulates over time in the INS data, the annotated map system also uses information from perception modulcs. 
For example, since the driving networks presumably keep the vehicle on the road, lateral error in the vcliiclc 
positioning system relative to the road can be identified and eliminated. In addition, a module using the laser rangc 
finder compares the landmarks it sees to the landmarks collected when the map was built, and triangulnm thc 
vehicle’s position on the map. These techniques allow perception modules to provide useful positioning information 
[\em without) requiring them to explicitly recognize and interpret particular objects such as strect signs. Thc 
position corrections provided by perception modules are interpreted as a change in the transform beiwccn thc 
location that the INS reports and the real vehicle position on the map. A separate module, called the navigator, is in 
charge of maintaining and distributing this position transform. 

Annotated maps provide the system with the symbolic information and control knowledge necessary for a fully 
autonomous mission. Since the control knowledge is geometrically based, and since planning is done beforc thc 
mission starts, runtime control comes at a low computational cost. Figure 5.4 shows the structure and interaction of 
the annotated map system’s components. It also illustrates the annotated map system’s intcraction with thc o h x  
parts of the system, including the perceptual neural networks and the arbitrator (discussed bclow). Figurc 5.4 slio\\,s 
a map and annotations for a mission segment. 
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Figure 5.5: The components of the annotated map system and the interaction between them. The annolatcd map 
system keeps track of the vehicle’s position on a map. It provides the arbitrator with symbolic 
information concerning the direction to steer to follow the preplanned route and the terrain thc 
vehicle is currently encountering. The neural network driving modules are condensed for simplicity 
into a single block labeled perceptual neural networks. 

5.5 Rule-Based Driving Module Integration 
We use the symbolic knowledge provided by the annotated map system to help guide the interaction of the 

reactive driving neural networks. Figure 5.5 shows the system architecture with emphasis on the neural nctworks. 
Whereas Figure 5.4 subsumed the neural network systems into one unit labeled “perceptual neural nctworks”, 
Figure 5.5 subsumes the annotated map system into one package. In this diagram, each box represents a sepuratc 
process running in parallel. Images from the three onboard sensors are provided to the five driving networks shown 
in the second row of the diagram. The driving networks propagate activation forward through their wights, \villi 

each determining what it considers to be the correct steering direction. These steering directions arc scnt to thc 
arbitrator, which has the job of deciding which network to attend to and therefore how to steer. 

The arbitrator makes use of both the geometric and control information provided by the annotated map systcm to 
perform a mission autonomously. First, the route following module within the annotated map system USCS thc 
geometric information in the annotated map to recommend a vehicle steering direction. The direction recommcndcd 
by the route follower is the direction it thinks the vehicle should steer in order to follow the preplanned route. When 
the vehicle is driving down a road, the route follower queries the annotated map for the position of the road ahead of 
the vehicle. The route follower uses this geometric information to generate a steering direction. 

The annotated map system also provides the arbitrator with information about the current driving situation, 
including what type of road the vehicle is on, and whether there is an intersection or dangerous pemiancnl obstaclc 
ahead. For example, suppose during the planning phase the human expert notices hat at a particular point thc road 
changes from one lane to two. The expert would set a trigger line at the corresponding point on the map and  
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Figure 5.6: A section of a map created and maintained by the annotated map system. The map shows the vchiclc 
traversing an intersection between a single- and a two-lane road. The lines across the roads arc 
a l m s  which are triggered when crossed by the vehicle. Triggering an alarm results in a mcssagc 
being passed from the map manager to the arbitrator indicating a change in terrain type. The circlcs 
on the map represent the positions of landmarks, such as trees and mailboxes. The annotated map 
system uses the locations of known landmarks to correct for vehicle positioning errors which 
accumulate over time. 

annotate it with a message that will tell the arbitrator to stop listening to the one lane road following nctwork nntl  
start listening to the two lane road following network. When the alarm is triggered during the run, thc arbiuator 
combines the advice from the annotated map system with the steering directions of the neural network motiulcs 
using a technique called relevancy arbitration. 

Relevancy arbitration is a straightforward idea. If the annotated map system indicates the vehicle i s  on a two-lanc 
road, the arbitrator will steer in the dirtxtion dictated by the two-lane road driving network, since it is thc relcvant 
module for the current situation. If the annotated map system indicates the vehicle is approaching an interscction, 
the arbitrator will choose to steer in the direction dictated by the annotated map system, since i t  is thc modulc tl iat 

knows which way to go in order to head towards the destination. In short, the arbitrator combines symbolic 
knowledge of driving module capabilities with knowledge of the present terrain to determine the relevant modulc f o r  
the current circumstances. 

The relevancy of a module need not be based solely on the current terrain information providcd by thc annotaicd 
map system. Instead. the arbitrator also employs rules for determining a module’s relevancy from the content of thc 
module’s message. The obstacle avoidance network has one such rule associated with it. The obstacle avoidnncc 
network is trained to steer straight when the terrain ahead is clear and to swerve to prevent collisions whcn 
confronted with obstacles. The arbitrator gives low relevancy to the obstacle avoidance network when i t  suggcsls a 
straight steering direction, since the arbitrdtor realizes it is not an applicable knowledge source in this situation. Bur 
when it suggests a sharp turn, indicating there is an obstacle in the vehicle’s path, the urgency of avoiding a collision 
takes precedence over other possible actions, and the steering direction is detcrmined by the obswlc avoidaricc 
network. This priority arbitration is similar in many ways to the subsumption architccturc [2], although tlic niost 
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Fipure 5.7: The integxted ALVINN architecture. The arbitrator uses the terrain information provided by thc 
annotated map system as well as symbolic models of the driving networks' capabilities and prioritics 
to determine the appropriate module for controlling the vehicle in the current situation. 

common interaction between behaviors in Brooks' systems is for higher level behaviors to overridc lcss 
sophisticated, instinctual ones. 

By combining map-related knowledge about the current driving situation with knowledge about abilitics and  
priorities of individual driving modules, the integrated architecture provides the system with capabilitics that Tar 
exceed those of individual driving modules alone. Using this architecture, the system has successfully fo l lo \~~d  ii 

1/2 mile path through a suburban neighborhood from one specific house to another. In navigating the routc, thc 
system was required to drive through three intersections onto three different roads while swerving to avoid parkcd 
cars along the way. At the end, the vehicle came to rest one meter from its destination. 

5.6 Analysis And Discussion 
Rule-based integration of multiple expert networks has significant advantages over previously developed 

connectionist arbitration schemes. One such advantage is the ease of adding new modules to the system. Using 
rule-based arbitration, the new module can be trained in isolation to become an expert in a new domain, and rhcn 
integrated by writing rules for the arbitrator which specify the new module's area of expertise and its priority. This 
is in contrast to other connectionist expert integration techniques, such as the task decomposition architccturc [SI, 
connectionist glue [8] and the meta-pi architecture [4]. To combine experts using these techniques rcquires thc 
training of additional neural network structures. either simultaneously with the training of the experts in  the ciisc ol' 
the task decomposition architecture, or after expert training in the case of the connectionist glue and me&-pi 
architectures. Adding a new expert using these techniques requires retraining the entire integrating structure from 
scratch, which involves presenting the system patterns from each of the experts' domains, not just the new onc. This 
large scale retraining is particularly difficult in a task like autonomous navigation because i t  requires eithcr driving 
over all the experts' domains again, or storing a large number of domain-specific images for later reusc. 
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Another significant advantage of rule-based arbitration is the ease with which non-neural network knowlcdgc 
sources can be integrated into the system. Symbolic tasks such as planning and reasoning about a map are currently 
difficult to implement using neural networks. In the future, it should be possible to implement more and more 
symbolic processing using connectionist techniques, but until then, rule-based arbitration provides a way of bridging 
the gap between neural networks and traditional AI systems. 

The technique is not without shortcomings however. The current implementation relies LOO heavily on thc 
accuracy of the annotated map system, particularly for negotiating intersections. The question might be askcd, why 
is the mapping system required for intersection traversal in the first place? Why can’t the driving networks handlc 
intersections? The answer is that when approaching an intersection, an individual driving network will oftcn 
provide ambiguous steering commands, since there are multiple possible roads to follow. If left on its own, a 
road-following network will often alternately steer towards one or the other road choices, causing the vchiclc to 
oscillate and eventually drive off the road. In addition, even if the network could learn to definitively choose one of 
the branches to follow, it still wouldn’t know which is the (\it appropriate) branch to choose in order to head toward 
the destination. In short, the mapping modules can be viewed both as a useful source of high lcvel symbolic 
knowledge, and as an interim solution to the difficult perceptual task of intersection navigation. 

The annotated map system as currently implemented is not a perfect solution to the problem of high lcvcl 
guidance because it requires both detailed knowledge of the route. and an accurate idea of the current vchiclc 
position. In certain controlled circumstances, such as rural mail delivery, the same route is followed rcpcatcdly, 
making an accurate map of the domain feasible. However a system capable of following less precise dircctions, likc 
“go about a half mile and turn left on Seneca Road”, is clearly desirable. Such a system would require morc 
reliance on observations from perception modules and less reliance on knowledge of the vehicle’s exact position 
when making high level decisions. 

Conceptually, this shift towards reliance on perception for high level guidance could be done in two ways. First, 
observations of objects like the Seneca Road street sign, could be used to update the vehicle’s position on thc map. 
In fact, position updates based on perceptual observations are currently employed by the annoratcd map system 
when it triangulates the vehicle’s location based on the positions of known landmarks in lascr rangc imagcs. Bui 
position updates are only helpful when the observations are location specific. For observations of objccts likc stop 
lights, or arbitrarily located objects like “road construction ahead” signs, the system’s rcsponsc sliould bc 
independent of the vehicle’s location. 

These location independent observations could be modeled as positionless alarms in the annotated map. Whcn  a 

perception module sees an object like a “road construction ahead” sign, it would notify the map manager. Thc map 
manager would treat the sighting as an alarm, distributing the information associated with the alarm to thc pcrtincni 
modules. Perception mggered alarms would allow the system to transition between its current perceptual abilities 
and future, more advanced capabilities. 

Although the system is not yet capable of identifying and reading individual signs, we have had preliminary 
success in using neural network perceptual observations to help guide high level reasoning. The technique relics on 
the fact that when the vehicle reaches an intersection, the output of the driving network becomes ambiguous. This 
ambiguity manifests itself as an output vector with more than one active steering direction corresponding to thc 
multiple possible branches to follow. This output ambiguity has been successfully employed to update the vehicle’s 
position and to follow coarse directions. As the vehicle approaches an intersection, the annotated map systcrn 
signals the arbitrator that an intersection is coming up and that the vehicle should follow the right-hand branch in 
order to head towards the goal. This level of detail does not require either a highly accurate map or prccisc 
knowledge of the vehicle’s current position. The arbitrator takes the annotated map system’s mcssagc as a signal io 
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watch the output of the current driving network carefully. When the driving network’s output becomes ambiguous, 
the arbinator signals the annotated map system that the vehicle has reached the intersection and to update thc 
vehicle’s position accordingly. The arbitrator also uses the “turn right” portion of the annotated map system’s 
message in order to choose the correct steering direction from the driving network’s ambiguous output vector. This 
closer interaction between the perception networks and the annotated map allows the system to use perception for 
intersection traversal, instead of relying solely on knowledge from the map for guidance. 

Another shortcoming of rule-based arbitration as currently implemented its binary nature. Currently, a modulc is 
deemed by the annotated map system as either appropriate or inappropriate for the current road type. This binary 
decision does not address the question of intelligently combining modules trained for the same domain, such as thc 
video-based single-lane driving network and the laser reflectance-based single-lane driving network. There are 
obviously some situations, such as night driving, when one network is better suited than the other. To take more 
subtle circumstances into account when weighting the steering directions dictated by multiple networks, we are 
developing augmented arbitration rules that consider more context than just the current road type. We are also 
currently working on connectionist techniques that can determine a network’s reliability directly from its output 
alone. Preliminary results in this area look very promising. 

One final drawback of the current system is the need for a human expert to preplan the mission by providing map 
annotations. In the future, we will replace the human expert with an expert system capablc of annotating tlic map 
appropriately. We understand the techniques the human expert uses to find the shortcst routc and to annolalc thc 
map, so automating the process should not be difficult. 

In conclusion, a modular architecture permits rapid development of expert neural networks for complex domains 
like autonomous navigation. Rule-based arbitration is a simple and efficient method for combining these experts 
when symbolic knowledge is available for reasoning about their appropriateness. Rule-based arbitration also 
permits the combination of neural network experts with non-neural network processing techniques such as planning, 
which are difficult to integrate using other arbitration schemes. 
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