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Abstract

A major issue in building a prototype
Automated Highway System (AHS) is whether
the system needs dedicated lanes, occupied only
by computer-controlled cars that communicate
and cooperate with each other; or whether the
automated vehicles can be provided with enough
sensing and intelligence that they can safely
operate on regular highways, intermixed with
manually-driven vehicles. A major portion of
the CMU research effort AHS is focused on
determining the technical feasibility of operation
in mixed traffic. This paper outlines the issues
of mixed traffic vs. dedicated lanes, then
describes CMU efforts in building complete
demonstration systems, vehicle sensors, obstacle
sensors, car tracking software, reasoning for
tactical driving, and deployment scenarios.

Mixed Traffic vs. Dedicated Lanes

The National Automated Highway Systems
Consortium (NAHSC) is embarked on a seven-
year project to build a prototype automated
highway. The goal is to develop the
specifications for a system that will allow
completely hands-off and feet-off automated
driving of specially-equipped cars, trucks, and
busses, operating on specially-equipped lanes of
high-speed limited-access roads. The AHS user
will drive the vehicle normally on surface streets
to the AHS entrance ramp, indicate a destination,
then turn control over to the automated system,
which will handle the driving until the right exit
is reached. Partners in the NAHSC come from a
wide variety of disciplines, in order to cover the
range of issues involved in AHS development:
vehicle manufacturers (GM), vehicle electronics
(Delco), infrastructure design and build (Bechtel
and Parsons Brinkerhoff), highway operations
(Caltrans), systems integration (Hughes and
Lockheed  Martin), federal government
(USDOT), and research (the PATH consortium
centered at Berkeley and CMU).
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We are in the middle of many important
and interesting design studies. How should we
handle obstacles: detect them with onboard
sensors; or detect them with sensors built into the
roadway; or build strong fences and exclude all
foreign objects? Should automated vehicles
platoon together, in tightly-linked groups of 10
vehicles, or should they only run as free agents,
separated by 10 to 30 meters? What is the role
of the driver: passive passenger, who will
probably become complacent and distracted and
therefore unavailable to help the automated
driving system; or careful observer, able to spot
subtle signs of potential obstacles?

Of all the design questions, perhaps the
most interesting from a robotics viewpoint is
whether the system should require dedicated
lanes, or should allow mixed traffic. The
“dedicated lanes” approach means that vehicles
will be allowed to operate under automated
control only when in special lanes, physically
separated from all manually-driven vehicles.
The “mixed traffic” approach means that
vehicles will be so capable of sensing and
reacting to other vehicles, that they will be able
to operate on freeways mixed in with human
drivers.

The consortium as a whole is undertaking
several studies to analyze the mixed and
dedicated options separately, and then to
compare the possibilities. At a high level, the
discussion comes down to economics . vs.
technical feasibility. It is probably technically
easier to build a dedicated lane facility. All the
automated vehicles can be in communication
with one another, running at the same speed,
cooperating when a_vehicle needs to change
lanes, and sharing information about detected
obstacles. But having a dedicated lane facility
requires building one; and there is a chicken-
and-egg problem of who will build the lanes
before cars are available to use them; and who
will buy the cars unless there are lanes on which
they can run?



The mixed traffic option, on the other hand,
would allow for relatively easy use of the entire
network of freeways in the US. . Some minor
infrastructure may need to be added, depending
on the technology used for lateral guidance, but
at much lower financial cost than building new
lanes, and probably at lower political cost than
converting existing lanes for the sole use of
automated vehicles. Individuals who purchase a
specially-equipped car could begin using it
immediately, without having to wait for enough
automated vehicles to be sold to justify having
their own lane. The downside, of course, is the
technical difficulty of driving in mixed traffic.
The automated vehicles would have to be
safeguarded against all the bizarre variations of
human driving styles now encountered on the
road.

Our group at CMU is most interested in
investigating the feasibility of mixed traffic.’
While the problems are difficult, the payoff for
success would be large; and the kinds of
questions that need to be addressed are important
and interesting from a research standpoint. Even
if the ultimate completely automated system
does not become practical in the near term, the
technology developed could play an important
role in improving safety of partially-automated
vehicles in the immediate future.

We are investigating mixed traffic
feasibility on several fronts: building partially-
capable demonstration systems; building vehicle
sensors; developing car detection and tracking
strategies; developing capabilities for tactical
driving; and planning future development steps.

CMU Demo Vehicles

Some of the functionality of driving in
mixed traffic has already been built for other
purposes, and will be shown in August of 1997
at the NAHSC San Diego Demonstration. The
97 Demo is a congressionally-mandated “Proof
of Technical Feasibility” for automated driving.
Various members of the NAHSC will show a
variety of capabilities, including both mixed
traffic and dedicated lane driving as well as
maintenance and inspection functions.

The part of the Demo to which CMU is
contributing will emphasize independent sensing
and decision making on board each vehicle,
including the capability of driving in mixed
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traffic and also the ability to take advantage of
communication with other intelligent vehicles in
the vicinity. The demo scenario shows a mix of
vehicles being driven manually, vehicles under
full automated control, and partially~automated
vehicles. The cars and buses will demonstrate
lane departure warning and adaptive cruise
control, as well as automated lane following,
headway and speed maintenance, lane changing
to pass slower vehicles, and obstacle detection
and avoidance. When two automated vehicles
are driving close to each other, they will
communicate to share information about relative
positions of themselves and of detected
obstacles, so that the trailing vehicle can safely
drive with a smaller gap behind the lead vehicle.
When automated vehicles are driving mixed with
non-automated vehicles, they will automatically
increase the free space buffer around themselves
in order to have time to see and react to events.

The technology underlying the CMU
portion of the demo starts with RALPH, the
vision-based road following system built by
Pomerleau.” RALPH resamples a video image to
create an overhead projection of the road. In the
overhead image, RALPH tests' several
hypothesized road curvatures to find the arc that
most closely follows the dominant contrast
features. This way, RALPH takes advantage of
not only the painted stripes, but also the
pavement joints, the shoulder edge, and other
features that run parallel to the road. Once
RALPH finds the dominant curvature, it can
look for lane boundaries and calculate the
vehicle’s lateral position in the lane. RALPH
has accumulated over 25,000 km of road tests,
including the “No Hands Across America” trip
during the summer of 1995 during which it
steered autonomously over 98% of the way from
Washington DC to San Diego CA.

The demo vehicles are also equipped with
forward-looking radar. The radars on the cars
are provided by Delco Electronics. They are
mechanically scanned in azimuth, to cover a 12
degree field of view. The radars provide range,
bearing, and range rate to targets in front of the
vehicles, and have integrated target tracking
software to filter out spurious or inconsistent
readings. Besides providing data to control
separation from other vehicles, the radars are
also capable of detecting obstacles that have
enough radar reflectivity. The obstacles used for
the 1997 Demo will be plastic construction



barrels. In our initial tests, the radars have
detected the barrels at up to 80 m, perhaps due to
the reflective tape wrapped around the barrels.

The demo vehicles are also equipped with
side and rear looking sensors. The most difficult
sensing requirement is ~ forward, because
stationary obstacles on the roadway need to be
detected at long ranges. Sideways sensing is
relatively straightforward, and even rear-looking
sensors for the demo scenarios need only have a
range of a few tens of meters. Several sensors
are currently being investigated for side and rear
applications, including a variety of low-cost
radars, ladars, and sonars. Side-looking sensors
detect presence of a vehicle, but not velocity;
relative speeds must be inferred by tracking a
vehicle as it is seen by front-looking sensors,
then side sensors, and finally rear-facing sensors.
The vehicles are also equipped with GPS
positioning for navigation and for reporting the
positions of detected obstacles.

The vehicles being built for the 97 Demo
bring the Navlab family of vehicles up to a total
of 10. Navlab 1 is a Chevrolet van, now retired;
Navlabs 2 and 4 are HMMWYVs, mostly used for
off-road driving research; Navlab 3 is a
privately-owned Honda Accord, now returned to
service as a non-automated car. Navlab 6 and 7
are a matched pair of Pontiac Bonnevilles,
designed for the 1997 Demo; Navlabs 5 and 8
are minivans used for general experiments and
driver warning studies; and Navlabs 9 and 10 are
a pair of city busses, adapted for the 1997 Demo
by CMU and K2T Inc.

Figure 1: Navlabs 6 - 10, front to back

Vehicle Sensing

The Demo system described above
provides partial solutions for driving in mixed
traffic, but is not yet adequate for full tests in
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unconstrained situations. The first requirement
is for better sensing.

Dirk Langer’s thesis work, completed in
January of 1997, is one part of our effort?
Langer built a phased-array radar that can cover
a 12 degree field of view, with a range of 200 m,
and does not use mechanical scanning. The
specifications of the radar are:

eRange resolution: 0.6m

eBearing resolution: 3 deg

eRange accuracy: 10 cm

eBearing accuracy: 0.1 deg

sRepetition rate: 10 Hz

His software detects up to 20 radar targets
in each measurement, and tracks those targets
from measurement to measurement. The radar
processing has been integrated with RALPH.
The lane location and direction from RALPH are
combined with the detected targets, to determine
which targets are in the vehicle’s lane and which
are in adjacent lanes, even on curved roads.
Similarly, the radar has also been integrated with
GPS positioning and accurate maps to register
targets with the next 100 meters of the road. This
allows the radar to reject clutter such as guard
rails or signs, while still properly detecting and
reacting to stopped vehicles in the vehicle’s own
lane.  The integrated systems have been
demonstrated for a basic form of intelligent
adaptive cruise control, and for detecting slow
vehicles and triggering RALPH to change lanes.

Obstacle Sensing

Beyond sensing vehicles, it is also
important to sense obstacles on the roadways.
This may be the most difficult technical
challenge for automated driving; it is certainly
the most difficult sensing challenge.

Obstacle detection is especially important
for mixed traffic scenarios. Many of the
obstacles found today on roadways come from
other vehicles: the dominant source of debris is
tire carcasses and retreads, roughly followed by
dead animals, spilled loads and dropped vehicle
parts. (The dead animals were presumably alive
when they wandered onto the roadway. In some
parts of the rural US, the dominant cause of
accidents is hitting deer). In dedicated lane
configurations, some of these obstacles could be
prevented by exercising more control over the
roadway. Entering vehicles could be inspected



for loose loads or fraying tires, and it may be
possible (although expensive) to build fences
along the dedicated lanes to prevent animals
from wandering onto the roadway. Also, when
one vehicle detects an obstacle, it would be
expected to notify other nearby vehicles of the
location and classification of the obstacle.
Finally, if there -are relatively few miles of
dedicated lanes, it might be possible to install
sensors in the infrastructure, and communicate
obstacle locations and suggested avoidance
strategies to the automated vehicles. These
strategies raise issues of feasibility, liability, and
cost, but they are technically plausible and are all
under study in the NAHSC,

For driving in mixed traffic, most of the
obstacle exclusion or infrastructure sensing
strategies are not feasible. The first automated
vehicles on the road would encounter today’s
driving environment, with the same issues of
dropped loads, shed retreads, stray deer, and so
forth. Since other vehicles would not be
automated, no particular help could be expected
in finding and avoiding obstacles; although
locations with particularly dangerous roadway
configurations may need to be equipped with
infrastructure-based sensors that could provide
warning of obstacles around a corner.

Within the NAHSC, the first part of the
work on cbstacle detection is cataloguing the
kinds of obstacles that are present. Some of this
data is available from maintenance departments
of state departments of transportation, and some
is in the accident literature, but none of it has
been carefully quantified. The second part of the
problem is determining which of those objects
are dangerous. Qur colleagues at General
Motors are conducting informal experiments to
understand the effect on a vehicle caused by
running over various objects. The vehicle may
ride smoothly over the object, or the object may
cause ride discomfort, or steering deflection, or
structural damage. The next part will be to write
careful specifications for obstacle detection
sensing. Some parts of the specification are
straightforward to calculate. The maximum
range for obstacle detection is set by the
stopping distance of typical vehicles. In the
worst case the obstacle, roadway configuration,
and adjacent traffic will conspire to prevent a
lane change to avoid the obstacle, so the only
possible maneuver will be to come to a complete
halt. Other parts of the spec are much more
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troublesome. It would be convenient to define a
radar cross-section for a typical obstacle, but
while some objects have large radar cross-
sections (mufflers, steel-belted tire carcasses),
others do not (wooden debris or deer).

At CMU we have started investigating
possible obstacle detection methods even before
the specifications are ready. One of the most
promising approaches is using the reflectance
channel of a ladar, being investigated by John
Hancock as part of his thesis work. At the
ranges of interest for obstacle detection (50 to
100 m), it is hard to generate a 3-D
reconstruction of the roadway with enough
accuracy to detect small objects (10 to 20 cm
high). It may be more fruitful to look for
changes in the reflectance of a patch of the road.
Even if the range is nearly the same as the ranges
to the road plane, an object sticking up from the
road will have a much lower viewing angle than
the roadway, and will therefore reflect much
more of the laser energy. Preliminary results are
shown in Figure 2. A small object, in this case a
chunk of wood approximately 10 cm high by 50
cm long, does not show up in the range data. In
the reflectance channel, however, it is easily
noticeable, and simple processing to extract
different-looking patches from the road area
easily finds the object.

We are investigating philosophically
similar approaches for stereo processing. We
have a real-time stereo machine, capable of

Figure 2: QObstacle Detection with Ladar
Reflectance Top: range image. Middle:
reflectance image, with obstacle near top of road.
Bottom: Detected obstacle

generating 256 * 240 pixel depth maps at 30 Hz,
using up to 6 input cameras. This means that
standard stereo processing to find obstacles is
possible in real time. But roadways are typically




bland, without enough texture to generate high-
confidence depth maps. Todd Williamson and
John Hancock, as part of their thesis projects, are
studying ways of detecting obstacles against
bland surfaces. Part of the approach is based on
confidence measures, such as those pioneered by
Matthies.* If an image patch from the reference
image matches all other images at some disparity
with low error, then either the image patch is
very bland or the patch is planar. If the image
patch matches with high error, then the patch is
probably both textured and non-planar. By
making the windows to be matched large enough
to cover both a road marking and a suspected
obstacle location, it should be possible to detect
objects by looking at the matching error. Again,
as in the case of ladar reflectance processing, the
presence of an obstacle would be sensed even
without first doing a complete 3D reconstruction.

An additional observation is that stereo
processing is normally set up to look for surfaces
that are parallel to the image plane. If the
cameras are all parallel and co-planar, then a
rectangular window from one image matched
against a rectangular window in another image at
a given disparity implicitly defines a surface
parallel to the images. We use an alternative
approach, based on the projective stereo
geometry popularized by Faugeras’ The CMU
Stereo Machine has a lookup table for each pixel
for each disparity. Using projective stereo
calibration, the lookup tables can be set up to
interpolate between any two given planes. By
calibrating the stereo system with a ground plane
and a higher plane, parallel to the ground plane
(in practice, the surface of a campus loading
dock), the disparity of each pixel in a source
window is automatically indexed to match
horizontal surfaces in the target images. This
effectively skews the matching window so that a
horizontal surface in the source image will be
correctly registered with a horizontal surface in
the target images. This should provide better
results, since most of the world in front of the
vehicle is nearly horizontal.

Car Tracking

Besides detecting obstacles, the ladar and
stereo vision sensors can also be used for fine-
resolution car tracking. Radar is good for
detecting vehicles and reporting their velocity,
but does not have fine enough resolution to
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generate a vehicle image. With ladar, the pixels
are small enough, and closely enough spaced,
that it is possible both to localize a vehicle
within a lane, and to measure the orientation of
the vehicle. Since cars steer non-holonomically,
the vehicle orientation is an important cue of
imminent lane changes.

The sensor we are using for these
experiments is a scanning laser rangefinder built
jointly by CMU and K2T Inc. The laser points
up through the middle of the scan mechanism.
The mirror is spun horizontally, and nodded
vertically, providing 360 degree horizontal
coverage and up to 35 degrees vertical field of
view. Various laser rangefinders have been
installed in the device, including a Riegel sensor
with a 120 m range and 5 c¢m resolution. A new
range sensor, built by Zoeller und Froehlich
GmbH, will be installed shortly, and will have a
pixel rate of up to 500 kHz.

The images in Figure 3 show range data
from a car parked inside a building, processed by
Liang Zhao. The data is first thresholded by
elevation, to give just the data between 50 and
150 cm from the ground. The region where the
car is expected is then processed to find straight
lines, and finally the lines are fit to a model of
the expected car shape. We are currently testing
how much data needs to be collected on a car in
order to do accurate localization. We will then
build Kalman filters to integrate data taken from
several scans as the vehicles move.

Tactical Driving

Most of the discussion to this point has
been about sensing: how to see the road, see
vehicles, detect obstacles, and track the course of
other cars. Once the environment of the vehicle
has been sensed, there still remain difficult and
interesting problems in planning and acting.

Much of the automated vehicle literature
has focused on the low-level problems of smooth
control, or on problems of route planning and
guidance. There remains a hole in between these
levels, which we call tactical reasoning. The
tactical level, in this case, refers to decisions
about when to change lanes, when to speed up or
slow down, how to trade off caution with
making adequate progress, and so forth. Our
colleagues at PATH have worked extensively on
tactical driving for platoons and dedicated
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Figure 3: Car Tracking in ladar Images. Top:
raw data. Bottom: data between height thresholds,
and overlaid detected vehicle position

lanes®’, but there is still a large research gap in
tactical driving in mixed traffic.

Rahul Sukthankar’s recently completed
thesis is a first step towards building safe and
competent tactical driving in mixed traffic.*® For
obvious reasons, his research was conducted in
the framework of a simulator. His system, called
SAPIENT, evolved through two main stages.

MonoSAPIENT is a single-threaded rule-
based driving system. It encodes rules for
headway maintenance, speed keeping, and lane
changing, based on vehicle plans and goals and
on the physics of vehicle motion. Unfortunately,
as the situations become more complex,
MonoSAPIENT turns into a complex rule tree.
Constructing those trees and ensuring correct
ordering is difficult, as is ensuring that there are
rules for each specific situation.

Partial solutions to these problems are
developed in PolySAPIENT. Instead of a single
set of rules, PolySAPIENT provides a separate
“reasoning object” for each physical or logical
object in the environment. Thus, each nearby
car will have a reasoning object that keeps track
of that vehicle, and the separation and relative
velocity between that vehicle and the automated
vehicle. Separate reasoning objects track lanes,
exits, and internal parameters such as desired
speed. Each reasoning object, at each time step,
generates votes for desired actions and against
bad actions, where the actions include both
speed and turn commands. A knowledge-free
arbiter selects the best action by a weighted
combination of all votes.

While in MonoSAPIENT the rules are
binary ("do not pass if ..."), in PolySAPIENT the
individual reasoning objects can cast graded
votes for and against actions. The result is that if
several reasoning objects vote strongly for an
action, and one or two reasoning objects vote
weakly against it, the vehicle can choose that
action. Thus PolySAPIENT vehicles are willing
to ‘squeeze into slightly tighter spaces than
MonoSAPIENT vehicles, with a small sacrifice
in desired headway, in order to move to a faster
travel lane or to make a required exit.

Tuning all the relative weights of votes
from all the reasoning objects and setting
internal parameters is a difficult process.
Fortunately, the tuning process can be
automated. Sukthankar expressed the weights
and parameters to be tuned as a string of bits,
then used PBIL, an evolutionary algorithm, to
tune the weights and parameters.'” Simulated
vehicles are generated with their weights and
parameters set probabilistically according to the
current bit string. The vehicles are run through a
series of simulated scenarios, and are rated
according to criteria such as avoiding near
misses, arriving at their desired exits, and
making adequate progress. The bit string is
updated to more closely resemble the highly
ranked vehicles, and the process repeats. After
approximately 20 generations, the vehicles learn
to drive smoothly and safely.

Next Steps

The individual components of our research
are all coming together. The vehicles and the
core road following will be demonstrated in



August 97; radars are becoming available and
functional; obstacle detection is progressing; and
the rules for tactical driving are running well in
simulation. The various components are also
being integrated: our demo vehicles will have
muitiple sensors, plus software for tracking other
vehicles and the lane.

Once we are happy with sensing, we can
begin testing the SAPIENT driving strategies.
At least at first, we will have SAPIENT generate
recommendations, and watch to see if we drive
the way it would drive. Later, we can have
SAPIENT generate recommendations via a head-
up display or speech synthesizer, so we can
determine if the recommendations are safe and
reasonable. If SAPIENT’s advice does not
follow our driving patterns, then a variant of the
learning methods used in PolySAPIENT could
be used to tune the weights to better match our
own preferred driving styles. Once we are happy
with the way the system works, we might enable
SAPIENT control in stages, first giving it
longitudinal control, then lateral control within a
lane, then lane-changing abilities. Throughout,
we have designed our systems to have easily-
accessible kill switches and low-powered
actuators so the safety driver can always override
the automated control.
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