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ABSTRACT

LVCSR performance is consistently poor on low-pro�ciency
non-native speech. While gains from speaker adapta-
tion can often bring recognizer performance on high-
pro�ciency non-native speakers close to that seen for
native speakers [12], recognition for lower-pro�ciency
speakers remains low even after individual speaker adap-
tation [2]. The challenge for accent adaptation is to
maximize recognizer performance without collecting large
amounts of acoustic data for each native-language/target-
language pair. In this paper, we focus on adaptation for
lower-pro�ciency speakers, exploring how acoustic data
from up to 15 adaptation speakers can be put to its most
e�ective use.

1. INTRODUCTION

As speakers learn a new language, they trace unique
paths through acquisition of phonology, vocabulary, gram-
mar, pragmatics, and even social aspects of spoken com-
munication. The variability that this complexity en-
genders poses a serious problem for speech recognition.
Once speakers reach a certain level of pro�ciency, their
pronunciation may become fossilized, with the most no-
ticeable features of their accent in�uenced by their na-
tive phonological system. In the early stages of learning,
however, speakers experiment with new sounds, which
results in phonetic realizations that are inconsistent and
often distant from both the target phone and any native
language phone that one might expect to in�uence it.

Study of the nature of non-native speech has sug-
gested that perception of a phoneme is in�uenced by the
phonetic contrasts that are meaningful in the speaker's
native language (L1) [6] and that production is related
to perception for allophonic contrasts [5]. However, it
has also been observed that articulation of target lan-
guage (L2) phones cannot be reliably traced to a related,
interfering phone in the speaker's native language [1].
It has often been an assumption in e�orts to adapt to
non-native pronunciation in speech recognition that a
speaker's realization of an L2 phone will fall �somewhere
between� the average native realization and realization
of an L1 phone that the speaker perceives as being sim-
ilar to it. While adaptation based on this assumption
has been successful for high-pro�ciency speech and sim-
ple tasks (e.g., [8, 14, 12], ), both the speech degrada-
tion due to high cognitive load and the variability in
articulation discussed above make recognition of lower-
pro�ciency speech in LVCSR tasks a very hard problem
[2].

In this paper, we concentrate on a speci�c group
of lower-pro�ciency speakers, quantifying characteristics

of their speech and comparing methods of adapting to
it in LVCSR. Working with a controlled group of na-
tive speakers of Japanese, we investigate phonological
properties of speech, �uency and dis�uency, and read-
ing errors in a read news task. We then discuss the
e�ectiveness of training and of mixed-style and MLLR
adaptation to the non-native condition, examining the
contribution of L1 and L2 data to the adaptation pro-
cess.

2. DATA

In this section, we describe the language background
and pro�ciency evaluation of the speakers, the task and
recording conditions, and the recognition system used
for adaptation experiments.

2.1. Target speakers

The speakers in this study were all native speakers of
Japanese. All had had 6-8 years of formal study of En-
glish and had lived in an English-speaking country for
6-12 months. All reported di�culty in making them-
selves understood, and rated their con�dence in conver-
sational speaking between 1.5 and 2.5 on an informal
scale of 0 to 4. These speakers can be described as hav-
ing a good grasp of the formal properties of English but
limited productive ability.

In addition to informal evaluations, speaker pro�-
ciency in the test set was controlled with respect to
scores on the formal SPEAK assessment [13]. All test
speakers scored between 1.89 and 2.17 on the read speech
portion of this test, which gives scores on a scale of 0 to
3 for identi�ably non-native speech. Speakers assigned
to the training set ranged from 1.44 to 2.83.

There were 10 test speakers, 15 training speakers,
and 8 native speakers in this database.

2.2. Task

Two sets of speakers were recorded for this research. The
primary group of interest, which included all test speak-
ers, was recorded speaking English. A second group of
speakers was recorded speaking their native language of
Japanese.

2.2.1. Accented L2 data

Accented data, that is, recordings of native Japanese
speakers speaking English, is referred to as L2 data be-
cause English is the speakers' L2.



Speakers completed a read news task in which they
read aloud three articles from a children's news archive.
This task was designed to mirror well-known tasks such
as Wall Street Journal, which was determined during
preliminary data collection to be too di�cult for our
speakers.

Of the three articles, one was common to all speakers
and the other two were unique to each speaker. Article
length averaged 50 sentences. The training/adaptation
set represented approximately 3 hours of acoustic data.

Recording was done in a quiet room using a close-
talking headset and a DAT recorder. Speakers were
alone in the room while recording.

2.2.2. L1 data

Native-language data, that is, recordings of native Japanese
speakers speaking Japanese, is referred to as L1 data be-
cause Japanese is the speakers' L1.

The L1 data that was used for model adaptation
and training was taken from the Globalphone database
[11] and consists of recordings of native Japanese speak-
ers reading news articles from the Nikkei Shimbun in
Japanese. Although the content of this newspaper is
more di�cult than that in children's news, the reduced
cognitive load required for reading one's native language
means that the di�culty of the L1 and L2 tasks was sim-
ilar for the native Japanese speakers.

Speakers recorded an average of 15 minutes of speech.
Recording was done in a quiet room using a close-talking
headset and a DAT recorder. For consistency with the
accented L2 data, 3 hours of this speech distributed
across 15 speakers was used for training and adaptation.

2.3. Recognition system

All experiments described in this paper used the JRTk
speech recognition toolkit [4] with fully continuous context-
dependent acoustic models and a trigram language model.
Context-dependent models were determined experimen-
tally to perform better than context-independent mod-
els for this speaker set and task. Vocal tract length nor-
malization and cepstral mean subtraction are applied at
the speaker level. Linear discriminant analysis (LDA) is
used to �nd the most discriminative of the MFCC, delta,
and power features and reduce the dimensionality of the
feature vector describing each frame. WER �gures al-
ways represent accuracy after speaker-dependent MLLR
adaptation on 50 utterances. Performance of this sys-
tem on Broadcast News F0-condition speech is 9.4%.
Because of di�erences in speaking style (informal vs.
professional anchor) and language modeling (the broad-
cast news model was adapted to children's news, but is
still not optimal for the task), performance on local na-
tive speakers on the children's news task is signi�cantly
higher, at 19.2%.

3. CHARACTERIZING

LOW-PROFICIENCY ENGLISH

Learning to speak a new language is a journey that
doesn't always follow a straight line from L1 to L2. For
many speakers, reaching pro�ciency is a matter of years
of trial and error. In this section, we discuss some of the

features of non-native speech of the pro�ciency level we
are targeting.

3.1. Reading errors

Reading errors, which are commonly assumed not to
occur often enough to greatly a�ect system performance,
were frequent in our data. Nearly 3% of the words that
were read by the non-native speakers were not the words
on the page, as compared to 0.4% for native speakers.

In addition, the types of reading errors that were
made were distributed quite di�erently in native and
non-native speech. Substitution of a morphological vari-
ant was by far the most common reading error in non-
native speech. Singular-plural substitution represented
over 60% of these morphological errors. Non-native
reading errors were more likely to a�ect the syntac-
tic integrity of the sentence; for example, the sentence
�Doctors are studying the pill's e�ect on patients� is
meaningful whether the word e�ect is singular or plural,
whereas the sentence �American student perform poorly
on standardized tests� is made syntactically incorrect
by the speaker's substitution of student for students. A
more detailed breakdown of reading errors in this data
can be found in [9].

3.2. Phonological properties

A segment of the non-native data collected in this project
was phonetically transcribed by experienced transcribers.
Although a number of expected transformations ( e.g.,
/i/! [i]) were veri�ed during this process, the princi-
pal observation was that the number of realizations that
could not be transcribed using the union of the standard
American English and Japanese phone sets was great.
Transcribers required an extensive set of supplemental
diacritics, representing r-coloring, centering, and palati-
zation, among other things, to begin to capture the data.
There was also a great deal of intra- and inter-speaker
inconsistency. One speaker, for example, consistently
pronounced [2] as [Ä] � but only in the second half of
one article. For some reason, he made the decision to
try this pronunciation out, and then abandoned it when
he began the next reading.

Diversions from standard American English phonol-
ogy were also found in recognizer-driven analysis. Phoneme-
level recognition of the data revealed both common in-
sertions, deletions, and substitutions and high overall
levels of phoneme confusion, consistent with observa-
tions from manual analysis. In an experiment designed
to uncover lexical variants, it was found that when phone-
level insertions, deletions, and substitutions are consid-
ered, 57% of the polyphones (5-phone sequences) in the
test data were not seen in the training data, compared
to 92% for native speech.

3.3. Fluency

The low-pro�ciency speakers targeted in this paper read
far more slowly and haltingly than native speakers do.
Frequent inter-word pauses, stumbling over words, and
multiple repetitions of sequences of words have impli-
cations for both acoustic and language modeling. In
particular, it has been our experience that no complex
cross-word modeling is necessary for the lower-pro�ciency



speakers because words are usually articulated one at a
time, with pauses in between them.

feature mean std. dev.
N NN N NN

pause duration 9.56s 17.14s 3.16 7.33
phone duration 0.08s 0.12s 0.01 5.36
pause:word ratio 1:10 1:3 0.05 0.08
words/second 3.80 2.15 0.26 0.29
repair rate 0.57 2.25 0.33 1.42
repeat rate 0.07 0.34 0.07 0.23
retrace rate 0.58 2.35 0.35 1.26
retrace length 2.55 2.57 1.04 2.29
�ller word rate 0.01 0.16 0.02 0.32
partial word rate 0.45 1.52 0.20 1.05

Table 1. Comparing �uency-related statistics for native
(N) and non-native (NN) speakers in the reading task

Figure 1 gives statistics for �uency (and dis�uencies)
for the low-pro�ciency non-native speakers targeted in
this paper. The non-native speech is clearly more dis�u-
ent than the native speech, as measured by such diverse
features as speaking rate, ratio of silence to words, and
number of repaired and abandoned words. The only
feature that appears to be similar for native and non-
native speakers is retrace length, or the number of words
a speaker �rewinds� when correcting himself. It could be
that this span is in�uenced by the syntax of the text,
which is the same for both native and non-native speak-
ers; it has also been suggested that retrace length is
constant across languages [3].

4. SPEAKER PROFICIENCY AND

RECOGNIZER PERFORMANCE

In this paper, we speci�cally target lower-pro�ciency
speakers. Our premise is that these speakers may need
processing di�erent from that applied to higher-pro�ciency
speech in order to raise recognition accuracy to an ac-
ceptable level. This assumption is based on the intuition
that lower-pro�ciency speakers are somehow harder to
understand, as well as the observation that these speak-
ers are diverse and inconsistent in their articulation. To
support our assumption, let us quantitatively examine
the correspondence between pro�ciency and recognizer
performance.

Figure 1 shows how word error rate (WER) varies
with speaker pro�ciency. We see three distinct clusters.
The cluster on the far right represents native speech;
native speakers automatically receive a SPEAK score of
4. The center cluster represents speakers who scored be-
tween the test set cuto� of 2.17 (the lowest actual score
in this group was 2.44) and the maximum non-native
score of 3. The test speakers targeted in this paper
fall into the leftmost cluster. Although there is some
variation in recognizer performance within the clusters,
speakers in the lower-pro�ciency group clearly are rec-
ognized with less accuracy than those in the other two.

5. ACOUSTIC MODEL ADAPTATION

In this section, we discuss o�ine adaptation to the non-
native condition prior to individual run-time speaker
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Fig. 1. Correspondence between speaker pro�ciency
and recognizer performance in terms of word error rate
(WER)

adaptation. We strive to answer two questions:

� Does L1 material provide better adaptation data
than accented L2 data?

� Does mixed-style adaptation perform better than
MLLR adaptation for non-native speech?

It was observed in [8] that MLLR adaptation with
L1 LVCSR data gave similar improvements in accuracy
to adaptation with accented L2 data when only isolated
L2 phone data was available. In this paper, we explore
a matched condition: same-domain LVCSR data is used
for both L1 and L2 adaptation material.

In order to use the L1 data described in Section 2.2.2
for adaptation of English acoustic models, the Japanese
lexicon had to be converted to the English phone set.
Data-driven and IPA-based approaches to this problem
have been studied (e.g. [11, 14, 8]); we used a combi-
nation. Pronunciation networks for each Japanese word
were created with each Japanese phone replaced by a
set of parallel transitions representing substitutions of
related English phones and phone sequences. �Related�
was de�ned to mean sharing all but one phonological
feature. Therefore, any phone that di�ered only in place
of articulation, or manner, or voicing, or vowel height,
was added to the network. A forced alignment pass
was then run on this network to �nd the path with the
most likely match. Context-sensitive (considering pre-
ceding and following phone) global mappings were as-
signed based on the substitutions selected most often
during alignment.

5.1. Mixed-style adaptation

In mixed-style training, adapted model parameters are
estimated separately for each of the �styles� (in this case,
L1 and L2), and then interpolated using a global in-
terpolation weight. This is, in e�ect, a simple form
of MAP adaptation, where an optimal weighting fac-
tor is determined experimentally rather than separately
for each Gaussian based on the a priori distribution of
the Gaussian parameters. It has been our experience
that this method produces results that are similar to
or slightly better than conventional MAP. If it is likely
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Fig. 2. Mixed-style adaptation using L1 and L2 adap-
tation data

L1 data L2 data
0 speakers (baseline) 63%
3 speakers 68.1 58.1
15 speakers 73.4 52.5

Table 2. MLLR adaptation using varying amounts of
L1 and L2 adaptation data (�gures represent WER)

that the adaptation data represents the test data well, it
can be heavily weighted for interpolation. As with MAP
adaptation, this method performs better as the amount
of adaptation data increases, as if individual parameters
cannot be reliably estimated from sparse sample data no
adaptation is performed. In this experiment, 15 adap-
tation speakers were used.

Figure 2 shows system performance after mixed-style
adaptation with both L1 and L2 data. On the horizontal
axis is the interpolation weight. When the interpolation
weight is 1, the adapted mean is identical to the sample
mean. When the interpolation weight is 0, the adapted
mean is identical to the prior mean (i.e., there is no
adaptation).

A clear degradation can be seen from adapting with
L1 data, while the positive contribution of the accented
L2 data can be seen rising steadily as the interpolation
weight increases.

5.2. MLLR

In MLLR adaptation, transformation classes are de�ned,
and model parameters of the entire class are shifted in
the same direction. While this clustering allows MLLR
adaptation to provide a general transformation with a
small amount of adaptation data, there is a risk of shift-
ing an individual parameter away from observed sample
value, which is avoided in mixed-style adaptation.

Results of MLLR adaptation with L1 and L2 data
are shown in Table 2. As with mixed-style adaptation,
we see a degradation with the introduction of L1 acous-
tic material. The e�ect is more extreme with more adap-
tation speakers, indicating that sample means from the
L1 data are not representative of the means in the ac-
tual accented test speech. Adaptation with accented L2
data, on the other hand, signi�cantly improves perfor-
mance over the baseline.

Results are given for 3 and 15 adaptation speakers.
It is clear that the e�ectiveness of adaptation increases
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Fig. 3. Comparison of MLLR and MAP adaptation for
15 adaptation speakers

with the amount of adaptation speech. There are two
reasons for this: more examples of sample values allow
a more reliable estimate of the sample mean, and the
more diverse set of samples contributes to a more general
model.

5.3. Comparison of adaptation methods

Figure 3 contrasts MLLR and mixed-style adaptation
performance for L1 and L2 adaptation material and 15
adaptation speakers. Both show similar trends, with
mixed-style slightly outperforming MLLR.

We see clearly from all the experiments shown here
that using L1 acoustic material for adaptation to low-
pro�ciency non-native speech without re-evaluation of
the polyphone set results in a degradation of recognizer
performance, while adaptation with accented L2 data
boosts performance.

6. RETRAINING WITH ACCENTED DATA

It was shown in Section 5 that while using accented
data for adaptation improves recognition performance,
adapting with L1 data results in a performance degra-
dation. In speaker adaptation, the model inventory is
kept the same, but the expectation of what a model
sounds like is shifted towards what has been seen in the
limited set of adaptation speech. The L1 data does not
have the chance to make its maximal contribution, as
the model inventory is based on the polyphones found
in native speech; two allophones that are quite di�er-
ent in L1 may be used to update the same model if the
two contexts do not trigger variation in English. By
rebuilding the system based on the contexts that are
meaningful in L1, we may be able to use the L1 data to
its full advantage.

In this section, we compare systems trained with L1
data with systems trained with accented L2 data. Both
full rebuilding of the system (rebuilding from scratch)
and repetition of the �nal step of training (additional
forward-backward iterations) with the new data are ex-
amined.



6.1. Rebuilding from scratch

In this experiment, two new systems were built, using
L1 and accented L2 data. In both cases, initial labels
were written using the baseline acoustic models, and a
context-dependent system was trained along the speci-
�cations given in Section 2.3. Because the adaptation
data available was sparse for fully training a recognizer,
it was pooled with native English data in these experi-
ments. The large amount of native data contributes to
the robustness of the model, while the smaller amount
of L1 or accented L2 data ensures that L1-speci�c phone
sequences and phone realizations are seen during clus-
tering and training. Training data consisted of 3 hours
of L1 or accented L2 acoustic data pooled with the orig-
inal native training data.

6.2. Additional forward-backward iterations

In this experiment, the new system was not retrained
from scratch; rather, two additional forward-backward
iterations are run on the fully trained baseline models
using the accented L2 acoustic data.1 In Section 5, we
saw how recognition improves with adaptation to the
non-native condition when accented data is used. By
training with the accented data, we are essentially ex-
tending this approach, updating not only the mixture
means but also the mixture weights and covariances.
We also bene�t from the second re-estimation. The ef-
fect of additional forward-backward iterations with the
L1 data was not examined in this experiment.

6.3. Comparison of training methods

Figure 4 contrasts performance of fully-rebuilt and par-
tially retrained systems. With the rebuilt systems, we
see a small improvement when training with L1 data and
a much larger improvement when training with accented
L2 data.

The improvement from the additional training iter-
ations is even larger. This may be because in retraining
(described in Section 6.2), we are capitalizing on con-
sistency in the data in the two phases of system build-
ing with native speech and retraining with non-native
speech. When the two data sets are combined from the
outset (as described in Section 6.1), we may incorporate
a broader range of polyphones but be harmed by the
mismatch between native and non-native speech. By
simply retraining, we �x the identities of the acoustic
models with native data, and then use the non-native
data to adjust the expectation of how those models cor-
respond to phonetic realization in non-native speech.

6.4. Model interpolation

Simply running additional forward-backward iterations
with the three hours of accented data resulted in a 24%
relative improvement over the baseline error rate. In
this new model, however, the parameters were trained
on a small amount of data. This introduces a danger of

1For this experiment, the baseline models were also
trained an additional two iterations to ensure that the com-
parison was fair. We did not observe any signi�cant change
between the original 7-iteration training and the 9-iteration
training with the native data, however.
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Fig. 4. Comparing rebuilding from scratch with L1 and
L2 data and partial retraining with L2 data

over�tting, a problem which can addressed by smooth-
ing the models via interpolation with a more robust
model [7]. A direct parameter interpolation technique
has also been shown to be successful in creating context-
independent non-native models from source and target
language model sets [14]. In model interpolation exper-
iments, it was our goal to move the retrained distribu-
tion back towards the native distribution to the point of
maximum robustness.

In the interpolation method that we used, corre-
sponding codebook weight, mean, and covariance ma-
trix elements are linearly interpolated for each baseline
system / retrained system acoustic model pair. This re-
sults in a covariance space that covers an area between
the two original covariances, rather than the union of the
two. We are able to interpolate the individual models
in this way because there is a clear one-to-one mapping
between models; the decision of which models to inter-
polate would be much more di�cult if we were work-
ing with the rebuilt system of Section 6.1 instead of
the retrained system of Section 6.2. Our method is de-
scribed in detail in [10]. Performance of the interpolated
system is 29% above that of the baseline system, a signif-
icant improvement over the retraining alone. The e�ect
of the interpolation weight on recognition accuracy is
shown in Figure 5; optimal performance is found when
the retrained models are weighted at .72.

7. SUMMARY

In this paper, we have examined how application of
acoustic model training and adaptation techniques af-
fects recognition accuracy on non-native speech. A sum-
mary of the individual contributions of each method is
shown in Figure 6.

Generally speaking, adaptation to the non-native
condition (and by adaptation we refer to both the speaker
adaptation techniques of MAP and MLLR and retrain-
ing techniques) using L1 data does not improve perfor-
mance, and in some cases causes a large degradation.
Accented L2 data, on the other hand, contributes posi-
tively to the acoustic model. The largest gains are seen
when using the full 3 hours of accented data to run ad-
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Fig. 6. Summary of adaptation results. Bars labeled
�MAP� refer to mixed-style adaptation, which is a sim-
pli�ed form of MAP adaptation.

ditional forward-backward training iterations and then
interpolating the retrained model back with the more
robust baseline models. Signi�cant gains are also seen
with MAP and MLLR adaptation, where performance
of the system improves proportionally to the amount of
accented adaptation speech.

In the best case, word error rate for the lower-pro�ciency
speakers is lowered from 63.1% to 45.1%, which repre-
sents a 29% relative reduction in error. This approaches,
but does not match, performance on the higher-pro�ciency
speakers.2 With an absolute reduction in error of 18%,
we have closed half of the gap in recognizer performance
on native and low-pro�ciency non-native speech; how
close this brings us to the upper limit, however, remains
to be seen.

2We see the same trends when applying adaptation tech-
niques to pro�cient non-native speech, although the e�ect is
far less dramatic [10].
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