
Bayesian Color Constancy for Outdoor Object Recognition

Yanghai Tsin† Robert T. Collins† Visvanathan Ramesh‡ Takeo Kanade†

† The Robotics Institute ‡Imaging & Visualization Department
Carnegie Mellon University Siemens Corporate Research

Pittsburgh, PA 15213 Princeton, NJ 08540
{ytsin,rcollins,tk}@cs.cmu.edu rameshv@scr.siemens.com

Abstract

Outdoor scene classification is challenging due to irregular
geometry, uncontrolled illumination, and noisy reflectance
distributions. This paper discusses a Bayesian approach to
classifying a color image of an outdoor scene. A likelihood
model factors in the physics of the image formation pro-
cess, the sensor noise distribution, and prior distributions
over geometry, material types, and illuminant spectrum pa-
rameters. These prior distributions are learned through
a training process that uses color observations of planar
scene patches over time. An iterative linear algorithm esti-
mates the maximum likelihood reflectance, spectrum, geom-
etry, and object class labels for a new image. Experiments
on images taken by outdoor surveillance cameras classify
known material types and shadow regions correctly, and
flag as outliers material types that were not seen previously.

1. Introduction
Color is an important feature for many vision tasks
such as segmentation[9], object recognition[2] and image
retrieval[20]. However, the apparent color of a surface
varies with illumination, and it is necessary to account for
this apparent color change to use color robustly. Color
constancy [6, 1, 5] is one way to deal with this problem.
Color constancy algorithms attempt to estimate the illumi-
nant spectrum and compensate for its contribution to im-
age appearance. Color constancy would seem to be an ap-
pealing preprocessing step for color-based vision tasks. Un-
fortunately, previous work shows that it is not sufficient to
merely concatenate a color constancy algorithm with an ob-
ject recognition algorithm [8, 20].

Many interesting vision applications, such as surveil-
lance and robot navigation, involve irregular geometry, un-
controlled lighting and random reflectance distributions.
These real world applications seriously challenge existing
color constancy algorithms, which have been tested only in
synthetic and laboratory settings. There exist very few color
constancy algorithms that work on real images[6, 2].

We have observed several factors that contribute to the
gap between color constancy theory and applications. First,
color constancy algorithms deal with very general cases.
Many color constancy algorithms assume the existence of
statistical invariants governing the natural world. For ex-
ample, the gray-world method assumes known mean re-
flectance of any natural scene, and there is work attempting
to estimate such statistics from large sets of images [17].
We seek to avoid such global assumptions by learning re-
flectance distributions only for classes of objects observed
in a set of training images, leading to a specific and well-
defined estimation problem.

Second, existing color imaging models have unpre-
dictable accuracy. For example, the diagonal transforma-
tion model [6, 8] gives good approximations only when the
camera has narrow and non-overlapping spectral sensitivity
functions. The generalized diagonal transform [5] performs
better than the diagonal transformation model, but assumes
very low dimensionality of the reflectance and spectrum.
Finite dimensional linear models [12, 1, 22] require explicit
use of illumination basis functions and camera sensitivity
functions, which are not always available and accurate. Our
observation is that only the coefficients used to combine ba-
sis functions are important for color constancy. As a result,
we propose a color imaging model that has the simple bilin-
ear form of the diagonal model, yet without the bias intro-
duced by inaccurate sensitivity and basis functions.

Finally, the computational burden of solving a color con-
stancy problem is non-trivial when a high degree non-linear
optimization problem is imposed on each pixel[1]. We in-
troduce an iterative linear update method that reduces the
computational cost dramatically, thus making it possible to
work on real images.

By appropriately dealing with the above issues, we have
developed a color-based object recognition algorithm that
can be applied directly to real world environments. In
this work we take advantage of the low dimensionality of
outdoor light spectra, although indoor light spectra can be
treated in a similar manner.
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We denote scalars as normal font characters, such asg.
Vectors are denoted as bold lowercase characters (e.g.v),
matrices as bold uppercase (e.g.M ). Random variables and
estimates are denoted with a hat (e.g.â).

2. Color Image Formation Model
We study Lambertian surfaces in this paper. For a Lam-
bertian surface, the measured intensityρc of channelc,
c = 1, 2, . . . , nc, is

ρc = g

∫

λ

fc(λ)s(λ)l(λ)dλ

Here g is an “effective light intensity” determined by the
scene geometry and the absolute light intensity (see Sec-
tion 3); fc(λ) is the sensitivity function of channelc; s(λ)
denotes the reflectance;l(λ) represents thenormalizedlight
spectrum (chromaticity of a light source); and all the above
variables are functions of the wavelengthλ. Since RGB
color cameras are the most commonly used sensors in vi-
sion research, without loss of generality we assumenc = 3
hereafter.

By discretizing the reflectances, light spectruml and
sensitivity functionfc into N samples, and denoting each
discretized function as a column vector, we obtain an equiv-
alent vector representation

ρc = glT D(fc)s (1)

whereD(fc) is the N × N diagonal matrix withfc as
diagonal elements.

We adopt finite dimensional linear models for both re-
flectance [13, 16, 3] and illuminant spectrum[11, 18]. As-
sume the reflectance and spectrum are spanned by the col-
umn spaces of the matricesBs andBl respectively. The
reflectance and spectrum can be rewritten as

{
s = Bsα
l = Blβ

(2)

Here α ∈ Rnα and β ∈ Rnl are coefficient vectors
with much lower dimensionality thanN . Previous research
shows that both the natural light spectrum [11, 18] and re-
flectance [13, 16, 3] can be approximated accurately with
such low dimensional linear systems.

Substituting (2) into (1) we get

ρc = gβT Bl
T D(fc)Bsα

Denoting thenl-element vectorBl
T D(fc)Bsα asσc, and

assuming thatg is known, we have a simple bilinear model
for color image formation

ρc = gβT σc. (3)

Here,σc can be considered as a filtered version of the orig-
inal reflectance, where the filter is determined by the basis
functions and the sensitivity functions.

Finally, for brevity we denoteρ = (ρ1, ρ2, ρ3)T ∈ R3

as the color vector andS = (σ1, σ2,σ3) ∈ Rnl×3 as the
reflectance matrix. We then have one big matrix equation

ρ = gST β . (4)

In Section 5 and Appendix A we will encounter the prob-
lem of estimating reflectanceσc, for c = 1, 2, 3. It is
more convenient to represent reflectance as a vectorσ =
(σT

1 , σT
2 , σT

3 )T ∈ R3nl than as the matrixS. By writing a

lighting matrix




β 0 0
0 β 0
0 0 β


 ∈ R3nl×3 we have the dual

form of (4)
ρ = gBT σ . (5)

The bilinear relationship (3) has long been observed in
the computer vision literature [1, 23, 22]. The important
difference here is that our representation is independent of
the basis function selection. In [1, 22] light spectrum ba-
sis functions are obtained by extracting principle compo-
nents from a large set of light samples measured by spectro-
radiometers, and camera sensitivity functions are selected
heuristically, for example to approximate the human eye
response [19]. Such choices work fine for simulations.
However, real applications of this approach require accurate
specification of basis and sensitivity functions. Our model
(3), on the other hand, discards such error-prone procedures,
and therefore can be used with any camera. The concept of
a lighting matrix in (4) and reflectance matrix in (5) also has
been previously used in computer vision [5]. Our contribu-
tion is that we parameterize them using4nl variables in a
manner that is independent of basis functions and sensitiv-
ity functions.

3. Statistical Models
To model the variations in the reflectanceσ, illuminant
spectrumβ, and effective light intensityg (due to geometric
attenuation), we treat them as random variables.

First of all, natural objects exhibit randomness in their
apparent color. We model this randomness of color pig-
ment distribution using the conditional probability distribu-
tion p(σ|o) whereo stands for the object class. For simplic-
ity we consider single colored objects only, and thus use
a unimodal distribution forp(σ|o). Multi-colored objects
could be modeled by extension as multi-modal mixtures of
single-mode distributions.

Secondly, when the light sources (or weather conditions,
represented by the symbolw) are known, the illuminant
spectrum is predictable. This distribution of the light spec-
trum given the light source is modelled asp(β|w).
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And finally, the irregularity of the scene geometry con-
tributes to the randomness of the effective light strengthg.
The effective light strength at a scene point is a function
of the incident light strengthI and the lighting geometry at
the point. Specifically, we model the sunlight (with inci-
dent strengthIsun) as a point light source and the skylight
(with incident strengthIsky) as an illumination dome. The
contribution of the geometry to the point light source is an
attenuation factora = cosθ, with θ representing the an-
gle subtended by the irradiance direction and the surface
normal. In an open space the skylight is attenuated by a
factor of b = 1+cos φ

2 , with φ being the angle subtended
by the surface normal and the vertical direction[10]. Thus
g = aIsun andg = bIsky for the two cases respectively.
When occlusion occurs in the scene,g will be further atten-
uated. For simplicity we assumea ·b = 0, which means that
only one light source will be dominant at a surface patch. A
more elaborate model can be adopted for additional accu-
racy, such as the modelling ofg as a linear combination of
the two light sources at each scene point.

When a site model and ephemeris data (latitude, longi-
tude, date and time) is available,g can be computed for each
scene patch up to a constant scale, which is due to the un-
known absolute light strength. For many cases, however, a
3D scene model will not be available. Instead, we assume
a piece-wise near-planar scene and modelg(x) as a single
mode random variable for each local patch, with the ran-
domness introduced by the small fluctuation of scene geom-
etry within the patch. The distribution ofg is conditioned
on the light source becauseg is a scaled version ofIsun or
Isky. We write this distribution asp(g|w).

It can be noted that the restrictions imposed by the prob-
abilistic models forg essentially translate to constraints on
the effective light intensity change. It enables us to tell sur-
faces with the same chromaticity but different brightness
from each other. To illustrate the point, consider an image
of a white road mark (with color vectorkρ) on a concrete
pavement (with colorρ). The part due to road mark can be
explained as(σ) × (kgβ) (the same reflectance, different
lighting), or (kσ) × (gβ) (the same lighting, different re-
flectance). The knowledge ofg distribution tells us that the
latter is more likely, resulting in a higher aposteriori proba-
bility that the given data may correspond to a road mark.

4. Learning Statistical Distributions
from Multiple Observations

Due to Maloney and Wandell[23, 12], it is now well known
that only anc− 1 dimensional reflectance descriptor can be
recovered uniquely from a singlenc channel multi-spectral
image. Unfortunately, conventional color CCD cameras
have only three channels, and two dimensional descrip-
tors have been shown to be insufficient for color constancy

tasks[8]. Following [22, 4] we estimate the reflectance and
illuminant spectrum from multiple registered images. Our
bilinear color imaging model (3) makes the recovery pro-
cess simple.

A small planar scene patch containing material types of
interest is selected for study. Over time it is uniformly illu-
minated by lights with different spectrumβ. We denote
the effective light strength at timet as g(t). The color
vector observed at timet and at pixelx is ρ(x, t)T =
g(t)β(t)T S(x). Assume we observedF frames ofP pix-
els, we can write the color measurement matrix as,

M =




ρ(x1, t1)T . . . ρ(xP , t1)T

...
...

...
ρ(x1, tF )T . . . ρ(xP , tF )T




By writing the light spectrum over time as a matrixL, and
reflectance across space asR, we get the following:

L =




g(t1)β(t1)T

...
g(tF )β(tF )T


 , R =

[
σ(x1) . . . σ(xP )

]

and therefore can derive the simple relationship

M = LR (6)

When the number of observationsF is greater than
the model dimensionnl, we can recover the reflectance
and light spectrum up to a non-singularnl × nl matrix.
This recovery can be easily achieved by applying singular
value decomposition(SVD) on the color measurement ma-
trix M = UWV . The estimate for the reflectance matrix
R is given by the firstnl rows of V , and the estimate for
the light spectrum matrixL is given by the firstnl column
of UW . Each row of the estimated matrix̂L is normalized
to give a estimate ofβ(t).

Each estimated̂σ and β̂ is considered to be a sample
from the reflectance and illuminant spectrum, accordingly.
If the pixels are labeled by object class and each frame is
labeled by light source class, both the reflectance distribu-
tion given object classp(σ|o) and the spectrum distribu-
tion given light sourcep(β|w) can be estimated by sample
statistics. If such labels are not available, the samples can be
segmented into distribution modes using unsupervised clus-
tering methods such as EM[15], and after clustering each
mode can be assigned a meaning.

5. Inference of Scene Contents
Given the estimated distributions for reflectance and light-
ing spectra, our goal is now to infer scene contents when
an image of a novel scene is presented. That is, we want to
determine the object class (material type) and light sources
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from pixels in the image. Following [1, 7, 17], we formulate
the problem within a Bayesian framework.

When there is no noise, (4) gives an exact color predic-
tion. However, our measurementρ̂ is corrupted by Gaus-
sian noise with covariance matrixΣρ, so the probability of
observing an actual color is given by

p(ρ̂|S,β, g) = (2π|Σρ|)−3/2
exp{−‖ρ̂− gST β‖Σρ}

Here |A| is the determinant ofA and‖v‖Σ is the Maha-
lanobis distancevT Σ−1v. This is the generative model of
observing a color vector.

Inference of scene contents proceeds in the other direc-
tion by determination of themaximum a posteriori(MAP)
estimate of the scene contents given the observed color vec-
tor ρ̂,

[ô, ŵ, Ŝ, β̂, ĝ] = argmax
[o,w,S,β,g]

p(o, w,S, β, g|ρ̂) (7)

Applying Bayes rule, it is easy to show that

p(o, w, S, β, g|ρ̂) ∝
p(ρ̂|S, β, g)p(β|w)p(S|o)p(g|w)p(w)p(o) (8)

Here we have assumed conditional independence ofρ̂ with
w ando given S, β andg, and we also assume indepen-
dence of the reflectance and light spectrum.

Conceptually, we have a hierarchical prior model and
a sensor likelihood model in (8). At the highest level,
p(w) andp(o) define the prior probability of observing light
sourcew and objecto in a given scene. Ifp(w) is available
(by knowing the time of day, for example), and ifp(o) is
available (when working in a familiar scene), the prediction
of scene contents can be greatly improved. The prior den-
sities p(β|w), p(S|o), andp(g|w) represent prior knowl-
edge of the light spectrum, reflectance and geometry, re-
spectively. Without this knowledge it is not possible to re-
cover a3 × nl dimensional reflectance, annl dimensional
spectrum and the three scalarsg,o andw from only a3 di-
mensional observation̂ρ. Finally, the likelihood model for
the measurements is derived from the physics of the image
formation process and the sensor error model, where the
color formation processp(ρ̂|S, β, g) is described. Bayes
rule (8) provides us with a scientific way for integrating in-
formation among these different levels of knowledge.

Solving the MAP problem (7) is not trivial. For each
pixel it involves a nonlinear optimization problem with
3 × nl + 1 continuous variables (S and g) and two dis-
crete variables (w ando). Furthermore, globally, there is
also onenl dimensional variable (β) to estimate for each
light source. In response to this problem, we have devel-
oped an iterative solution method based on linear updating.
Starting from some initialization, the algorithm iteratively
updates reflectance, geometry, light spectrum and classifies

each pixel. A detailed mathematical derivation for Gaus-
sian statistical models is presented in Appendix A, and we
present our algorithm in Section 6. At each iteration thea
posterioriprobability increases, and the method is guaran-
teed to converge to a local maximum. One important feature
of our iterative linear method is that in each step of updating
the reflectance, we transform inversion of3nl × 3nl matri-
ces into inversion of3×3 matrices. For our experiments we
have chosennl = 10. Considering that the matrix inversion
is performed for each pixel, and that it is ano(n3) operation,
use of our linear method greatly reduces the computational
cost.

6. Algorithm for Solving the MAP
After the learning process we have statistical knowledge of
both the reflectance and the lighting. We utilize this knowl-
edge to compute themean color chart, the table of typical
colors of different material types under different lighting
conditions. The “typical” color of a surfaceo under light
sourcew is given byρ̄(o, w) = µσ|oµβ|w, with µσ|o and
µβ|w representing the mean reflectance ofo and mean spec-
trum ofw respectively.

We initialize our algorithm by comparing the observed
color vector with each of the mean colorsρ̄(o, w). A pixel
belongs to object classo and is lit by light sourcew only if
it has similar chromaticity to the mean colorρ̄(o, w). This
similarity is measured by the angle subtended by the ob-
served color vector and the mean colorρ̄(o, w). The smaller
the angle, the more similar the chromaticity.

We define a local hypothesis at a pixel as the set of es-
timatesH = {σ̂, ĝ, ô, ŵ}. Our goal is to find the best hy-
pothesis that maximizes the MAP (8). To avoid mistakes
introduced by the initialization step we keepnh hypotheses
H1, . . . , Hnh

for each pixel, sorted by descending likeli-
hoods of the hypotheses. Even when the best initial hypoth-
esisH1 is wrong, the correct hypothesis can still be included
in the population and can emerge as the best hypothesis dur-
ing the estimation iterations.

The initialization algorithm is summarized as following,

• For each pixel, whose observed color is�̂

– Compute the anglesθ(o, w) subtended bŷ� and each
of the mean colors̄�(o, w).

– Sortθ(o, w) in ascending order.

– For theith smallest angleθ(o, w), initialize Hi as fol-
low

∗ Setô andŵ to the correspondingo andw

∗ Set�̂ to be��|o.

∗ Setĝ to be �̂
T �̄(o,w)
‖�̄(o,w)‖ .

• For eachw, formNw, the set of pixels whose best hypothesis
predictsw as the light source.
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• Estimate parameters of the distributionp(g|w) from the set
of samplesGw = {g(x)|x ∈ Nw}.

• Set the initial spectrum of classw as��|w.

We are exploring the joint space ofβ, σ, g, o andw for
the best hypothesis. Unlike the continuous variables the dis-
crete variableso andw cannot be updated analytically. The
complete brute-force method for solving the MAP problem
retains hypotheses corresponding to each combination of
the discrete variableŝo andŵ. The probability for each hy-
pothesis is computed and every hypothesis is updated until
convergence, when the hypothesis with the best probability
is chosen as the result. This procedure becomes increas-
ingly costly as the cardinality of̂o andŵ increase. By uti-
lizing the mean color chart comparison criterion we discard
many quite unlikely hypotheses from the start, thus increas-
ing the algorithm’s efficiency.

After initialization, we can refine the MAP estimation
iteratively.
• Divide the image into overlapping windows (assume each

window corresponds to a near-planar surface of the scene).

• For each window

– FormNw, the set of pixels whose best hypothesis pre-
dictsw as the light source.

– Estimate parameters of the distributionp(g|w) from
the set of samplesGw = {g(x)|x ∈ Nw}.

– For each pixel,

∗ For each hypothesisHi, i = 1, . . . , hh,
· Update�̂ according to (11)-(14).
· Updateĝ according to (16).

• For each pixel

– Compute likelihood of the hypotheses according to (8).

• Update light spectrum of each classw according to (18)-
(21).

• If nh > 1, nh − 1 → nh, delete the least likely hypothesis
of each pixel.

• Iterate until convergence.

7. Experiments
7.1. Data Collection
We have collected experimental data from a static surveil-
lance camera mounted on a building roof. The acquisition
hardware is a Sony EVI-330 color video camera and a Ma-
trox Meteor II. Fourteen images were collected every five
minutes over a period of two days. Each of the fourteen im-
ages were taken in quick succession, at different exposures.
From this data the camera response function was calibrated
and high dynamic range (HDR) images together with esti-
mates of the variance at each pixel were computed using
our calibration algorithm [21]. The result is essentially a
measurement of scene radianceρ̂ and its uncertaintyΣρ,
for each pixel.

7.2. Learning
An approximately planar training image is shown in Fig-
ure 1(a). Twenty-one such registered and uniformly illumi-
nated images were used to train the algorithm. Each patch
contains two material types of interest: vegetation and road
pavement, and the pixels corresponding to these two mate-
rial types were manually labeled. Reflectance at each of the
selected pixels and the illuminant spectrum for each frame
were then estimated using the method introduced in Section
4. To evaluate how many basis functions are needed, we
evaluated the model fitting errorM − UWV while vary-
ing the number of basis functions. Figure 2(a) shows the
median of the relative error plotted against the number of
basis functions. Note that the numbers are an estimate of
the standard deviation of the possible relative errors[14]. If
the errors obey a Gaussian distribution, it is not uncommon
to have errors as much as four times the plotted number.
For our experiments we chose 10 basis functions. A scat-
ter plot of the first three principal components of the esti-
mated reflectance is shown in Figure 2(b). We see that the
reflectance corresponding to the two classes are nicely sep-
arated, and that it is reasonable to fit a Gaussian model to
each of them.

(c)

(b)

(a)

Figure 1: (a) A sample input image and the small scene
patch selected for training the algorithm. (b) The mean
color chart. The first row represents colors of the road
pavement under different light source, and the second row
represents mean colors of the vegetation. The three light
sources (from left to right) are: early morning, shadow, and
sunlight. (c) Original image patches under the three light
sources. Notice the similarity between the image patch and
the corresponding mean color, and the obvious color differ-
ence under different light sources.

After estimating the reflectance distributions, we added
61 other patches (from the same location) into consid-
eration. In these images non-uniform illumination was
allowed. Given the known reflectance, we estimated one
light spectrum sample from each5 × 5 window in the
image via least squares. These light samples lie on a
small area of a 10 dimensional hypersphere (because we
specified to use 10 basis functions). We applied the EM
clustering algorithm to cluster these samples into three
classes, and fit a Gaussian model to each mode. The first
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Figure 2: (a) The relative median error as a function of
the number of basis functions. (b) Scatter plot for the two
surface types of interest. (c) Illuminant spectrum clusters

three principal components of the light spectrum are shown
in Figure 2(c). We are not claiming that there are only three
modes describing all possible daylight spectra. However,
these three explain our data very well. The three modes
correspond to the light spectra of early morning, shadow
and sunlight. A computed mean color chart is shown in
Figure 1(b). In Figure 1(c) we show sample images taken
from the original data. Image brightness has been adjusted
so that only the chromaticity matters. Notice the similarity
between the mean color chart and the real images, and the
distinct color changes under different light sources. ( Please
visit http://www.cs.cmu.edu/∼ytsin/research/bayesiancc/
for color images).

7.3. Inference
After training, the estimated statistical models were used
for classification. Only HDR images not included in the
training images were used for testing.

We applied the initialization algorithm in Section 6 to
the data. The initial classification found by the initialization
procedures is shown in Figure 3. It is interesting to notice
that this simple and low-cost initialization method gener-
ates a fairly good segmentation according to material types
and light sources. The results suggest that the cached mean
color information for a familiar scene can provide important
information for image understanding. But at this early stage
we can not reliably detect outliers because of initialization
errors.

We further applied the iterative updating algorithm in
Section 6. The results after convergence are shown in Fig-
ure 4. The algorithm has correctly identified many regions
corresponding to vegetation and road pavement. By manu-
ally setting a threshold on thea posterioriprobability, we
see that it is possible to successfully detect outliers as well,
such as parked vehicles, painted road marks, tree trunks and
buildings.

We compared the computational cost of our iterative lin-
ear method with that of the Levenberg-Marquardt (LM) al-
gorithm. For each combination ofo andw it takes about 1
second for the LM algorithm to update one pixel (31 dimen-

sional continuous variables). For a 320x240 image it would
have taken days for it to converge. Our linear iterative algo-
rithm takes several minutes to converge on the whole image
using the same computer.

A robustness study is a topic we are currently pursuing.
Initial tests on other images show repeatable classification
results.

8. Conclusion
To the best of our knowledge, there has not been a previous
color constancy algorithm that is applicable in an outdoor,
uncontrolled environment. By learning customized surface
reflectance and lighting distributions, we have successfully
combined a color constancy algorithm with an object recog-
nition algorithm and have applied them in outdoor scenes.
The approach is based on statistical learning and inference.
A Bayesian estimation scheme is presented wherein the
prior scene knowledge, i.e. lighting, object/material classes,
and geometry, is integrated with a likelihood model moti-
vated from the physics of image formation and a sensor er-
ror model. The experimental results confirm the validity of
our model assumptions in the outdoor scenario tested.

We have adopted the Gaussian noise model in our exper-
iments due to its computational simplicity. However, our al-
gorithm is not limited to Gaussian models, or even to single-
mode distributions. When the Gaussian assumption is no
longer valid, the learning and inference methods in Section
4 and 5 still hold. The solution of the MAP problem may be-
come much different, however. In the most computationally
challenging cases, general sampling and resampling tech-
niques [7] can still be applied to achieve a solution.

A. Solving the MAP Problem
We discuss how to update a hypothesis based on esti-

mates available at stepn, given Gaussian statistical models
for reflectance, spectrum and geometry. First, we discuss
how to update reflectance. We assume all other variables

are known and are equal tôo(n), ŵ(n), ĝ(n) andβ̂
(n)

. The
cost function to be minimized is

COST σ = ‖ρ̂− ĝ(n)B̂
(n)T

σ‖Σρ + ‖σ−µσ|o‖Σσ|o (9)

HereB̂
(n)

is the estimate of the lighting matrixB at step
n. µσ|o andΣσ|o are the mean and covariance of the re-
flectance of object classo. The solution to (9) is,

σ̂(n+1) =
(
ĝ(n)2B̂

(n)
Σ−1
ρ B̂

(n)T
+ Σ−1

σ|o
)−1

(
ĝ(n)B̂

(n)
Σ−1
ρ ρ̂ + Σ−1

σ|oµσ|o
)

(10)

The first term on the right hand side of the above equa-
tion involves inversion of a3nl× 3nl matrix for each pixel,
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(c)(a) (b)

Figure 3: Initial segmentation based on comparison with the mean color chart (a) The test image. (b) Initial segmentation
by material types. White: vegetation. Gray: road pavement. (c) Initial segmentation by light source. White: sunlight. Gray:
shadow. Dark gray: early morning

(c)(a) (b)

Figure 4:Final results (a) The detected outliers. Outliers are shown as black pixels (b) Final segmentation by material types.
White: vegetation. Gray: road pavement. (c) Final segmentation by light source. White: sunlight. Gray: shadow.

which is very costly. To avoid this high computational bur-
den, we apply the inversion formula

(A + BCD)−1 = A−1−A−1B
(
C−1 + DA−1B

)−1
DA−1

Using this formula, solution (10) is seen to be equivalent to

σ̂(n+1) = K1µσ|o + K2Σ−1
ρ ρ̂ (11)

K1 = I −Σσ|oB̂
(n)

K3B̂
(n)T

(12)

K2 = ĝ(n)Σσ|oB̂
(n)

(
I −K3B̂

(n)T
Σσ|oB̂

(n)T
)

(13)

K3 =
(

Σρ
ĝ(n)2

+ B̂
(n)T

Σσ|oB̂
(n)

)−1

(14)

which requires inversion of a3× 3 matrix only.
Similarly, the cost function to be minimized for estimat-

ing g is

COST g = ‖ρ̂−gŜ
(n+1)T

β̂
(n)‖Σρ+‖g−µ̂g|w‖σ̂g|w (15)

HereŜ
(n+1)

is the estimate of reflectance matrixS at step
n + 1. µ̂g andσ̂g is the estimated mean and standard devi-
ation of the effective light intensity for light sourcew. The

solution to (15) is,

ĝ(n+1) =
µg|w + σ̂

(n)2
g|w ρ̂T Σ−1

ρ Ŝ
(n+1)T

β̂
(n)

1 + σ̂
(n)2
g|w β̂

(n)T
Ŝ

(n+1)
Σ−1
ρ Ŝ

(n+1)T
β̂

(n)
(16)

In contrast to the reflectance and effective light strength,
the light spectrum is a global variable. The cost function is
defined by all the pixelsx ∈ Nw lit by light sourcew.

COST β =
∑

x∈Nw

(
‖ρ̂(x)− ĝ(n+1)(x)Ŝ

(n+1)T
(x)β‖Σρ(x)

+ ‖β − µβ|w‖Σβ|w
)

(17)

Hereρ̂(x) is the color vector observed at pointx. ĝ(n+1)(x)

and Ŝ
(n+1)

(x) are similarly defined.µβ|w andΣβ|w are
mean and covariance matrix for spectrumβ of light source
classw. For each pixel we have the following system of
normal equations

h(x)β = b(x) (18)

h(x) = Σ−1
β|w + ĝ(n+1)2(x)Ŝ

(n+1)
(x)Σ−1

ρ (x)Ŝ
(n+1)T

(x) (19)

b(x) = Σ−1
β|wµβ|w + ĝ(n+1)(x)Ŝ

(n+1)
(x)Σ−1

ρ (x)ρ̂(x) (20)
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The optimal solution is given by

β̂
(n+1)

=

( ∑

x∈Nw

h(x)

)−1 ( ∑

x∈Nw

b(x)

)
(21)
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