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Abstract

Charge-Coupled Device (CCD) cameras are widely used
imaging sensors in computer vision systems. Many pho-
tometric algorithms, such as shape from shading, color
constancy, and photometric stereo, implicitly assume that
the image intensity is proportional to scene radiance. The
actual image measurements deviate significantly from this
assumption since the transformation from scene radiance
to image intensity is non-linear and is a function of vari-
ous factors including: noise sources in the CCD sensor, as
well as various transformations occurring in the camera in-
cluding: white balancing, gamma correction and automatic
gain control. This paper illustrates how careful modelling
of the error sources and the various processing steps enable
us to accurately estimate the “response function”, the in-
verse mapping from image measurements to scene radiance
for a given camera exposure setting. It is shown that the es-
timation algorithm outperforms the calibration procedures
known to us in terms of reduced bias and variance. Further,
we demonstrate how the error modelling helps us to obtain
uncertainty estimates of the camera irradiance value. The
power of this uncertainty modeling is illustrated by a vi-
sion task involving High Dynamic Range image generation
followed by change detection. Change can be detected reli-
ably even in situation where the two images (the reference
scene image and the current image) are taken several hours
apart.

1 Introduction

Charge-Coupled Device (CCD) cameras are used widely in
computer vision systems. Many photometric algorithms,
such as shape from shading [8], color constancy [11],and
photometric stereo [15], implicitly assume that the image
intensity is proportional to scene radiance. However, the
CCD imaging process usually deviates from this ideal lin-
ear model. This is due to the fact that there are several inde-
pendent sources of error in the sensor and that the operation
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pipeline in the camera includes additional operators such
as color correction/white balancing and gamma correction.
The camera non-linearities make the above mentioned vi-
sion algorithms to be systematically biased since they ex-
pect the real scene irradiance as input. Thus it is desirable
to calibrate the process of imaging, including typical oper-
ations such asγ-correction and white balancing. Given a
static scene with constant camera irradiance, the calibration
procedure aims to estimate the camera response function,
i.e. the mapping from the cross product space of image in-
tensity and exposure time to camera irradiance, by acquir-
ing images with multiple exposure settings. Since the irra-
diance is assumed to be constant within the acquisition pe-
riod, the calibration step essentially estimates the response
function by minimizing prediction disagreements across the
images.

The calibration can be greatly improved if the noise char-
acteristics and the various processing steps in the conven-
tional CCD sensor are modeled carefully. In this paper
we present a calibration technique that is motivated from
statistical model of the transformation steps and errors in
the CCD camera. It is shown that the model helps in ob-
taining accurate estimates of the camera response function,
the scene radiance, and its uncertainty. We illustrate how
the calibration results can be used in a vision operation se-
quence involving High Dynamic Range (HDR) image gen-
eration followed by illumination invariant change detection.
The knowledge of uncertainty in the radiance is used to au-
tomatically setup the change detection measure threshold so
that a given false alarm rate can be achieved. The paper is
organized as follows. Section 2 describes the CCD imag-
ing process and the error sources at various steps. Section
3 describes the probabilistic generative model for the image
observations. Section 3.1 describes the statistical model
and the iterative calibration algorithm. Section 4 describes
the experiments performed on synthetic and real data to val-
idate our calibration algorithm. Section 5 discusses the ap-
plication of the calibration method to perform illumination
invariant change detection. We conclude in section 6 with
a discussion and outlook.

In this paper we denote true values of scalars as Roman
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letters, such asg. Observations or estimates of a random
variable are denoted with a hat,ĝ. Matrices and vectors are
denoted by using bold face letters.

2 Imaging Process

Before we address the problem of estimating the camera
response function, we first provide an overview of the na-
ture of various transformations and error sources in a typical
color CCD camera.

A typical CCD camera imaging process is shown in fig-
ure 1. The camera irradiance, i.e. the energy incident on the
CCD is usually considered to be proportional to the atten-
uated scene radiance under normal weather conditions [8] .
The lens system transmits this camera irradiance unevenly
because of factors including: thecos4θ law andvignetting
[8]. Modern cameras usually correct the “cos4θ” distortion
while thevignettingeffect could be accounted for by cali-
bration (see for instance [2]). The light energy transmitted
through the lens system is then converted to electrons in the
CCD array. In color CCD cameras, a red, green, blue filter
array (called theBayer pattern) is used in the sensor. Two
rows in aBayer patternconsists of a sequence of alternating
red/green filter elements in one row followed by alternating
green/blue filter elements in the subsequent row. The photo-
electronic transformation is corrupted by various sources of
errors (noise). For an excellent review the readers are re-
ferred to [7]. Due to manufacturing defects, the CCD well
sizes fluctuate with a small variance. Thus, different CCD
units output different voltage for the same light input. This
phenomenon is called thefixed pattern noiseand is usually
modeled by a constant multiplier associated with each site.
In addition, there is thedark currentdue to the thermal en-
ergy. The dark current usually adds a constant offset to the
observed intensity, plus a small fluctuation which can be
modeled as Gaussian noise. In this paper we will model the
ideal CCD output, after scaled by the fixed pattern noise and
offset by the dark current , asE. The CCD unit response is
integrated over an exposure timet. UsuallyE is corrupted
by theshot noiseNs and the thermal noiseNc1. The vari-
ance of the shot noise is proportional toEt. The output of
the CCD unit can then be modeled as following.

Ê1 = tE + Ns + Nc1 (1)

To obtain the color image values from the Bayer Image,
some form of interpolation (e.g. bilinear interpolation) is
carried out to obtain the full resolution color image [1]. This
operation is followed bywhite balancing[17], a processing
step that attempts to generate output images that are con-
sistent with human perception of color under different il-
lumination conditions. In this paper we will model white
balancing as separate transformations on each channel in-
volving the scaling of values and an offset. Now equation

(1) can be rewritten as the following.

Ê2 = aE + Ns + Nc1 + b (2)

Herea is the combined scaling factor that incorporates the
scale due to white balancing and the exposure time.

To account for the non-linear transfer function relat-
ing the input voltage in the display monitor to the display
brightness,γ correctionis usually applied to the sensed im-
age value. Considering other noise effects such as: quanti-
zation error, amplifier noise, D/A and A/D noise, as an ad-
ditional noise termNc2 with a constant variance, we have
the expression for the observed image measurements:

ẑ = f (aE + Ns + Nc1 + b) + Nc2 (3)

3 Calibration algorithm

We are interested in the estimation of the inverse function
g = f−1. We call this function theresponsefunction of
the imaging process. Using equation (3) and using a Taylor
series approximation:

g(ẑ) ≈ aE + Ns + Nc1 + b + g′(ẑ)Nc2 (4)

Without noise, the true values have the following relation.

g(z) = aE + b (5)

We write the zero mean noise term as

N(a, ẑ) = Ns + Nc1 + g′(ẑ)Nc2 (6)

The variance of the noise term is given by

σ2(a, ẑ) = aEσ2
s + σ2

c1 + g′(ẑ)2σ2
c2 (7)

While the response function can be modeled by a contin-
uous/smooth parametric function, we simplify the problem
by following [5] to compute values ofg at discrete values
only. In this paper we will assume 256 gray levels are used.

Besides the error sources mentioned above, other factors
contribute to deviations in the image measurements. These
factors include, but are not limited to, the following: bloom-
ing, color aberration, and spectral sensitivity. The readers
are referred to [16] for further discussion. In this paper we
deal with blooming by removing the infected pixels, i.e. the
pixels surrounding a saturated pixel within a certain radius.
The radius is usually 3 pixels for our cameras and is cho-
sen empirically. To perform the calibration of the imaging
process, we essentially use the same idea as the approaches
in [12], [5], and [14]. We assume a constant, but spatially
varying, camera irradiance,E, (within the given acquisition
time) at a given pixel. Under this assumption, it is clear that
spatially varying errors such as fixed pattern noise, dark cur-
rent noise and vignetting are not relevant since these spatial
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Figure 1:CCD camera imaging pipeline

variations are decoupled from the temporal random noise.
The prediction ofE can be done by using our statistical
model from a collection of image measurements at a given
pixel (with various exposure settings). When calibration of
g, a andb is finished, other error sources can be calibrated
using [7] and [2] . In this paper our focus is only on the
estimation of the response functiong, white balancing co-
efficientsa andb.

We build upon the approaches of [5][14], with some ma-
jor improvements. First, instead of considering a small
group of representative pixels for calibration purposes, we
will study all the valid pixels. Statistics on pools of pix-
els helps us to properly form and weight calibration func-
tions. Second, we model white balancing explicitly to ac-
count for color correction that is carried out during the pro-
cess of taking images. Third, the noise is modeled and the
variance is computed. Consequently, when we construct our
HDR image, the blending step involves a meaningful weight
function and the output HDR map has an predictable vari-
ance map. Fourth, we realize the problem ofu-ambiguity
is worse than the authors of [14] have expected. Moderate
noise level and small error tolerance bring their solution to
a trivial one. We put constraints on the variations of expo-
sure times to avoid the trivial solutions. The next subsection
details the statistical estimation process.

3.1 Parameter estimation

The estimation problem will be formally defined in this
section. LetI(x) = ẑ(x) denote the image measure-
ment at a given spatial locationx. A set of images
I1, I2, . . . , IN of a static scene is taken under different ex-
posure settingst1, t2, . . . , tN . Denote the observed inten-
sity value in thekth image at pixel locationx asẑk(x). At
each pixelx, we observe a pixel trace over theN images
ẑ1(x), ẑ2(x), . . . , ẑN (x). They all correspond to the same
unknownE(x). Denote byP(k, ẑ, ε) = {x : ‖Ik(x) −
ẑ‖ < ε}, thepoolof pixels in thekth image that centered at

ẑ with a radiusε. Then from equations (4) and (6):

g(ẑk(x)) = E(x)ak + bk + N(ak, ẑk). (8)

The objective is to obtain the maximum-likelihood estimate
of the response functiong(.), ak, bk andE(x). This is done
in an iterative fashion. Let̂g(j)(.), â

(j)
k , b̂

(j)
k denote the es-

timates at the start of thej’th iteration. Given these val-
ues it is possible to predict̂E(j)(x, k), k = 1, . . . , N and
the weighted average of these predictions across the pixel
trace provides the iteration estimate (of the true unknown
scene radianceE(x)), Ê(j)(x) as seen in equation ( 9). The
weights are set to a constant value in our calibration process.

Ê(j)(x, k) =
ĝ(j)(ẑk(x))− b̂

(j)
k

â
(j)
k

, k = 1, 2, . . . , N

Ê(j)(x) =
N∑

i=1

ŵ
(j)
i

ĝ(j)(ẑi(x))− b̂
(j)
i

â
(j)
i

(9)

Given the new estimates for the scene radiance, we can re-
cover the residualŝe(j)

k (x, ẑk), and the mean error across

poolsê
(j)
k (ẑk). In addition, we can recover the standard de-

viation of the errors in scene radiance estimateσ̂
(j)
k (ẑk) by

using the residuals in each pixel pool. To deal with outliers
we use robust versions of the above estimates. For exam-
ple, we use the 66 percent trimmed mean in our estimation
step involvingê

(j)
k (ẑk) (see equation (11)). Note thatφ(.)

in this equation corresponds to the trimmed mean estimator.
In addition, in equation (12)̂σ(j)

k (ẑk) uses the median of the
residuals to estimate the standard deviation.

ê
(j)
k (x, ẑk) = â

(j)
k Ê(j)(x) + b̂

(j)
k − ĝ(j)(ẑk) (10)

ê
(j)
k (ẑk) = φ(ê(j)

k (x, ẑk), x ∈ P(k, ẑ, ε)) (11)
1

ŵ
(j)
k

= σ̂
(j)
k (ẑk)

= c · median
x∈P(k,ẑ,ε)

‖êk(x, ẑk)− ê
(j)
k (ẑk)‖ (12)
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Denote byek(ẑk) the theoretical errors at each iteration as
a function of∆g(.), ∆a, and∆b, then it can be shown that:

ek(ẑk) = µ (ek(x, ẑk))

≈
∑

i 6=k

wi
ak

ai
[∆g(ẑi(x))−∆bi − E∆a]

+(wk − 1) [∆g(ẑk)−∆bk − E∆ak]
def= F(∆g, ∆a,∆b, ẑk, k) (13)

The constantc in (12) is affected by two issues. First, a cor-
rection factor has to be applied since a robust estimate ofσ
is obtained by taking the median of the absolute deviations.
This factor is1.483 for the Gaussian distribution. A second
factor has to be multiplied to correct for the correlations in-
duced by the Bayer pattern in the color image. For color
images, neighboring pixels are usually correlated due to in-
terpolation of the Bayer pattern. While independence can
be achieved by pre-selection of pixels, we model the impact
of the correlations on our variance prediction and correct
for it. This correction factor can be shown to be1.265 for
green bands and1.333 for red and blue bands.

Define the updates∆g, ∆a and∆b:

∆g = {∆g(z)}, z = 1, 2, . . . , 256,

∆a = ai, i = 1, 2, . . . , N, and,

∆b = bi, i = 1, 2, . . . , N (14)

The update step at each iteration involves the computation
of the updates by determining:

argmin
∆g,∆a,∆b

∑

k,ẑk

(
ê2
k(ẑk)−F(∆g, ∆a, ∆b, ẑk, k)

)2

σ̂2
k(ẑk)

(15)

and updating the current estimates:

ĝ(j+1) = ĝ(j) − η∆g

â(j+1) = â(j) − η∆a

b̂(j+1) = b̂(j) − η∆b (16)

At the end of the iterations, we use the relationship given
by (7) to obtain a system of linear equations relating the pa-
rametersσc1, σc2, andσs toσ2(a, z). The estimateŝσk(ẑk),
ĝ(.), Ê(.), and âk are used as measurements and a least
squares fitting step is used to estimate the unknown CCD
sensor parameters. The system of equations relating the
ideal parameters is given below:

σ2
k(ẑk) =

∑

i6=k

w2
i σ2(ai, zi) + (wk − 1)2σ2(ak, ẑk) (17)

After the calibration has finished, and the variances of
the noise estimated, the HDR image can be blended using
(9). The weighting function is given by

wk =
ak/σ(ak, ẑk)∑

i ai/σ(ai, ẑi)
(18)

The standard deviation of scene radiance estimation (9) is
given by

σE(x) =
√

N∑
i ai/σ(ai, ẑi)

(19)

3.2 Iterative Calibration Algorithm

While the above estimation algorithm is in theory reason-
able, we have to adapt it to address practical considerations.
First, there are several types of known outliers in a typi-
cal digitized image,including boundary pixels and blooming
contaminated pixels. They can be easily identified and the
corresponding pixels can be taken care of by preprocessing
the input image. Equations of form (13) must be properly
constrained to avoid trivial solutions. Notice that what we
are going to recover is the affine transformed version of the
original scene radiance. The true scene radiance remains
unknown without first calibrating for the spatial variations
and the dark current. Therefore, a shifted and scaled ver-
sion of g(z) gives the same consistency over different im-
ages. To fix the ambiguity, it is necessary to fix the values
of two points of the response function. Let the two points
be x1 and x2. ∆g(x1) and ∆g(x2) are set to zero once
g(x1) andg(x2) have been initialized. A further ambiguity
arises when differentbk ’s are allowed for different images.
For instance, when we add a valuec · ak to bk, different
images agree the same . To remove this ambiguity, we fix
one of thebk ’s and let∆bk = 0. These constraints can be
used directly by setting appropriate values to zeroes in the
equations of form (13).

In [14] the authors mentioned the so calledu −
ambiguity arose when bothg anda are allowed to change.
Consider the case whenbk = 0 for all k. The ideal imag-
ing process becomesg(z) = Ea. It is easy to see that the
imaging process can also be interpreted as sceneEu scaled
by au, with corresponding response curvegu(z). In one ex-
treme case,u = 0, the response curve is flat, and all theak ’s
are the same. This will make arbitrary images “agree” on
each other. Mitsunaga and Nayar ([14]) claimed that their
polynomial formulation alleviates this ambiguity if the true
response curve is indeed a polynomial. However, the true
response curve can seldom be represented exactly by a low
degree polynomial. The model approximation error trans-
lates to a larger variance in the estimated response function.
This problem is fundamental and cannot be solved without
ground truth of the scene radiance. In our algorithm, we
bound the changes in the scaling factors by placinga priori
knowledge on them. For example, we punish large devia-
tions ofai from the nominal exposure times. For electron-
ically controlled shutters and small white balancing, this is
usually a reasonable assumption.

Finally, we put smoothness and monotone constraints on
the response function. To enforce smoothness we add an ex-
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tra term λ
∑254

k=2 (∆g(k − 1)− 2∆g(k) + ∆g(k − 1)) to
the cost function (15). Usually the response curve is mono-
tonically increasing. Algorithms to solve order constrained
optimization problem are within the field of isotonic regres-
sion [3] . To simplify the problem we post process the esti-
mated response function bypool-adjacent-violators (PAV)
algorithm. More rigorous algorithms, such as quadratic-
programming should be used if the order constraint is to
be imposed along with the optimization.

The algorithm can now be summarized as follows:

1. Preprocess the image. This involves:

• Taking out all the outlier pixels;

• Building a look up table to all the pooled pixel
setsP(k, ẑ, ε);

• Building pixel traces, and estimating the most
likely intensity values that correspond to a pool
under a given exposure. This is done by taking
the median of the intensity values of the pooled
pixels for a given exposure.

2. Initialize the response curve to be a straight line pass-
ing through the fixed pointx1 andx2. Set the initial
scale factorsai to be the nominal exposure times, and
the initial offsets to be all zeros. For color images,
each channel has its owng,a andb. Each channel is
calibrated separately.

3. Build HDR using (9). In the place ofg, a andb use
current estimate.

4. Calculate the prediction error for each pixel using (10).

5. Estimatêek(ẑk) and σ̂2
k(ẑk) from equations (11) and

(12). Form equations of (13) and (17) for each pool of
pixels.

6. Enforce smoothness constraints. The constraints
∆g(xi) = 0, i = 1, 2 can be approximated by linear
equationsK∆g(xi) = 0, whereK is a large number.

7. Solve for∆g, ∆a and∆b,σs, σc1, andσc2 by using
equations (15) and (17).

8. Updatêg, â andb̂ using (16);

9. Impose monotonic constraints by pool-adjacent-
violator (PAV) algorithm.

10. Iterate 3 until the 1-norm of∆g is smaller than error
tolerance.

4 Experiments

4.1 Simulated Images

In each sequence eight images were generated. Consecutive
images had exposure ratio of

√
2. The response function

wasg(z) = (z/255)1.2, z = 0, 1, 2, . . . , 255. The radiance
E was designed to have uniform distribution in[0, 1]. Pixel
pools on average had about 200 elements. Pools with at
least 100 pixels were considered. The noise levels were set
to beσs = 0.015, σc1 = 0.01 andσc2 = 1. These noise
terms were chosen to simulate real camera noises.

To compare our algorithm with that of [5] and [14], 50
sequences were produced without white balancing. We ap-
plied all three algorithms on the same data set.

For each algorithm, response functions estimated from
the 50 sequences were compared with the true one. Aver-
age and standard deviation of the response function error
were computed. Though the algorithms of [5] and [14] had
already achieved high accuracy, less than 0.5% at high in-
tensity end, our algorithm showed further improvement in
terms of reduced bias 2(a) and variance 2(b).
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Figure 2:
Comparison on the response function estimation error:
First row, estimation errors without white balancing; sec-
ond row, with white balancing. (a)(c) average estimation
errors for the 50 sequences; (b)(d) standard deviation of
the estimation errors.

In addition to the response function, our algorithm output
estimation of the variance term. The average estimatedσs,
σc1 andσc2 were0.0150, 0.0101, and0.8617, with standard
deviation0.0004, 0.0003 and0.3839. We didn’t use any
constrained optimization on the variance terms. 4 out of
50 sequences output negative value onσc2 and were forced
to be 0 after optimization. If the 4 sequences were taken
out, average of the variance termσc2 for the remaining 46
sequences were0.9366 with standard deviation0.2978.

Readers should realize the limitations of the noise model
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(7). When calibrated,aE ≈ g(z) for a given pixel. Ifg(z)
has similar function form asg′(z)2, it is not easy to dis-
criminate the individual contributions ofσ2

s andσ2
c2. For

example, wheng(z) = z2 = g′(z)2, it is impossible to
quantify shot noise individually. In such case, however, the
total noise variance can still be estimated by combiningσ2

s

andσ2
c2.

Next, 50 sequences with white balancing introduced
were studied. Our algorithm was able to recover both the
scale factor and offset reliably. The nominal scale factora
was multiplied by a Gaussian random variable with mean
1 and standard deviation 0.05 and was provided to the pro-
gram. Our algorithm was able to recover the scale factor to
the accuracy of 0.5% in the above mentioned noise settings.
Our algorithm also recovered the offset factor reliably. The
extent to which the offset can be recovered especially de-
pends on the noise termNc1. In all the cases, the larger the
pixel pool size, the better the accuracy on estimation. Per-
formance of [14] were comparable (see figure 2(c)(d)). Our
algorithm has smaller deviations.

4.2 Real Images

We took 21 sequences of outdoor images using a Sony EVI
330 camera. One representative image is shown in fig-
ure 3(a). We changed shutter speed ranging from1/60 to
1/10000 in 14 stops to capture the high dynamic scene. Fig-
ure 3(b) is the pixel pool size histogram of the image in (a).

Figure 3(c) shows the histogram of the prediction error
ek(x, ẑk) in the pool centered at 199 before calibration. Ini-
tially the bias is large, about 30% relative error. After a
couple of iterations our algorithm is able to bring the whole
pool to very small bias 3(d).

Estimated response curves for the sequence in figure 3(a)
are shown in 3(e). Curves of the three channels are super-
imposed and it is interesting to observe that the three curves
are very close to each other despite that they were estimated
independently. Figure 3(f) shows the results of camera vari-
ance estimation step using the model equations (17). Over
the 21 sequences, the average estimatedσs, σc1, σc2 are
0.0138, 0.0037,0.9965 for the green channel, with standard
deviation 0.0025,0.0007, and 0.5473 respectively.

We further tested our algorithm on the Cathedral se-
quence down-loaded from the web site of Debevec [5]. As a
comparison, we ran the code of both [5] and [14] on the set
of images. The estimated response curves and the blended
HDR images were then used to test the prediction agree-
ment (10)(11) of different images. Representative predic-
tion errors are shown in figure (4). Our algorithm gives
much better accuracy than those of [5] and [14].

We don’t have ground truth white balancing information
for our data set. However, we frequently observed much
improved agreement across images when scale and offset
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Figure 3:
Calibration of a Sony camera. See text for explanations..

0 100 200 300
−0.15

−0.1

−0.05

0

0.05

0.1

DM  
MN  
Ours

0 100 200 300
−0.15

−0.1

−0.05

0

0.05

DM  
MN  
Ours

0 100 200 300
−0.04

−0.02

0

0.02

DM  
MN  
Ours

(a) (b) (c)

Figure 4:
Real image results: (a)-(c) prediction errors for images 1,6
and 12 in the Cathedral sequence.

factors are allowed to be calibrated. Intuitively scale fac-
tors change the slope of curves shown in figure 4, and offset
factors shifts the curves in vertical direction. Our better per-
formance in the Cathedral sequence is largely due to these
extra degrees of freedom.

5 Application: Illumination Invari-
ant Change Detection

Since our calibration provides an uncertainty estimate of
E(x), we believe it is possible to make use of this infor-
mation to demonstrate significant improvements of various
vision algorithms such as change detection, color constancy,
etc. In this paper, we address the problem of change detec-
tion under varying illumination.

For simplicity we only consider the case of static Lam-
bertian scene, static camera, and planar background. In our



Appeared in the Proceedings of the IEEE 2001 International Conference on Computer Vision 7

example we took a sequence of images of a empty parking
lot. Hours later we took a second set of images. In both
cases images were calibrated, and HDR images with uncer-
tainty model were obtained. Two such images are shown
in figure (5a,c). Our goal is to detect the parked cars un-
der significantly changed lighting while having the ability
to discriminate shadow from the changes due to reflectance.

Past works have shown that the illumination change can
be modeled as linear transformations in the RGB space
(see for instance [20]). The argument is supported by
early research that the surface reflectance can be repre-
sented by low dimensional linear systems [10]. Represent-
ing the measured color vector at a pixelx as a row vector
E(x) ∈ R1×3, and the radiance of the same pixel under a
different illumination asE′(x), the authors of [20] claimed
E′(x) = E(x)M,M ∈ R3×3. If a population ofK pixels
are coplanar in the 3D world, and they are illuminated by
the same light source in each case, they all obey the same
transformationM. The transformation can be estimated us-
ing the observed radiance at these pixels. Thus we can stack
all the color vectors into twoK × 3 matricesÊ andÊ′, and
we have the system of equations:

ÊM = Ê′ (20)

The estimateM̂ that minimizes the error in a least squares
sense can be computed.

Let Ê = E + NE andÊ′ = E′ + N′
E. HereE is com-

posed of the true radiance andNE is composed of zero
mean independent random variables whose variances are
estimated by (19). Using standard perturbation analysis
techniques [18] (i.e. first order error propagation) the co-
variance matrix of the prediction error at a given pixelx,
e(x) = Ê(x)M − Ê′(x), can be calculated as a function
of ΣE and ΣE′ and theE and E′.Here Ê(x) and Ê′(x)
corresponds to 1 by 3 data vectors.

Given the prediction errore(x) and the covariance
Σ(e(x)), the test statistic:d2 = e(x)′Σ−1(e(x)) has aχ2

distribution with 3 degrees of freedom. However, in our sit-
uation, we have to usêΣ, the estimate of the true unknown
covariance matrix evaluated at̂E(x) andÊ′(x). Thus, the
test statistic calculated,̂d2, is only approximatelyχ2. A
more closer look points out that̂d2 is distributed as the sum
of two random variables one having aχ2 distribution with
3 degrees of freedom and another having the distribution of
the quadratic forme(x)′∆Σe(x). Here∆Σ corresponds to
the error in the covariance matrix estimate. This is veri-
fied in our real experiments (Please see figure 6). Thus, it
is necessary to have an additional empirical estimation step
to estimate the mapping between probability of false alarm
and the threshold.

In the above discussion, we mainly considered all pix-
els in a given surface patch with same illumination effect.
In reality, we don’t know clustering of the pixels according

to change of reflectance or illumination distribution before
hand. This is exactly the problem to be solved. Estimating
the transformation matrix in (20) requires such clustering
information. To deal with this dilemma we adopted robust
estimation algorithms. The basic idea is to iteratively par-
tition the data into clusters through the use of robust tech-
niques that can detect and handle outliers. We use the least
trimmed sum of squares(LTS) [13] [19] to give an initial
guess of the largest region with same illumination effect.
The M-estimator [9] is then used to refine the estimation.
When the estimation ofM converges, all the pixels obey-
ing this transformation are considered to be within the same
cluster. For example, in figure 5(d), all pixels in region A
is identified as belonging to the same cluster because they
were previously lit by morning skylight (figure 5)(a) and
now by sunlight (figure 5(b)). Color changes of the remain-
ing pixels are due to another lighting, the skylight, or parked
car. To detect shadows we re-apply the estimation tech-
nique to identify the next cluster of pixels among the non-
labelled pixels. Shadows of different shade are detected in
the second and third run. At each step the test statisticd̂2 is
measured for the cluster pixels and the iterations stop when
this test statistic is greater than the chi-square threshold dis-
cussed above. In the example, the pixels that are labelled
black are considered “change”.

The detected changes and shadows are shown in figure
(5d). Despite dramatic change in light spectrum and inten-
sity, shadows and parked cars are successfully detected. We
applied the algorithm on 21 other HDR images that were
taken as much as 10 hours apart from the time the reference
images was taken. We get good results for all the cases.

From theory, the mean of thêd2 test statistic in the
“unchanged” regions should be approximately 3 (assum-
ing zero mean error for∆Σ). We computed this value for
the dominant background cluster for the 21 images. The
population mean is3.3792 with the standard deviation of
this estimate being0.5064. For each of the 21 sequences
we plotted the distribution of theχ2 value against the theo-
retical value in figure 6. The estimated probability density
function matches well with the theoretical predictions1.

6 Conclusion

In this paper we proposed a statistical method to calibrate
the imaging process. We use a statistical model of the mea-
surement errors in a CCD camera that accounts for various
transformations in the sensor. We proposed an iterative non-
linear estimation algorithm to estimate the camera response
function, the white balancing coefficients, and the scene ir-
radiance predictions. We verified the correctness of the al-

1Theory predicts that there will be some discrepancy between the chi-
squared distribution and the observed distribution
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(a) (b)

(c) (d)

A

B

(e) (f)

Figure 5:Change detection under varying illumination. (a)
Reference image, taken at 7:00. (b) The predicted image:
what the background would look like if it is lit by sun at 9:20
of that day. (c) Target image, taken at 9:20 of the same day.
(d) Detected changes: light and dark gray: different shades
of shadows. Black: change. (e) Another target image, taken
at 14:30 of the same day. (f) detected change at 14:30.

gorithm through extensive simulations and by experiments
on real data. A major aspect of the proposed method is
that estimates of the uncertainties of irradiance estimates are
also obtained. These uncertainties can be used to improve
the robustness of computer vision methods. We used illumi-
nation invariant long-term change detection in outdoor envi-
ronments as an example to illustrate this aspect of the work.
The change detection algorithm here considered only the
most simple case: flat background, fixed camera and static
scene. However, the method can be extended to treat more
general cases. For example, we can combine our algorithm
with SSD method [6] to register two images of the same
scene under different illumination. Under varying lighting,
the registration algorithm can be used for object recogni-
tion, memory based robot localization, color constancy.
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Figure 6:χ2 distribution: estimation versus theory. (a)-(c)
clearly showed that̂d2 is only approximately distributed as
a chi-square distribution with 3 degrees of freedom.
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