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ABSTRACT 

This report presents a control scheme for accurate trajectory following with robotic 

manipulators. The method wes feedforward control using model-based torques for fast operation 

and gross compensation, and adaptive feedback control for correcting deviations from the desired 

trajectory under feedforward control. The adaptive controller eliminates trajectory-following errors 

in the least squares sense. The control scheme takes into account dynamic nonlinearities (e.g., 

Coriolis and centrifugal accelerations and payload changes), geometric nonlinearities (e.g., nonlinear 

coordinate-transformation matrices) and physical nonlinearities (e.g., nonlinear damping) as well as 

dynamic coupling in manipulators. Computer simulations are presented to indicate the effectiveness 

and robustness of the control scheme. When the desired trajectory is completely known before the 

control scheme is implemented, then off-line computations can be used to generate the adaptive 

feedback gains and the computational efficiency will not be a major limiting factor with h s  
control scheme. If real-time changes in the desired trajectory have to be accommodated, the 

computational efficiency has to be improved using recursive relations to compute the adaptive 
gains. The necessary recursive relations are derived and presented in this report. 
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1. INTRODUCTION 

Many robot applications today and in the future will require accurate tracking of a prespecified 

continuous path. Common examples of these tracking applications include seam tracking, arc 

welding, cutting (laser and water jet), spray painting, contours inspection, co-ordinated parts 

transfer and assembly operations. These tracking paths are usually specified with respect to the 

end effector of the robotic manipulator and can specify trajectories with respect to time as well 

as position. The problem with achieving ths objective of temporal path following is that strong 
nonlinearities in the dynamics and geometry, unknown parameters, modeling errors, measurement 

errors, unplanned changes in operating conditions, and other disturbances are present in the 

manipulator and they make accurate control of the manipulator very difficult. 

To acheve t h s  goal of accurate path following, a control system is needed, which 

1. accurately tracks the desired end effector trajectory, often in terms of time as 
well as position: 

2. rejects a wide class of disturbances, such as parameter variations (Le., changing 
payload), vibrations and the effects of static friction, and measurement errors; 

3. has minimal complexity, is computationally fast, can accommodate a high 
sampling rate: 

4. is very reliable, particularly in terms of robustness of the control scheme. 

Many control systems, which meet these requirements with different degrees of success, have been 

proposed and some have been implemented. The control scheme developed in t h s  report can 

accurately follow a prespecified trajectory while rejecting many classes of disturbances by using a 

feedback control scheme that minimizes position and velocity deviation in the least squares sense 

whle  allowing for the changing of the feedback control parameters to account for unknown 
changes in payload or desired trajectory. A two-link manipulator simulation shows the 

effectiveness of t h s  control scheme for trajectory following. However, the computational effort 

required with t h s  control scheme is high enough to limit the maximum sampling frequency 

allowed for manipulator control in real time. Therefore the maximum trajectory-following 

accuracy that t h s  control scheme can acheve is also limited by the computational effort, if the 

desired trajectory is not known a priori, and is changing in real time. 
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1.1 Control Schemes 

Linear servo control is the most common type of control in commercial use today [3] .  T h s  
control method involves having a separate feedback loop closed over each manipulator joint that 

feedbacks the position (and sometimes velocity) of that joint. This control method has several 

problems whch limit its commercial usefulness. Since each control loop is closed independently 

over each manipulator joint, it has poor compensation for the dynamic coupling (i.e.. particularly 

Coriolis forces and coordinate coupling) between joints because the effect of the motion of one 

joint on another is viewed as a disturbance which the feedback controller of the second joint 

must compensate for. At low speeds, these "disturbance" forces are small and can be easily 

compensated for, but a t  h g h  speeds, these forces are major components in the dynamics of the 

manipulator, and the controller will fail to totally reject these "disturbances" and the end effector 

will no longer be following the correct path C83. Another factor is that the servo parameters 

usually are tuned for one set of operating conditions and can not be changed to meet changing 

conditions like payload variations during robot operation. Furthermore, classical servo control 

assumes linear plants, which is not close to reality in the case of robotic manipulators. 

Other control schemes have been proposed that eliminate some of these problems but none have 

been commercially implemented. These methods include Model-Referenced Adaptive Control, 

Sliding Mode Control (a  method of designing switching feedback regulators based on minimum 

time, bang-bang control), optimal control, nonlinear feedback control and feedforward control. 

Application of these control techmques, particularly for real-time control, is hindered by the 

complexity of the associated control algorithms, which increases the computation-cycle time and 

decreases the control bandwidth. 

In model-reference adaptive control [4, 5 1, feedback controller parameters are adaptively 

changed to drive the manipulator response toward that of a reference model. This reference model 

need not represent the actual manipulator and is chosen to suit the required dynamic behavior. For 

example, a simple oscillator (a linear second-order differential equation) could be used as the 

reference model for each joint of the manipulator. 

Controller parameters are adjusted according to a differential law that uses the error signal (the 

difference between response of the reference model and the actual robot) as the input. There exist 

several drawbacks in this scheme, including the following: 

1. Structure of the feedback controller is not automatically generated by the control 
scheme. 

2. The adaptive law has to be derived from scratch for the particular reference model 
chosen. 

3. The control law is completely independent of the robot model. 
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4. The control action has to be generated faster than the speed at whch  the nonlinear 
terms in the robot change. 

5. The adaptive law is derived on the assumption that some of the nonlinear terms in 
the robot model remain constant. 

I t  is clear that even though t h s  technique can produce satisfactory results, particularly due to 

the presence of adaptive feedback loops, there is no guarantee that the required accuracy is 
obtained in a given situation of trajectory following. 

A control technique that strives to obtain linear behavior from a nonlinear manipulator is known 

as sliding mode control C91. In the generalized case of this method (only the two dimensional 

case is presented by Klein and & Maney [9]>, the state space is partitioned into several regions 

that are bounded by a space trajectory conformal to the desired linear behavior. The objective of 

the control would be to drive the manipulator along the desired trajectory. T h s  is accomplished 

by assigning a different control law for each region in the partitioned state space. If the 

manipulator deviates from the desired trajectory and enters a particular region of the state space 

the corresponding control law is switched on. This will drive the manipulator back into the 

desired trajectory. If  it overshoots, however, the control law of the new region which the 

manipulator entered will be automatically switched on to drive the the manipulator into the 

desired trajectory. If the alternative control laws that are assigned to the various regions can be 

switched on at infinite frequency, which is of course not realistic, it is possible in theory, to 

obtain ideal behavior. In practice, however, the response will chatter about the desired trajectory. 

The amplitude of chatter will depend on the manipulator dynamics as well as control gains used. 

In addition the switching frequency will depend on the deadband of control. These shortcomings 

of sliding mode control can be aggravated by the fact that the control laws are selected in a 

heuristic manner, without even employing a model to represent the actual dynamics of the 

manipulator. At its best, sliding mode control usually brings about time delays (non-synchronous 

response) in addition to chatter. This technique too, has not been implemented in commercial 

robots. 

In optimal control, the feedback control law is designed by optimizing a suitable performance 

index using a dynamic model for the manipulator. Control laws obtained in t h s  manner can be 
hghly complex except in a very few special cases. A nonlinear control approach that has been 

proposed for robotic manipulator control is aimed at obtaining a desirable linear behavior from 

the manipulator by employing a highly nonlinear feedback law C6. 11. Unlike the model- 

referenced adaptive control method, this control law is derived from an accurate nonlinear model 

for the robot. The main disadvantage of the method, as has been warned by Asada & Hanafusa, 

[ I ]  is the feedback law that is so complex, it is virtually impossible to compute the feedback 

parameters in real time for practical robots. Furthermore, performance of this nonlinear control 

system is known to be quite sensitive to fidelity of the robot model that is employed. 
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2. CONTROL 

Thus control scheme developed in t h s  report involves the combination of feedforward control 

with a least squares adaptive feedback control scheme. 

2.1 Feedforward Control 

This is an open loop control method. This method involves calculating the torques that must be 

applied at each manipulator joint so as to have the end effector follow the desired trajectory. 

These torques are computed by from the differential equation whch models the dynamics of the 

n-degree of freedom robotic manipulator. This is known as the inverse-dynamics problem: 

M(q,W)q + f(q,q,W) = I(?) ( 1 )  

where 
W : payload 

q : vector of generalized joint positions 

M(q,W) : inertia matrix (n x n) 

f (q,q.W) : vector representing centrifugal, 
coriolis, dissipation and gravitational forces 

7( t )  : input torques or forces at the 
manipulator joints 

In practical manipulators, input signals (e.g., field voltages, servovalve commands) produce 

motor torques at the joints, with some dynamic delay. Motor torques are converted into the 
torques that are actually applied to the links of the manipulator. with additional dynamic delay. 

Manipulator displacements are a result of these joint torques. I t  is therefore clear that, by either 

measuring or computing joint torques it is possible to eliminate part of the delay in a 

manipulator control system. Consequently, feedforward control has the advantage of speeding up 

the manipulator response. Furthermore, torque disturbances can be calculated or measured, they 

can be completely rejected using feedforward control. A main disadvantage of feedforward 

control, in the present context, is that due to model errors and unknown disturbances, the 

calculated torque is not the ideal torque and as a result errors can grow in an unstable manner 

unless some form of feedback control is used. 

Since in inverse dynamics a mathematical model of the manipulator is used to calculate the joint 

torques required, when these torques are applied to the actual manipulator it might not follow the 

desired trajectory accurately. This would be due to the cumulative effects of modeling 
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inaccuracies, computational limitations. and unaccounted for effects like vibrations and static 

friction. Therefore, for accurate tracking using feedforward control a precise dynamic model has 

to be employed and the manipulator must be made very rigid with strong structural links and 

precision gear trains and actuators. Another problem with this method is that the computational 

effort required to accurately compute the necessary torques in a real-time situation can become 

very significant if the desired trajectory is not known a priori and may not allow a sufficiently 
h g h  sampling rate for good control bandwidth 

An adaptive feedback is used in the present control method to correct for these problems. 

2.2 Background Theory 

In most instances, feedforward control needs a feedback controller to correct for unaccounted 

dsturbances in the system. Since linear-servo control offers only a limited ability to compensate 

for nonlinearities, model errors, measurement errors and disturbances a more adaptive feedback 

controller was developed by RP.  Paul [21. This controller is based on a nonlinear coupled 

dynamic model of the manipulator, and therefore takes into account effects that linear control 

usually neglects. I t  also allows for updating the control parameters to take care of unknown 

external disturbances and payload variations. Tk basic block diagram for the control system is 
seen in figure 1. 

Figure 1. Basic control diagram for the manipulator 
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2.2.1 Linearization 

We can linearize the nonlinear set of differential equations (1) with respect to small 

perturbations. sq. from the desired trajectory, qd(t), caused by small torque disturbances, S r ( t )  

where 

.. 

This equation can be rearranged in vector-matrix form 

8 4  0 -I sq 0 I O  

O M  s q  
d 

I 

where, 1,. denotes terms evaluated in terms of the desired trajectory, q (t). 
d 

This is, in fact, a state space representation with the state vector and the input vector given by 

x = c sq. s q  IT u = s r  

thus, 

x = Ax(t) + Bu(t) (4)  

where, the system matrix 

I 0 0 -I 

0 M -I 
d dq dq 

and the input gain matrix is 

0 

B(qd, W) = - (6) 

M-' 
d 

Since what is developed would be implemented as a digital control scheme, we need the discrete 

form of the state space representation 
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dx for - = A x  + Bu(t) 
dl 

The solution to this linear differential system starting at t=tO, can be represented as 

x ( t )  = W . t  ) x ( r  ) + *C?,))BC))u<))d,b’ 
0 0  

( 7 )  
I 
0 

which assuming time invariance in the neighborhood of the perturbations, can be expressed as the 

set of difference equations 

in wbch 

AT + = e  = state transition matrix 

r = 1; eABdpB = input gain matrix 

T = data sampling period 

2.2.2 Minimization 

Since the state vector x represents the deviation in position and velocity, from the desired 

trajectory, then the objective of the minimization is to drive x to zero as fast as possible. This 

will be accomplished in the least squares sense by using the following objective index 

Least Squares Minimization Performance Index : 
N 

where Q is a diagonal weighting matrix. Q is used to weight the relative importance of each 

joint position or velocity. This allows the motions of critical joints to be more heavily weighted 

than the motions of other joints. 

This minimization is a Linear Quadratic Regulator (LQR) minimization problem so the optimal 

feedback gain should be in some form of the steady-state Ricatti equation. 
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2.2.3 Optimal Feedback Gain 

Using straightforward calculus it can be shown that the optimal control law is given by 
u ( k )  = -Kx(k) 

where K = ( rT Q r)-' rT Q + x w  

It should be noted that t h s  feedback control law is realizable if 

rank( rT Q r) = n 

In particular, if 
Q is positive definite, we must have 

rank(r)  = n (12 )  

where, n = degrees of freedom of manipulator 

2.3 Control Strategy 

The complete control strategy for the manipulator is shown in figure 2. First the desired end- 

effector trajectory of the manipulator is generated. Then, using some inverse kinematics scheme, 

each incremental displacement, velocity and acceleration of the end-effector is translated into the 

corresponding motions of the n joints. With the inverse dynamics of the manipulator, the desired 

gross torques for each joint can be calculated. These torques are applied to the actual 

manipulator in a feedforward manner. The actual joint positions and velocities are then measured 

once every period, T ,  using resolvers or encoders. The difference between the actual and the 

desired joint motions is then multiplied by the optimal feedback gain matrix, K, to produce the 

vector of torque corrections that need to be added to the gross torque vector for proper control. 

A suitable criterion is needed to decide when to update the feedback gain matrix, K. In the 

present work the following criterion is used: 

Initially specify the weighting matrix Q and calculate, 9, and .r. 
Compute the initial feedback gain matrix, K using equation (IO). 

0 Update the feedback gain matrix, K, according to the criterion 

1. Skip torque error feedback 

2. Update 9,r.Q. and K 

3. Excessive Error, terminate operation 

Note that t o  < c 1  < t2. The error norm is defined as I 1x1 I = u i  Ixi I 
Update the weighting matrix, Q by changing the diagonal elements in proportion to 
the maximum absolute value of the state, ;xi  ImaX 
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Figure 2. Complete block diagram for control strategy 
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2.3.1 Stability 

If the manipulator model is significantly different from the actual robot, then the feedback law 

could cause instability in our control system. Stability is guaranteed if the closed-loop state 

transition matrix, *', has all its eigenvalues inside the unit circle on the 2-plane. Note that 

where 

9 , r = 

9 , r = manipulator model matrices 

actual plant manipulator matrices 
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3. SIMULATION RESULTS 

The effectiveness of the control strategy presented in thls report, is examined using a two- 

degree-of-freedom manipulator. The manipulator equations are given in Appendix A. Two types of 

disturbances were tested for this control scheme: 

1. a 7% external disturbance (figures 3.1 and 5.1), and 

2. a 7% error in link lengths and a 9% error in link inertias . (figure 4.1). 

Typical results corresponding to these three cases are presented in figures 3. 4, and 5.  In  all 

three cases the feedforward control alone produces an unstable trajectory following. By adding 

the adaptive optimal feedback controller the actual trajectory was brought very close (8% 

maximum position error) to the desired trajectory. 

It appears that our control scheme satisfies three of the four design goals for the controller: 

accurately tracks the end effector, rejects a wide class of disturbances, and is very reliable. The 

last goal is minimal complexity, or making the scheme computatiomlly fast enough to allow an 

adequate sampling rate for on-line trajectory generation and control. 

3.1 Two-Link Manipulator Results 
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4. COMPUTATIONAL CONSIDERATIONS 

The computational time that is required to update Q, r, Q and K, will determine the minimum 

error, 6 that can be used in the control strategy and therefore determine the accuracy of the 

trajectory following. This update time will therefore affect the maximum sampling rate that can 

be used in the feedback loop when on-line trajectory generation is necessary. In many h g h  

accuracy applications, the update time will be the minimum sampling period allowed, whle  in 

other less critical situations, the use of the old gain matrix, K, during the time needed to 

calculate the new gain matrix, Knew. will not greatly affect the trajectory error. I t  is obvious that 

we want to minimize the update time so that the maximum sampling frequency is increased 

enough to permit good control bandwidth for the robotic manipulator. 

I '  

The total computation time can be divided into three main computations: 

the feedforward gross torque calculation, 

the calculation of the A and B matrices. and 

the updating of Q, r, Q and K. 

4.1 Feedback Controller Parameter Calculations 

In the two link manipulator simulation, Sylvester's theorem 1133 was used in the calculation of 

CP. This theorem requires the calculation 1 1 1 3  of the eigenvalues of the system, and then the 

calculation of Q by use of @ = F,eXIT + F2eXZT + ... + F , ~ ' N ~ .  For complex eigenvalues, CP 

is written as damped sine and cosine terms, and r is calculated by a simple integration of these 

sine and cosine terms. An alternate method of 9 and r calculation is the use of the series 

expansion method. Specifically, 

1 

k-0 2! 
# = AkTk/k! = I + AT+-A2T2 + ... 

00 
AT2 A2T3 r = [ ~ A k T k " / ( k + l ) ! ] ~  k-0 = [ T  + - 2! + -  3! ... 38 

(13) 

(14)  

This method is found to be computationally faster because the sampling period, T, is 

comparatively small so the higher order terms are negligible. Using an mtb order expansion for 
calculating Q, and r them the number of multiplications for each parametric matrix is 

>!"il (2n)' . Because the computational expense is increasing exponentially when the number of 

terms in the expansion is increased, so a small data sampling period, T, is very beneficial 

computationally. 
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The calculation of K 

K = (rTor)-' rT Q cp 

involves matrix multiplications, transposes, and the inversion of the matrix, (rTQr). The inversion 

of the matrix takes the longest to compute, and using the Gaussian elimination method, the 

number of operations is O(n ) for an n x n matrix. All these are standard matrix operations and 

codes are available to accomplish these operations in a computationally efficient manner. 

3 

The update calculation of Q is done by changing the weights of the diagonal elements in 

proportion to Ixilmax, which represents the maximum deviation of any joint's position or velocity 

from the desired motion. It is found that in most cases, the updating of Q does not significantly 

affect the feedback gain matrix, K. so updating Q can be ignored if computational time is very 

critical. 

4.2 Feedforward Computation 

Many new robot applications require on-line decision making, database access, and interaction 

with other machines. Therefore the inverse dynamics need to be computed in real-time to obtain 

the gross torques of the manipulator joints, which need to be provided by the joint motors. The 

standard method used to derive the inverse dynamics is the standard Lagrangian formulation. Luh, 
Walker and Paul [ lo1  have shown that this method would require about 7.9 seconds on the PDP 

11/45 to calculate the gross torques for one position of the Stanford Arm using an efficient 

Fortran program. This formulation requires a computational effort of Ob4)  because the method is 

doubly recursive with many redundant operations. The standard Lagrangian method computes the 
torques directly using 

The computational time for t h s  is obviously too long, so various methods of reducing the 

number of computations have been tried. Since most of the computational effort is devoted to 

calculating the triple s u m s  involved in the Coriolis and centrifugal forces, many computation 

schemes ignore these terms. The problem with this is that at high speeds, the Coriolis and 

centrifugal forces dominate in the manipulator dynamics and therefore the burden of compensation 

is increasingly placed on the feedback controller. While t h i s  method can work at  low speeds, at 

hlgh speeds this approximation could mean that excessive torques must be applied. The controller 

might not be capable of doing this and sometimes burnout of equipment could result. Alternative 
methods are available using the Newton-Euler 1103 or Lagrangian I73 recursive relations. These 
methods yield the same torques as the standard Lagrangian approach, but are computationally 

faster because the standard Lagrangian approach involves redundant operations. These recursive 
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relations reduce the computational effort required to O(n). Luh's Newton-Euler formulation in 

floating point assembly has been shown to take 4.5 milliseconds on the PDP 11/45 for the torque 

calculation of one position of the Stanford Arm. This will allow a sampling rate for the 

manipulator of greater than 60 Hz wbch  insures good control bandwidth for the manipulator. The 

Lagrangian recursive relations are presented here because the computational formulation for the 

feedback gain matrix, K. is based on tbs approach. 

4.2.1 Recursive Lagrangian Dynamics 

In the following, the recursive Lagrangian dynamics procedure [71 is used to calculate the joint 

torques. terms are calculated using equations (17) and going from i = l  to i=n. 

Then the D. and c. terms are computed from i=n to i = l  using the forward recursive relations 

(16). Finally, the torques are computed using equation (15). This formulation has 830n - 592  

multiplications and 67511 - 464 additions which result in 4388 multiplications and 3586 additions 

for n=6. 

T First, all the Wi 

where 

Forward Recursion 

For i = n, ..., 1 

Di = JiWiT + Ai+l D i+l 

ci = mi iri + c ~ + ~  

Backwards Recursion 

For i = 1. ..., n 

Wi = W,-, Ai 

'A i  

39, 
Wi = Wi-] Ai + Wi-I- qi 
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4.3 A and B Matrix Calculations 

Since the A and B matrices are based on the linearization of the manipulator dynamics about a 

desired trajectory, it is suggested that an efficient formulation for their computations may be 

based on the Lagrangian or Newton-Euler recursive relations for the solution of manipulator 

dynamics. 

4.3.1 Derivation 

Looking at the structure of the A and B matrices it is seen that three submatrices need to be 
calculated: M-', aM.. -q + - af , and af . The Lagrangian approach will be used because the 

a, a, a, formulation is much clearer and the most efficient Lagrangian relations are of the same order of 

computational effort as the Newton-Euler method. 

The general Lagrangian formulation for the generalized forces, 
n 

J J aw. a2w.T 
j-1  k-1 asi ' aqk k-I 1 - 1  aqi 'aqkaq, 

I = [ 2 (tr(-JJ.L))qk+x (tr(-J.- J J 
J aw. aw.T 

i 

which also can be written in the form C121 
n o n  

' for and n-link manipulator is i' 

where 

P 
aw awf 

p-maxi,j aq, aqj 

P D~~ = C tr(-J - ) = inertia forces 

n 

P 
awr 

P 
W 

- J -  ) = Coriolis and centripetal forces - >: tr(- 
aqi 

P 
Dijl: p-maxi.j.k aqjaqk 

D = 1 -mpgT- prp = gravity forces 

n 

P 
aw 

p-i a9i 
i 

andwhere 

W = OW = AIA2 ... A. 
j j J 

iWj = Ai+lAi+l ... A 
j 

i< j 
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4.3.2 Linearized Matrices 

af af 

a, aq a, The three matrices, M-’, -q + -. and 7 are necessary to compute results from the 

linearization of the inverse dynamics with respect to small perturbations, Sq. 

aM .. af 
The first matrix computation formulation is [a, q+s 1. This matrix is derived by taking the 

partial derivative of the generalized forces with respect to the joints’ position vector. So 

i = 1. ..., n, j=1 ,  ... n ah4 .. ar a [- q+- Iij=< T i  

8Q as. 
( 2 0 )  

But Waters [141 proved that instead of the standard Lagrangian, the generalized forces can be 

expressed in a form that will permit several backward recursive relations to be derived that will 

reduce the computational effort to Ob2).  

where the backward recursive relations for velocities W and accelerations W are : r P 

P ’  
a A  

W F = W  F-1 A p + W  P-1 - Qr 
3% 

( 2 2 )  

.. .. . a i  P *  a2A P . 2  8Ap .. 
Q, + wp-,- QP 

W = W AP + q, + WP-]- 
aq; 

F P-1 

Using the same formulation for the generalized forces, the derivative of the generalized forces 

can be expressed as 
n 

aw .. awP 3 
P 

Jp WpT) - mpsT- Pr 
aq 

(23)  

Now 
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= o  

Consequently, the matrix formulation 

r a2w 

p-max i,j JP 

for 1 = 1 ..... n and j = 1 ...., n 

P 
A 

Now a forward recursive relation can be developed by noting that 

a w  aw. 

aqi aqi 

- I .  

P 
'W 

P = -  

where 'W - - Ai+,Ai+* ... A iSp P P 

Therefore for the two cases of the double derivative we obtain 

i f i > j  

Similarly for j > i 

Because of the symmetry of the equations of the double derivative, only the case i 2 j will be 

considered in what follows. 

Rewriting the matrix formulation as 
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a w ~  azw. n 

aqj aqiaqj p-l 

'wPJp -)-STLX P miwp 'rP] (28) 
a2w. .. 

'W J W 
P P  P 

.. 
' W J W T  

p-i P P P 

NOW since i ~ i  = I 

we get D~ = J ~ W ~ ~  + A D 
i+l  i+l  

Also, let 

ci = m 'W pr 
p-i P P P 

ci = mi ri + A i 
i+1 'i+l 

and 

Now for i 2 j the matrix is simply written as 

a2wi awi 

aqi a9ia9j 
N') - 9'- Ci] D,)+ rr(- 

By a similar procedure we get 

for j 2 i 

a2w. awj a*w 
1 Dj" ?r(- Nj' - gT- [- q+- Iij= [m- 

a9 a9 a9ia9j aqi 

aM .. at 

( 2 9 )  

(30) 

( 3 1 )  

(32) 

( 3 3 )  
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where 

D, J = J.WT J J  + * j , l  Djtl 

c = m. Jr. + cjil 
J J J  

a;;.* 
J 'aqj N J 

+ *j+l j+l 
N = J,- 

ar 
(b) [--I term: 

dQ 

(34)  

(35) 

(36) 

Using a procedure similar to what is given in the previous section, the [$I term can be 
simply formulated as a set of linear recursive backward and forward relations. This matrix term 

is derived by taking the partial derivative of the generalized forces with respect to the joints' 

velocity vector. So 

T .  i = I ,  ..., n. j =  I ,  ... n 
a 

a(7 a i j  
[%Iij = - I 

Now using Waters generalized forces formulation, the matrix becomes 

a& P 
I f  j p then - - 0  - 

arlj 
Consequently the matrix equations are written as 

n 

Consider first the case of 

l f i > j  

(37) 

(39)  
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Now, it can be shown that 

aGi aqj 
Which leads to the reformulation 

a+ 
) 

P 
a w . T  

= t r ( L x  iwP Jp - 
a4 aqi P-i aqj that produces the forward recursive relation by letting 

n a w T  

Qi = 1 iWp Jp - P 

aqj 
a W i T  

aqj 

p-i 

Qi = Ai+, Qi+, + Ji - 
So the matrix compuation is simply formulated as 

Considering the other case and by applyng similar arguments we get 
for j 2 i 

aw;.T 
Qj Aj+, Qj+, + Jj - J 

aqj 

(c) Mii term: 

(42)  

(43)  

(44) 

The next matrix to be calculated is the inertia matrix, M. The recursive relations me derived in 

the same manner as the other matices. Specifically, 
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aw awr 
1 M~~ = D~~ = C tr(- j  P - P 

p-maxi,j aqi r ag 

For i 2 j 

aw awT 
' ' W  J- P, 

a9. 
P P  

M~~ = x tr(- 
J 

P = tr('xiW J - 
P - l  aq, 

aw a wT 

a(7. a9. p-i 
) Mi j 

J 

the forward recursive relation is 

) Pi = c i W J -  

n 

P 
awT 

39. p i  P 
J 

a wiT 

aqj 
Pi = Ai+]Pi+] + Ji- 

and the matrix is computed simply by 

a w. 

for j 2 i 

aw. awT 
,wij = C t r ( 2  iw,iw J - P P  P, 

p-j 39. a9j 
In ths  case the matrix formulation and forward recursive relations are 

a w, 

(49) 

( 5 0 )  

(51 )  

( 5 2 )  

(54) 

P terms. The backward linear 
a\t a;; 

The last terms that need to be calculated are the -2 and - 
recursive relations needed to calculate these terms are now presented 

(d) - 

aqj aqj 

term: awP 

asj 
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For p 2 j 

and for j 2 p 

P .  a2A P a A  .. . a A  .. 
JW = JwP-] + 2Jw - 9P + JwP-]- 2 + Jw -P * *  r 

a 9 P  a9; ‘ P  

For j = I ,  ..., n 

aA. 

39; 

Wj = Wj-] Aj + Wkl- J *  qj 
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j = 1. ...,p- 1 

a w  P a A .  a A P  - -  - w. -J Jwp-l- 
aqpaqj aqj aQP 

J-1 ( 6 2 )  

( 6 3 )  

4.4 The Summary of Recursive Relations 

matrices. First, Now, to summarize the procedure for computing the M , -q + -, and - af 
a, a, ai9 

-1 a M . .  a f 

the backward recursive relations (64) are used to compute all the W '  terms from i = 1 to i=n. 

Then all the -, -, - terms are computed by the recursive relations (65). (66) and (67) 

for i = l  to i=n and j = l  to j=n, but only for the cases of i 2 j. Next the forward recursive 
relations (68) and (69) are used to calculate D., and c. for i=n to i=l. and relations (70). (71) 

and (72) are used to calculate Pi,, Q... N.. for j=l  to j=i. Finally, the necessary control 

matrices, M , -q + - , and - are computed by (73). (74). (75). (76), (77) and (78 )  for 

i = l  to i=n and j = l  to j=n. Noting that many of the terms are the same as those calculated for 

i awiT aiiT aGiT 
aqj aqj aqj 

I J  IJ 
-1 aM*. af af 

a a, a i  
q 

the feedforward computations if the feedforward calculation is incorporated in the control loop, 

then many of these computations need not be repeated 

4.4.1 Backwards Recursion 

For i = 1, .... n 

Wi = Wi-l Ai 

Wi .. = Wi-] .. Ai + 2ii-]- a A i  ii + Wi-]; a2Ai (ii2 + W,-l- a A i  qi .. 
aqi aqi- aqi 



3 3  

For _111 

jw i = JWi-] Ai 

.. .. . aAi . a2A. aAi .. 
JWi = JWi, Ai + 2JWi-1- qi + JW i-1 4; + Jwi-l- qi 

aql aqi2 aqi 
For j = 1. ..., n 

awi aw. ah. awj ,.. ' Jhi + - JWi - JWi + - 
aqj aqj aqj aqj 

- - -  
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4.4.2 Forward Recursion 

For i = n, ..., 1 

D. = JiWiT + A i + l  D i + l  

i 
c = m r .  + Ai+l ci+l i i i  

For i = 1, ..., i 

aW.T  
Pij = Ai+,Pi+,j + Ji2 

aqj 

Qij = Ai+l Qi+,j + Ji 
aqj 

aw; 
aqj 

Nij = Ai+,Ni+lj + Ji- 

For i=l, ..., n , j=l,..,n 

(a) M.. term: 
11 

For i 2 j 

For j 2 i 

I .  
Mij = tr(- 'Wj Pi) 

aqi 

a M  .. af 

aq aq 
(b )  [- q+- ] term 

( 6 8 )  

(69) 

(70) 

(71 )  

(72) 

- 

I f i > j  
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I f j r i  

for i 2 j 

for j > i 

The number of multiplications involved with the matrix calculations is 1062n2 - 102111 - 128 

and the number of additions is 1037n2 - 62111 -96. This means that for n=6, the number of 
multiplications is 40,594 and the number of additions is 37,926 for each update of the A and B 
matrices. Therefore, the number of multiplications and additions is of n2 dependence and for n=6 

the number of operations is 10 times the number of operations involved in the recursive 

Lagrangian dynamics relations. 

4.5 Recursive Parametric Matrices Using 3 x 3 Matrices 

The previous formulation reduces the computational effort to O b 2 )  for eacb matrix, which is 

the lowest order that can be achieved. The only way to further reduce the computational cost is 

to use 3 x 3 rotation matrices instead of 4 x 4 rotation-translation matrices. The 4 x 4 matrices 

are inefficient because of some sparseness and because of the combination of translation with 

rotation [71. The 4 x 4 matrices require 64 multiplications for each matrix multiplication, whle 

3 x 3 matrices only require 27 multiplications, so a 58% reduction in coefficient multiplications 

is effected. 

The 3 x 3 rotation matrix A. relates the orientations of coordinate systems j -1 and j, and W.  
J J 
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and 'W. are defined as before except the A matrices are 3 x 3. Using these relations, the 
J 

aM,. af af 
derivation of the formulations for computing M-' * 4 + ~ i  and a< - using 3x3 matrices is as 

aM.. a f  a f  

as as' a: presented in Appendix B. The procedure for calculating the M-', -9 + - and - matrices 

using 3 x 3 rotation matrices is now summarized. First, the backward relations (64). (65) .  

wT a 2  a$ ap? a$ a;.T 
a q j  a q .  a q  aqj a q j  asj J 

(66) .  (67) and (79) are used to compute all the 2. 2. I , and the -l. -, l, 

terms for i = l  to i=n and j= l  to j=l .  Next, the forward recursive relations (80) .  (81) and ( 8 2 )  

are used to calculate D., e, and c. for i=n to i=l, and relations (83).  (84). (85).  (86).  (87)  and 

(88)  are used to calculate P,.. kij. Q,,, bit Nij. Iij. for j= l  to j=i. Finally, the necessary control 

J 

'J 

a M  af ar 
as aq' ail matrices, M-', +* + - and - - a r e  computed by (89). ( 9 0 ) .  (911, ( 9 2 ) ,  (93)  and (94)  for 

i = l  to i=n and j = 1  to j=n. 

4.5.1 Backwards Recursion 

aw.T aw.' aW.' 

aqj * aqj'  as. 1 
T h e L L -  ' terms are calculated with the same recurrence relations (64). (65) .  (66)  

and (67) as before except the matrices are now 3 x 3. 

For i = l,..,n 

Pi = Pi_, - wi jPi* 

For j = I ,  ..., i 
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4.5.2 Forward Recursion 

For i = n, ..., I 

i T T  D~ = J . W . ~  + ni pi + A 

e = e + mipi 

ci = mi ITi + A c 

D + i 
I 1  i+l i + l  Pi+lei+l 

;.f + i n , T G , T  
1 1  i i+l 

i + l  i + l  

For i = I ,  ..., i 

aPiT a wiT 

I a9j Pij = Ai+IPi+lj  + ipi+,ki+lj  + iniT- + J.- 

abiT aw; 
Qij = Ai+lQi+lj + ipi+lbi+lj + iniT- + Ji- 

a9j a9j 

- abiT ahi. 
bij - bi+lj + mi- + inITi- 

a9j a9j 
apiT awif 

Nij = Ai+lNi+lj + ipi+l/i+lj + iniT-- + Ji- 
a9j a9j 

api awiT 
I . .  = / i + l j  + mi- + iniTi- 

'J 

a9j a9j 

For i=l, ..., n , j=l,..,n 

(a) Mij term: 

For i 2 j 

(83 )  

(84) 

( 8 5 )  

(86) 

(87 )  

(88) 

M~~ = tr(---f pij) 
a9i 
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For j 2 i 

I .  

Mij = tr(- ‘Wj Pi,) 
aq, 

( b )  [* q+% ] term 
aq aQ 

ar 
( c )  [--I term 

as 

for i 2 j 

a r  aw, 

as 84, 
[--Iij = tr(- QiJ 

for j > i 

(93)  

The number of multiplications involved with the recursive 3 x 3 relations is 73911’ + 62n -54 

and the number of additions is (1161/2)nZ - (19/2)n - 36. For n=6 the number of 

multiplications for each update of A and B is 26922 and the number of additions is 20805. Ths 

is a greater than 40% reduction in the number of operations over using 4 x 4 rotation-translation 
matrices. 
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5. CONCLUSION 

This report has presented a control scheme for accurate trajectory following with robotic 

manipulators. The technique has been based on the use of measured joint displacements and 

velocities to generate corrective torques through an adaptive controller that eliminates deviations 

of the manipulator from the desired trajectory under feedforward control, in the least squares 
sense. The controller has taken into account dynamic nonlinearities (Coriolis and centrifugal 

accelerations, pay-load change, etc.), geometric nonlinearities (nonlinear transformation matrices). 

physical nonlinearities (e+., coulomb damping), dynamic coupling between joints, and real-time 

changes in the desired trajectory. Simulation results have been presented for a two-degree-of- 

freedom manipulator. These results have indicated the effectiveness and robustness of the 

controller. The stability issue has been addressed. Recursive relations have been developed to 

compute the adaptive feedback gains. thereby improving the computational efficiency of the scheme 

that makes the controller feasible under real-time changes in the desired trajectory. Two methods 

of deriving the recursive relations based on Lagrangian dynamics have been presented: (i) using 

4 x 4 rotation-translation matrices, and (ii) using 3 x 3 rotation matrices. For a six degree-of- 

freedom manipulator, the 3x3 Lagrangian recursive relations involve 47,727 operations, which is 

41% more efficient than the alternative method of using 4 x 4 rotation-translation matrices, The 
number of operations involved in updating the feedback gain matrix would limit the maximum 

update frequency to about 3 Hz when used with computers like the PDP 11 for six degree-of- 
freedom manipulators. 
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APPENDIX A. TWO-LINK MANIPULATOR 

In t h s  appendix we formulated a dynamic model for a two-link manipulator. 

Figure A.l Nomenclature for the two-lmk manipulator 

8 
t 

q =  

e2 

A.l Kinematics 

b U  

d U  
= J dq 

Y 

(A. 1 ) 
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Velocity 

= J-I [ vx v IT 
Y 

Joint Accelerations 

a J  
[ a a  lT = - q  + ~ ; i  

X Y  at 

A.2 Dynamics 

I * = I + ( m2 + w / g )  lI2 

I * = m2d2 + Wlg l2 + I2 

13* = 2(  m2d2 + W/g 1;) l 1  

* = mlgdl + mzgl, + WI1 

1 1 

2 

Defiue : 
2 2 

w I  

W2* = m2gd2 + W l2 

Now for 

M(q. W ) q  + f(q, i, W) = 7(t) 

we have : M~~ = I]* + I ~ *  + 13*cose2 

M~~ = I ~ *  + 112 I ~ *  

M~~ = I ~ *  + 1/2 I * 

f l  = -1/2 I ~ *  (2e1+e) e sinez + wI* 
f2  = -1/2 I ~ *  e, e2 sine2 + w2* cos(e1+e2) 

3 

M22 = 12* 

+ w2*cos(e1+e2) 
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1 0 0 0 0 0 - 1  0 
0 1 0 0 0 0 0 -1 A = -  

I2 

22 

Af 
Af 

1 12 A f I I  

AM21 AM12 Af21 

AM 0 0 Minvl 
0 0 Minvl Minvz2 

I *  
2 

0 0 
B =  0 0 

I2* - ( 1 ~ * + 1 ~ * / 2  cose2) 
-( 1 ~ * + 1 ~ * 1 2  cose2) ( I1*+I2*+ 13*cose2) 

where 

Minv12 = -(12*+13*/2 cos82) 

Minvzz = ( 11*+12*+13*cos82 

 AM^^ = 12*sinezC(W2*+Il*)sin81+W2*sin(8 I +e2]  
 AM^^ = - 1 ~ * ~ i n e ~ ~ 2 e ~  +e2 I + I ~ * C O S ~ ~ C ~ ~ ~ + ~ ~ ~ I + I ~ * S ~ ~ ~ ~ W ~ * ~ ~ ~ (  el +e2 
AM 21 = 12*sin82W1*sin(81+e*) 

 AM^^ = -12*sin8281+12*cose1 eZ2 
Afl I  = -212*sinB Iq 

Af12 = - 2 1 ~ * s i n ~ ~ ( ~ ~ + 8 ~ )  

Afzl = 212*B I 
Af = 0 

22 
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APPENDIX B. RECURSIVE CONTROL PARAMETERS WITH 3 X 
3 MATRICES 

af ai, is developed In  ths  appendix the formulation for the three matrices, M-', a,' + a,' and - aM.. a t  

using 3 x 3 rotation matrices. 

Pi: 

Pi * 
*. 

r :  

r *: 
i 

i 

n:  
i 

'w. 
k' 

h k I  

Figure B.1 3x3 Vector definitions 

vector from base coordinate origin to the joint i coordinate origin 

vector from the origin i-1 to coordinate origin i. 

vector from the base coordinate origin to the link i center of mass 

vector from coordinate origin i to tbt link i center of mass 

r *  I m 

defined as before except it is composed of 3 x 3 rotation matrices. 

Then the generalized force as derived by Hollerbach 171 is 
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Now for the case where i 5 j 

p, = pi + w,ip, 

a2wi " 
aqiaqj p-i 

- g~ -x  m;Wp prp  

( 8 . 3 )  

(8.4) 

(8.7) 
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Let 

Di = 0 + 0 +'niTpiT + JiWiT + 

Di = Ai+]Di+] + 'Pi+]ei+] + iniTij iT + J ~ W ~ T  
where 

ei - - ' , + I  + miFiT + 'n iTWiT 

Simi f arf y, 

a i T  aw; 

aqj aqj 
Ni = Ai+]Ni+] + ipi+lfi+l + iniT- + Ji- 

where 

n appT a&. 

apiT awiT 

) f i  = >:(mp- + p n p T - J -  

P-i aqj aqj 

aqj aqj 
Ii = f i + ]  + mi- + iniT- 

The recurrence relation c.  for thc gravity term is the same as equation (69) .  

For i 2 j 

(8.8) 

(B.9) 

(6.10) 

(6.1 1) 

(8.12) 
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i = 1, ..., n, j = l ,  ... n 

Now, 

For i 2 j 

Let 

Therefore 
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for i 2 j 

J 

a$ a i i T  

aqJ aqj 

bi = bi+l + mi- + iniT- 

at aw, 

aq  asi 
[TIij = ?r(- Oi) 

Similarly for j > i 

a P i T  aw? 

aqj aqj 

J Qj = Aj+lQj+l + jpj+,bj+] + jnt- + J.- 
J 

By a similar procedure we obtain 

(c )  M.. term: 
'1 

For i 2 j 

a p i T  a w i ~  

aqj aqj 

Pi = Ai+]Pi+] + ipi+lki+l + iniT- + Ji- 

for j 2 i 

aw. 

where 

I .  'W, Pj) 
Mij = ?r(- 

aqi 

a p i T  aw: 
Pj = Aj+]Pj+, + Jpj+]kj+] + jn:- + Jj- J 

aqj aqj 

aw.T aPiT 

a(lj aqj 

+ ini=> ki = ki+] + mi- 

The last new terms that need to be calculated are the p terms. 

(B.20) 

(8 .21)  

(8 .22)  

(8 .23)  

(8 .24)  

(B.25) 

(8 .26)  

(8 .27)  

(B.28) 
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Since 
i *  

Pi-1 = PI + wi Pi 
Then 

Pi = Pi-] - Wi iPi* 
and for j I i 

(B.29) 


