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ABSTRACT

A compliant wrist instrumented between a robot and
its end effector provides a necessary compliance for assem-
bly operations, and the displacement and force information
generated from the wrist sensor can be utilized to actively
control the end effector. The paper discussed the position
compensation for the deflection of the compliant wrist due to
the gravity load and other external forces at the uncon-
strained space, and the force control as the robot is con-
strained with the environment. The system stability problem
and dynamic performance are investigated for the different
control laws, various wrist parameters, and environment
models. By analysis and simulation, some meaningful con-
clusions are obtained. The results are useful for either design
of the compliant wrist device and determination of compen-
sator law in the feedback loop.

1. Introduction

The use of the passive compliance and active accommodation for
the problems of robot assembly has been well addressed in the litera-
tures.

However, the general manipulator control problem has two main
phases; the positioning of the unconstrained arm in space and the control
of generated contact force while the manipulator is partially constrained,
as during assembly operations.

In the first case, the manipulator included a compliant element
could greatly degrade the manipulator stiffness during gross positioning
operations. Therefore, the compliance introduced in the wrist has to be
restricted at a certain extent and compensating the defiection by utilizing
the information generated in the wrist sensor is desirable. But, as the dis-
placement of the end effector causes the arm to move in the opposite
direction so as to restore the initial position, is the system always stable?
What kind of control law of the compensator could be applied and how
does it effect on the system performance? How does the wrist compli-
ance interrelate with controller parameters, and thereby the system stabil-
ity and performance of the total robotic system? All those questions may
be raised as the researchers are going to implement the technique to the
realistic robot system.

In the second case as the manipulator attempt to perform assembly
operation or such a task as grinding and welding, there are some similar
problems. What is the affect of the wrist stiffness on the stability and the
performance of the system? Can we use a non-damping structure for the
compliant wrist? If not how much of damping is optimal? How do the
environment characteristics and the controller in the feedback loop affect
the closed loop system behavior.

The paper is to answer those questions and present some necessary
quantitative analysis for a single link manipulator model. The different
control laws are compared with one another under various conditions in
the sense of stability and system steady-state behavior. Some useful con-
clusions are obtained and the results are essential for design of the com-
pliant wrist and determination of the feedback controller.
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2. Compliant Robot Position Compensator

At first, we discuss the case that the robot moves in unconstrained
space. An active compensating control can be developed in the straight-
forward way by considering the single link manipulator position control
system shown in Fig.1 as in the paper [3). Since the stiffness of the wrist
we discussed in the paper has a range from very small value to infinite,
the results developed here is also feasible for the rigid wrist case.

The system of Fig.1 shows an actuator controlling the motion of a
link and thereby controlling the motion of the end effector through a
compliant wrist sensor device which is attached between the end effector
and link. The feedback control loop is used to make the end effector
position reach a command position against the influence of an external
force which could be load gravity, harmonic force, or random excitation.

We will assume the following: the link drive train is rigid com-
pared with the compliance of the wrist, the contribution from the viscous
damping and static friction of the actuator is negligible, the rotational
inertia of the actuator and the link is J , the proportional feedback gain
and rate gain of PD controller are K, and K, respectively, the load and
end effector mass is m , the stiffness and damping of the wrist sensor are
K and C respectively.

A system block diagram of the single joint manipulator is shown in
Fig.2. The wrist sensor records the difference of the motions between
link and end effector. These signals are the input to the compensating
controller H, together with the input command translation motion X,
(corresponding to the angular displacement) which drives the system
controller and thereby the actuator.

It is our aim to determine the form of the compensating controller
H so that the deflection of the end effector due to external forces applied
10 the compliant wrist can be compensated. In other words, the response
of the end effector becomes independent of the force and compliance of
the system.

‘We define that G, is the transfer function of the actuator, PD con-
troller and rigid link. H is the transfer function of position compensator
in the feedback loop. G, is the transfer fenction of end effector
motion/command position, and G is the transfer function of end effector
motion/applied external force. An equivalent block diagram is shown in
Fig.3. From Fig.3, weset F = 0 and X. =0 respectively, to obtain:

Rigid link
Inertia, D
Inertia, Iq

Viscous
Damping, Bo

Actuator

Disturbing
Force, Fy

Fig.1 Single joint robot with a compliant wrist
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To compensate all deflection of the sensor and reach the exact
command position, the desirable system should be
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In order that (11) be true, the compensator transfer function H (s) needs
to reach unity as s goes to zero, (or the time domain function A(r)
reaches unity as ¢ goes to infinite).

3. Various Compensators and Stability

3.1. Proportional Compensator

The simplest control law for the compensator is proportional feed-
back. From (9), the deflection can be compensated if H(s)=K, =1.
We consider two cases; in one case, the inertia of link and actator is
neglected, which is reasonable for the slow robot motion, or a light
weight robot. In the other case, the inertia is considered.

For the first case, from Routh-Hurwitz Criterion, the system is
stable if

KK, CK,
Ky <1-Tr 7KK, 7K,

12)

From here, we may understand the following two points.

If the sensor damping is small, CK, and CK, can be neglected.
From (12), for a stable system, K can only be chosenXas negative
X0 1 0 :
value. If Kp<O, from (9), r%o} >g=Fe (st
deformation/applied force), which means that the deformation of
the sensor increases. In other words, the system is made softer, The
desirable situation is to make the system stiffer in this case. There-
fore, K, has to be positive. In order to use positive feedback and
make the stable system, the only choice is to provide some damp-
ing in the wrist system so that (12) be satisfied.

@
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Fig.3 Block Diagram of the Closcd Loop Sysiem

(b) If one chooses K = 1,the deflection can be compensated at steady

state. Let the gain ratio of the regular PD controller ‘t.,,,:il, and
P

suppose that we have a unit mass, the stability relation between the
sensor damping ratio and the sensor stiffness can be obtained.
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The sensor damper and stiffness determine the stability as shown
in Fig.4 for the various the gain ratio. The region beyond the curve
is stable as shadow area for the ratio 0.1 in Fig.4. The sensor com-
pliance is restricted by the amount of the damping ratio. The
stronger the damping, the more compliant the wrist can be made.

The gain ratio of the PD controller has to be chosen as reasonably

large, although a too large gain ratio system may cause a slow

response.

To illustrate the behavior of the closed loop system under the unit
compensator , some numerical simulations were performed. The parame-
ters of the system were chosen as follows: m = 1 kg (load and end effec-
tor mass); K =4000 N/m (sensor stiffness); K, = 36 (proportional feed-
back gain in PD controller); K, =3.6 (rate gain in PD controller);
§=0.2— 1.2 (sensor damping ratio); The end effector position response
under step force with various damping is shown Fig.5. The damping is of
great significance in order that the response converges 0 zero quickly.
The end effector position response under unit-step command motion is
almost identical to that of the open-loop system.

In the second case, the inertia of the link and actuator is con-
sidered. the stability condition is

(C+mK, YIK+CK, )(CK,+KK,)>KK, (JC +mK,)+Jm (CK,+KK,)?
1

1
C- 3K, + LK1z 447

Using the same parameters as in the previous example, the stability
regions are computed as shown in Fig.6. The dotted curve in Fig.6 is for
that the inertia is neglected. From Fig.6, if the sensor stiffness is large
than a certain value, when the inertia has to be included, the necessary
damping is much smaller than that it can be neglected. However, for a
soft sensor, the conclusion is different and more damping is required.
The position response for various force and damping has been investi-
gated and the results is similar as the case that the inertia is neglected.

3.2. Proportional-Derivative Compensator

If the Proportional-Derivative control law is chosen as the com-
pensator H(s) = K1+K»s, the steady state behavior of the closed loop
system is
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Fig.7 End-effector position under 4kg step force
with PD compensator (The inertia is not included)

K2< §p— 16)
CK,
Ky < l+-m Qan
CK, KK,—K,K2)
K< 1+W;_W (18)

Compared (18) with (12), one may see the stability condition with PD
compensator is better than that with proportional compensator. The criti-
cal damping for a stable system is fairly small. Therefore, for the small
damping sensor case, the PD compensator is much better than the P com-
pensator in terms of stability. Simulation was performed with the same
parameters as in previous simulations and K =1,K>=0.095 ,£=06
as shown in Fig.7.

For the case in which the inertia of actuator and link are con-
sidered, the similar process was performed and it is observed that a
bigger shock or serious vibration may occur if the damping is weak. In
other words, the more damping is required in this case.

3.3. Lead-lag Network Compensator

Compensating also can be achieved using a simple lead-lag net-
work in the feedback loop. The lead-lag network can be represented in
the form H(s) =K, (1+K, s W(1+K;s). If the inertia is neglected in the
system, the transfer function is

X_ (1+K; s XKp+Ky 5 )-Kp Kp (14K, ) a9
F = (1+K; s Xims 4 Cs +K YK, +Ky 5 y-ms K, K, (14K, 5)
X _ (Cs+K )(1+K;5)K, 0
X, (K s Yms D Cs +R WK, Ky s -ms K, Kp (14K, 5)

The characteristic equation is
(mK;K,)s*+(mK; Kp+mK,+K;CK,-mK, K, Kp )53
HCK K, +K, C +K, K1 K )s*+(KI KK, +CKp+K, K )s+KK, =0 (21)
The gain K, has to be chosen as unity for the stcady-state compensation.
Simulations with K, = 1K, =0.095,K; = 0.1, and same parameters as in
previous examples is shown as Fig.8. The damping needed for the stable

system is weaker than that needed in the P compensator, but stronger
than that in PD compensator.
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3.4. Compensator as an inverse of G,

From the equations (1) (2), an interesting fact is that if the com-
pensator transfer function is an inverse of the transfer function of the
actuator, the PD controller, and the link dynamics, H (s) = 1/G.(s), the
ratio of X /F will be made zero at any time, and the ratio of X /X, will be
equal to G, and tend to unity in the steady state. The system will become
independent of the external force and sensor parameters. This is just an
ideal situation. Although in the realistic system, such a compensator is
nonlinear and varies in time. But the approximate value is possible and
the idea is prospective.

Neglecting the inertia of the actuator and link,
H(s)=1/G.(s) = 1+K,s/K, (which is a regular PD controller), with
K, =36, K, =3.6, the simulation is shown in Fig.9 for the damping ratio
0.6. Since, in this case, the system response is independent of the exter-
nal forces theoretically, the solid curve in Fig.9 is not only the response
under the unit-step command motion, but also the response under the
force and command motion together, which can be compared with the
open-loop system response under both of command step and harmonic
force in the Fig.9.

In the case that the inertia of the link and the actuator cannot be
estimated exactly, or there are some other second order terms neglected
in the model, the effect of inertia error has been investigated and the
results show that it is not significant.

3.5. Summary

(1) By simulation for a single joint robot, we have shown that the
deflection due to external force applied in the compliant wrist sensor can
be corrected with a proper compensator in the feedback loop. Stability
conditions of the closed loop system are dependent on the compensator
control law. The steady state characteristics is determined by the com-
pensator steady state behavior.

(2) For the proportional compensator case, a stable systcm needs a
highly damped sensor. If the sensor damping is weak, the proportional
compensator is not a good choice for a stable system. Stability of the
system is also dependent on the sensor system natural frequency. The
lower the natural frequency of the sensor system, the higher damping that
is needed in the sensor. The ratio of proportional gain to derivative gain
in the PD controller has an effect on the stability region. When the inertia
of actuator and link are considered, higher damping is necessary if the
system is to maintain stable.

(3) For the proportional and derivative compensator, the sensor
damping required for a stable system is much smaller than that in the
case of the proportional compensator. In general, the PD compensator is
better than the P compensator in terms of stability, although the parame-
ters have to be chosen carefully. For the Lead-lag network compensator,
the sensor damping needed is in between the cases of PD and P compen-
sation.

(4) An ideal compensator control law can be derived as an inverse
of the transfer function of actuator, the regular PD controller and the link
system. With this compensator all deflections of sensor system can be
compensated for all kinds of forces at all frequency regions. The end
effector response is not sensitive to inertia estimated error.



4. Force Control -- Rigid Environment

When a compliant robot is constrained by the environment which
may or may not be rigid, one concems the similar stability and compli-
ance problems as in the case that robot is not constrained.

At first, the environment is modeled as rigid. All situation is same
as that in previous section except that the end effector is keeping contact
with the environment continuously. The viscous damper C, is
represented as the damping force between the rigid body mode to the
unattached robot. The wrist device has the stiffness X,, and the damper
C.. The actuator is represented by the input force P . The displacement
of the wrist device X,, can be measured by the sensor in the wrist. The
system is modeled as a single degree of freedom constrained system as
Fig.10.

The open-loop system transfer function is

X (s) =

G6)=Fry = 22

1
ms*{(C,+C,,)s+K,,

The contact force P, is measured directly by the force sensor or
indirectly by the wrist displacement sensor, and can be represented as

P.=K,X. 23)

Suppose we use the force controller H (s) which is a function of P4—P,,
the closed-loop system is to be controlied to maintain a desired contact
force P4, and can be shown in the block diagram of the Fig.11.

4.1. Proportional Control

We consider a simply proportional control law in the force control
loop.

H(s)=K,(P4—P;) (249
The closed-loop transfer function will become
P.(s) KK, 25

Pa(s) ~ msTHC,+Cu s +Ko (1+K;)

The relation of the resulting system error, E(s)=Pas(s)-P.(s), for a
given input P4(s) is

E(s

_ 1
3(s) ~ T+G(s) @6

The steady-state error can be expressed as
n = Jime )= Ty @

‘When a step, ramp, and paraboloid are simple mathematical expressions
for the input force, namely, pa4(t) is defined as U (t), U (1), 2U ()12,
respectively, where the notation U (¢) means a unit step force for ¢>0.
The system error at the steady-state is following:

=1 _1
Cs = TTK;' as  Pa(s)= 5
€=, as Pi(s)= ;lz
en=c, as Pus)= ;ly

The above results are obvious because the open-loop is a zero order sys-
tem. Therefore, the closed-loop system has a force error at the steady-
state under the step command force in this case.

Suppose the wrist device and force controller parameters are
m=2kg,K, =4000N/m,C, =200N/m/s,K, = 30, the simulation of
the step force response is performed for the different wrist dampers as
shown in Fig.12. In Fig.12, the dashed line at force level 1 is the desired
contact force. Because K, =30, there is 3.2% force error at the steady
state.

Summary
1)  From the system transfer function (25), the closed loop system is

always stable, no matter how compliant the wrist is, or how high

the gain of controller.
2) There is always a force error at the steady-state. The error is
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Fig.11 The closed-loop control system block diagram

Solid -~ Wrist damper = 400Nfm/s
Dotied - Wrist damper = 200N/m/s
Dethed -- Desired contact force leved

T T
] 05 1
Time ( in second )
Fig.12 End-effector contact force response.
under step command force with P controller

inverse proportional to the gain of controller at the step force input,
and becomes infinite at the ramp and paraboloid force input.

3)  The high gain is desirable in an effort to minimize the steady-state
error under the step command force, but the gain value has a con-
tribution of the stiffness of the closed-loop system. Therefore, if
the steady-state error is concerned, the wrist device must be made
more compliant and more damping is necessary. In other words, if
the high wrist stiffness is desired, the gain of controller cannot be
chosen too big.

4.2. Proportional-Derivative Control

When the PD controller is chosen as H(s)=K,(1+K,s), the
open-loop transfer function becomes

K, K. (1+K,s)
A oo v o
Form Fig.11, the closed-loop system transfer function is of a form as

Pe(s) _ Ky K (14K, 5)
Pa(s) ~ msTH(C,+Cu+K, KWK, )5 +Ku (14K, )

(28

Since, from (28), since the open-loop is still a zero order system,
the steady-state performance will be identical with that in the P con-
troller.

The simulation is performed for the step force input as shown as
Fig.13 with the same parameters as in the previous examples and the rate
gain of the controller X, = 0.01. From Fig.13, with the same damper, the
system response is much improved because the rate gain in the PD con-
troller has a contribution on the system damping. Therefore, a proper
value of the rate gain is beneficial to the improvement of the system
behavior.

Summary

1)  The system is always stable and independent of the wrist compli-
ance and the controller.

2)  Similarly as with the P controller, under the step force input, the
steady-state behavior is dependent on the proportional gain in the
PD controller. The higher the gain X, the smaller the steady-state
force error. Under the ramp and paraboloid force input, the
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Fig.13 | End-effector contact force
under step command force with P and PD controller
steady-state error is infinite.

3)  The rate gain in the PD controller provides the damping in the sys-
tem. Therefore, in a slight damped system, an increasing of the rate
gain can achieve the same system response as that with a large
damping.

4.3. Proportional-Integral Control
The PI controller is represented as H(s)= K,(l+%). The open-
loop transfer function is
K,
KoK, (1+=1)

G)= msZHC,+Cy )s+Ky

Now, the open-loop becomes a first order system and the steady-
state performance can be obtained as follows.

29

e =0, as Pa(S)=-%,—
w=gig ® P)=Jr (30
€5 =00, as Pi(s)= ;13-

Since usually the command force input is taken in the step form, the sys-
tem has no error at the steady-state. For this point, the PI controller is
advantageous.

The stability condition is

K, (C,+C, y-mK;>—~(C,+Cy) (31
Namely, if
(C,+C,,)-mK; <0 32
C+Cy
Ky < (CAC (33
and, if
(Cr+Cy )-mK;>0 (34
= C W
K> At 69

Since the functions (33) and (35) are identical, if some damper is
provided in the wrist device so that (36) is true, the gain X, can be
chosen positive. But, if not, the gain X, must only be chosen as negative
and the system will be made stiffer, namely, the contact force goes the
opposite direction from the desired force level. Therefore, the damper is
necessary in the wrist system if the PI controller is chosen.

Summary

1) The system maintains stable if some damping is provided in the
wrist system so that C,+C,,~mK; becomes positive.

2)  The system has no error at the steady-state for the step input force
case, which is independent of the gain in the controller or the
parameters in the wrist.

3)  The system stability is independent of the stiffness of the wrist
device.
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4.4. Proportional-Derivative-Integral Control
We can do the similar analysis for the PID controller

H(s)=K, (l+K,s+K—;)

as previous section, and list some summary as follows.
Summary

1)  The system has no force error at the steady-state for the step force
input, as in the case with PI controller.

2)  The sensor must be provided some damping so that the system can
be made stable and all gains in the controller have a large choice.

3) The gate gain and the integral gain in the controller have to be
carefully adjusted so that the desirable performance can be
reached.

5. Force Control -- Compliant Environment

When the environment has some compliance, or the workpiece
does not have the same value level of the stiffness as the robot am, the
robot system included the compliant wrist element can be modeled as
Fig.14. The system also can be interpreted as the block diagram in
Fig.11. Similarly as in the case of rigid environment, various controilers
have been tested for the system stability and the steady-state behavior.

In this case, the output contact force measured by the wrist sensor
is

P, =K, (X,- w)
The open system behavior can be can be represented as
Gs)= H()X,, (m s24C,s+K,)
[MsZH(C,+C,y )5 +Koy 1, STH(C o +Co )5 H(Koy +K1-(Cu 5 +KW )2

(36)
From (36), the characteristic equation of the open-loop system is
(mm,)s*+[(C,+C Im H(Cou+C, Jm s>+ [m (Ko +K, Jrm. K.
+C, Cy+C,y Cr+Cyy C 15 2HC, K, AC oy Ko +C, Ky +C K, )s +K Koy =0
or,
fas%4f 35%+f 2524f 15+ 0=0 @7
Since all coefficients of the characteristical equation are positive, the sta-
bility condition is
fifaf 3> fifatfifo (38)

The above inequality can usually be satisfied unless the damping of the
wrist and environment is very small, which could be shown as following
process.

Because the term f4f # is much smaller than the term fof # in
(38), the inequality can be approximately expressed as

fif2>fofs (39
When C, and C,, is small enough to be neglected, (39) becomes
m (mK¢+2m¢Kw) > KK, (Kw"’Kc) (40)

Since the value of the mass is much smaller that that of the stiffness, (40)
cannot be satisfied obviously. Therefore, the open-loop could be unstable
if the damping of the wrist and environment is weak.

X, x.
[o4 I__c,, r- C.

Environment
P K. I

Fig.14 The compliant environment system
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The Nyquist diagram for the different parameters were computed

for the P, PD, PI, PID, and LLW controBers from equation (36). Onc
example is shown in Fig.14. From various simulations of the Nyquist
diagram, the open-loop transfer function G (@) usually doesa’t include
the point (-1,j0) at the complex plane. therefore, the closed-loop system
can maintain stable if some damping is provided in the wrist system. To
save the space of the paper, we may present the main conclusions as fol-

lows.

n

2)

3)

4)

(1]

[2]

3]

(4

(51

Summary

The system which is stable in the rigid environment model could
become unstable if the compliance of the environment must be
included. The mowe critical case is that the environment system has
no damping.

Since the environment usually is weakly damped or has no damp-
ing at all, the wrist system must provide some damping. The damp-
ing is more important than that in the rigid environment.

In the case that the the system damping is small, the alternative
way o stablize the system is utilizing the PD controller in the force
feedback loop, because the rate gain of the controller can provide
some equivalent damping in the closed-loop system.

The system performance at the steady-state won’t be changed
because the order of the transfer function is not changed. When the
P, PD, and LLW controllers are applied, the open-loop is a zero
order system. The system has a constant error at the steady-state
under the step force input, and infinite error under the ramp and
paraboloid force input. When the PI and PID controller are
applied, the open-loop is a first order system. The system has no
error at the stcady-state under the step force input and constant
error under the ramp force and infinite error under the paraboloid
force input.
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