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ABSTRACT 

In this report, we discuss adaptive control of a space robot system with an 

attitude controlled base on which the robot is attached. We at  first derive the 

system kinematic and dynamic equations based on Lagrangian dynamics and linear 

momentum conservation law. Using the dynamic model developed, we discuss the 

problem of linear parameterization in t m s  of dynamic parameters, and have found 

that in joint space the  dynamics can be linearized by a set of combined dynamic 

parameters, but in inertia space linear parameterization is impossible in general. 

Then we propose an adaptive control scheme in joint space which has been shown 

effective and feasible for the case where unknown or unmodeled dynamics must 

be considered, such as in the  tasks of transport an unknown payload, or catching 

a moving object. The scheme avoids the use of joint acceleration measurement, 

inversion of inertial matrix, high gain feedback, and considerable computation 

cost, and at meantime, is also applicable for the fixed-base robot system by slight 

modification. Since moat tasks are specified in inertia space, instead of joint space, 
we discuss the issues associated to adaptive control in inertia space and identify two 

potential problems, unavailability of joint trajectory since mapping from inertia 

space trajectory is dynamic dependent and subject to uncertainty, and nonlinear 

Parameterization in inertia space. We approach the problem by making use of 
the propoaed joint space adaptive controller and updating joint trajectory by the 

estimated dynamic parameters and given trajectory in inertia space. In the case 

study of a planar system, the  linear parameterization problem is investigated, the 

design procedure of the controller is illustrated, and the validity and effectiveness 

of the proposed control scheme is demonstrated. 





1 Introduction 

Considerable research efforts have been direeted to some primary functions of robots in space appli- 
cations, such as material transport 1171, simple manipulation (41, basic locomotion [14], inspection 
and maintenance of the space station and satellites [I, 41. The adaptive contml is critical for the 
robot system subject to dynamic uncertainty in these tasks. 

For material transport and manipnlation tasks, space robots have to face uncertainty on the 
parameters describing the dynamic properties of the grasped load, such as moments of inertia or 
exact poaition of the mass center. In most caws, these parmeters are unknown and thus they 
can not be specified off-line, in in- dynamics for feedforward compensation or any model- 
based control scheme. In catching a moving object [15], the robot is expected to be capable of 
adaptation to the dynamies change at the moment of catching operation. On the other hand, most 
space robota are desiepeed to be light-weighted and thus low-powered, partially due to the fact 
zero gravity environment. Therefore, wit friction and damping in space robots are much more 
significant than those in industrial robots. These dec te  are .either negligible nor easy to model. 
Adaptive control may provide a feasjble solution to those system dynamica uncertainties. Adaptive 
control is a h  able to accommodate various nnmodeled disturbances, such as base diaturbance, 
microgravity effect, eenaor and actuator noise due to extrema of temperature and glare, or impact 
effect during docking or rendezvous process. 

Most of existing adaptive control algorithms have the following shortcomings which cause their 
applications in space robots unrealistic, the u ~ e  of joint acceleration measurement, the need of 
inversion of inertia matrix, high gain feedback and considerable computational cost. The first 
two must be avoided even for fixed-base induetrid robots, because of lack of joint acceleration 
sensor and the complexity of inversion of inertia matrix. Slotine and Li 1111 have tackled these 
problems succeaafuly. A high gain feedback is extremely h a r d  for a space robot which is usually 
light-weighted and l o w - p o d .  considerable computation also need13 to be avoided for allowable 
package of self-contained space robots. 

This report focuses on the robot system where the base attitude is controlled by either thrust 
jets, or reaction wheels. The reaction wheels are arranged in orthogonal directions, and the number 
of reaction wheels can be three or two depending on Merent trsks, and a standard reaction wheel 
configuration can be fonnd in [SI. When the attitude of the base is controlled, the orientation and 
position of both robot and base are no longer free, and the dynamic interaction between the base 
and robot results in the dynamic dependent kinematics, i.e., the kinematics is in relation to the 
mass property of the base and robot. Control is not only applied to  robot joint angles, but also 
three orientations of the base. 

In this report, based on hear momentum conservation law and Lagrangian dynamics, we at 
first formulate kinematics and dynamics equations of the space robot system with an attitude 
controlled base, in a systematic way. Based on the dynamic model developed, we study the linear 
parameterization problem, i.e., dynamics can he liaeorly e x p r d  in terms of dynamic parameters, 
such as mass and inertia. We have found that for the space robot system with an attitude control 
base, the linear parameterization is valid in pit space, while is not valid in inertia space which 
can be viewed as Cartesian space for ea r th -bad  robots. 

Ueing the dynamic model, we propose an adaptive control scheme in joint apace. The scheme 
does not need to measure accelerations in j t i i t  space, and a high feedback gain is not required. The 
proposed method is dective and feasible for EF robot applications when dynamic parameters 
are unknown or unmodeled dynamies effect must be considered. Since in most appEcations, the 
tasks are specified in inertia space normally, instead of joint space, we &ws the issues in relation 
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Figure 1: Space robot system with an attitude controlled base. 

to implementation of adaptive control in inertia space and identify two main problems. The first 
problem occurs when the joint adaptive control is executed. The required joint trajectory cannot 
be generated by the given trajectory in inertia space due to the parameter uncertainty in the kine- 
matic mapping which is dynamics dependent. The seeond problem is nonlinear parameterization 
in inertia space which make impossible to implement the same structured adaptive control as that 
in joint space. We approaeh this problem by masing une of joint SpaCe adaptive wntroller and up- 
dating joint trajectory from identified kinematic mapping and the given trajectory in inertia space. 
This method has shown its dectiveness in simulation, and some issues associated to parameter 
estimation and updating time are discussed. 

Finally, we study a planar robot system to investigate linear parameterization problem of robot 
system dynamics, and illustrate the validity and effectiveness of the proposed adaptive control 
S C h e m e S .  

2 Kinematics of Space Robot System with An Attitude Con- 
trolled Base 

In this Bection we discuss the kinematics of the space robot system when the orientation of the 
base is controlled and the translation of the base ia free. The relationship between the robot hand 
motion in inertia space and robot pint motion is derived using linear momentum conservation law. 

As shown in Figure 1, a space robot system with an attitude controUed base can be modeled 
as a multibody chain composed of R + 1 rigid bodies connected by R Hits, which are numbered 
from 1 to n. Each body in numbered from 0 to n, and the base is denoted by B in particular. 
The ma88 and inertia of ith body are denoted by mi and Ii, respectively. A joint variable vector 
q = (ql,a,-**,qn)T is used to represent thosepint displacements. The orientation of the base is 
represented by a vector qB = ( q ~ , , 4 ~ ~ , 4 ~ 3 ) ~ .  

Two coordinate frames are d e h d ,  the inertia coordinate Cr on the orbit, and the base co- 
ordinate CB attached on the baae body with it8 origin at the centroid of the base. As shown in 
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Figure 1, let & and r; be the position vectors pointing the centroid of ith body with reference to 
and CB respectively, then 

&=ri+RB (1) 
where Rg is the position vector pointing the centroid of the bas-? with reference to El.  Let V; 
and S I ;  be hear and angular velocitia of ith body with respect to El, v; and wi with respect to 
CB. Then we have 

where Vg and RB are hem and angular velocities of the centroid of the base with respect to &, 
and operator 'x' represents outer prodact of R3 vector. The velocities vi and wi in base coordinates 
can be represented by 

V; = Jfi(q)il (3) 

Ui = JAi(q)il (4) 

where Jfi(q) and Jli(q) are the submatrim of Jacobian of the ith body representing linear part 
and angular part respectively. The centroid of the total system can be determined by 

n 
m, = C m i  

i=o 

I, = C I i  
i d  

( 5 )  

The linear momentum can be determined by 

where 
Hv = m,U3 



and U, is a 3 x 3 unity matrix. The matrix function (rx] for a vector r = [r=, r,,,tJT is defined as 

[ r x l =  [ -: <=] (13) 
-Tu T r  

Because there is no external force applied to the system, the linear momentum is conserved. 
Howvex, the mguk momentum is aot w d  for attitude control torques are applied. The 
hear momentum is zero, assuming stationary initial condition. 

P=O (14) 
Therefore, we may represent the base linear velocities by base angular velocities and robot joint 
velocities, Le., 

Now we derive the relationship between the. motion rate in inertia  pace and that in joint space. 
For position control tasks, we are interested in controlling three orientations of the base, and six 
generalized displacemedo of the robet end-dectur sheltawously. Control actions are instead 
applied at n robot joint8 and three bane attitudes. We therefore define V and 8 as generalized 
velocities in inertia space and joint space, 

v = [ Q B ,  V E I T  (16) 

B = [QB,;I]T 

where V E  is the veloeity of the robot end-effector in inertia space. 

V E  = VE + v B  + n B  x r E  (18) 

V E  = J E ~  (19) 

Since the velocity of the end-dector in the base coordinates is determined by 

where JE is the manipulator Jacobian with respect to  the base coordinates, 

Therefore, the motion rate relationship between joint space and inertia space can be obtained by 
introducing a special Jacobian matrix N which diiFem from the Jacobian in ked-base robot or the 
generalized Jacobian in a completely free-flying space robot system. 
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where 

and Os is a 3 x  3 m m a t r i x .  

3 Dynamics of Space Robot System with An Attitude Con- 
trolled Base 

In this seetion we discuss dynamics of the sp"e robot system with an attitude controlled base. 
After formulating total kinetic energy of the aystem we derive the dynamics equation of the system. 
Then we investigate the property of linear parameterization of the system dynamics which is critical 
for developing the adaptive control algorithms in the following seetion. 

The total system kinetic energy is represented by 

= 1/2dTM(b')d (25) 
where M ia the inertia matrix of the system, H, is the robot inertia matrix in base coordinate, i.e., 
fixed base inertia matrix. and 

8 = 198, dT (26) 
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Mi1 = Hn - H$&vn/mc 

Miz = Hnq - H?nHvq/mc 

Maa = Hp - H$$b*/m, 

(30) 

(31) 

(33) 
Mm = MTa (32) 

The property of linear Parameterization to dynamic parameters i B  one of prerequisite condi- 
tions under which most adaptive and nonlinear dynamic eontrd schemes are developed. It h a  been 
shown that the problem of parameterization linearity in dynamics can be reduced to the problem 
of parameterization linearity in inertia matrix. Therefore, in order to study whether h e a r  paran- 
eterization is valid for the apace robot syetem with an attitude controlled base, we need to show 
whether the inertia matrix M can be linearly represented by a set of properly chosen combinations 
of dynamic parameters. 

Based on the previous derivation, each member of matrix M UUL be further expanded in the 
following forms. 

where s;j = 8,; and is determined by 

i=l i=l 

and 



.- 

I 

Thus. 

n n n n  

Mi1 = C I i J A i  + c[ri]J~.imi + ~ ~ S i j m i m j / m ,  (44)  
i=l i r l  i=l j=1 

where the matrices [riJJfi, JA;, Ri, Q;, Si are only functions of geometric parameters, i.e., indepen- 
dent of dynamic parameters. The above formulations imply that the inertia matrix can be linearly 
represented by a set of combhation of dynamic parameters, mk, 4, mirnjlm,, i,j, k = 0,1, * .  . , n. 

From the kinetic energy formulation, we can derive dynamics equation by Lagrangian dynamics. 

M8 + B(B,d)i = r (45) 

where a 1.T B(B,i)i  = M d -  -(-13 Mi) 
8 8 2  

The corresponding dynamic equation in inertia space is 

Hi + C(x,t)* = F (47) 

where 

N is a generalized Jacobian matrix and is dynamica depenedent for the space robot system. The 
inertia space dynamic equation can be linearly expressed in t e r m s  of dynamic parameters if and 
only if the inertia matrix H can be linearly parameterid since 

(50) 
B l . ,  C(x,ri)i = H5 - -(-x €E) 

8 x 2  

where N' and det(N) are the adjoint and determinant of the matrix N, then 

N*~MN* 
I&t(N)P 

H =  
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In the above equation, the generalized Jacobipn matrix [det(N)p appears aa the denominator. 
From derivation procedure of the N in the h t  aection, it is clear that the N is time-varying and 
highly coupled by dynamic parameten, Le., mass/inertia. For such a complicated nonlinear, time- 
varying function combinin with dynamic parameters and time-varyinp joint angles, it is impossible 
that every element of N' MN' has the common factor [det(N)I2 at every instant. 

Even if the above statement is true, there is still possibility to linearly parameterize H, provided 
that the numerator can be linearly parameterized and the denominator can be expressed as a 
product of two s c a h  functions with only one containing dynamic parameters, i.e., 

lf 

d e W  = fi(mitIi)f2(&) (53) 

where fi is a function of dynamic parameters which are nnknown but uonstant, j 2  is a function 
independent of any dynamic parameters. This, unfortunately, is impoesible in general due to high 
coupling between dynamic parameters and joint variables. For example, two DOF generalized 
Jacobian may contain the fdlowing Simple terms 

det(N) = mlain(81) t mpcos(4) (54) 

Even for such a simple form, det(N) cannot be decomposed as a product of two functions with one 
containing ml and m2 only, and nor can [det(N)l2. 

This may raise a question why for a ked-base robot the similar structured adaptive control 
can be implemented in Carteaim space. This is h u n e  that the Jacobian in the fixed-base robots 
is only kinematic dependent, Le., a function of geometric parameters and pit angles. Since the 
dynamic interaction between the base and the robot, the generdized Jacobian for aspace robot with 
an attitude control base is dynamics dependent, i.e., not only a function of geometric parameters 
and joint angles, but also a function of the dynamic parameters. It is to these parameters that 
we aim at adapting in ow problem. Therefore, the inertia matrix for the ked-base robot can be 
linearly parameterized for dynamic parameters in Cartesian rpace, while for a space robot it is 
impossible in inertia space. 

Generally speaking, for a space robot with attitude contrcdled base, dynamics can be linearly 
parameterized in terms of dynamic parameters in joint space, but it cannot in inertia space. 

4 Adaptive Control Scheme 
In this section, based on the dynamic model developed and the property of parameterization 
linearity in Section 3, we discuss the adaptive control strategy for space robot system with an 
attitude controlled base. 

At early state, adaptive control approaches for conventional fixed-base robot manipulators 
are based on unrealistic assumptions or approximations on local linearization, timeinvariant and 
decoupled dynamics [3, 51. These assumptions or approximations are relaxed after some results 
developed in the context of parameter estimation [SI. B a d  on the possibility of selecting a 
proper set of equivalent parameters such that the manipnlator dynamics depends linearly on these 
parameters, research on adaptive robot eontrol can nosy take tidl consideration of the nonlinear, 
timevarying and coupled mbot dynamics As stated in [A, all three kinds of adaptive controllers 
in use, direct 12, 111, indirect [lo], composite adaptive contrdlers 1121, rely on the posaibility of 
linear parameterization of manipulator dynamics. 

h m  previous discussion, we have learned that the dynamics of the space robot system in joint 
space is linear in terms of a set of combinations of dynamic parameters. Therefore, this set of new 
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combined parameters can be used in the deaign of our adaptive controller. This leads us to propoae 
an adaptive control algorithm in joint space. Since a unique solution may be found from inverse 
kinematita of the mbot syatem with the ettitarde u m t d l e d  b e ,  adaptive wntrol algorithm in joint 
apace is feasible. However, this is not true for a complete fr-flying space robot system. 

Let’s recall the dynamic equation in joint s p e  

M i  + B(8, i)i = r (55) 
We d d n e  a composite error a 

s=+.++ep 

C , = f l d - f l  

&p = i d  - i 
and we also define modified joint velocity 

6 # = i + s  

and modified joint acceleration, 

i.e.. 

” d t  fl = - # + e  
dt 

= i d  +(c+ 1)c, +cep = i d  + B+(r?, 

If we apply the following control law in joint space, 

T = &%e” + Be’ 
then 

MJ + B(0, d ) i  = + &i3’ 

M j  = -B(B, i)i + kflN + fd 
i.e., 

Defining M = M - M, 6 = B - B, we have 

M% = Mid - Me“ 

where 

(59) 

(63) 

(64) 
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and a is estimation of the unknown dynamic parameters of the space robot system including the 
robot, the base, and probably the payload which is being manipulated. 

We now design ow adaptive w n t d  algorithm using Lyapunov function candidate 

V = 1/2aTMs + 1/2PTl’i 

v = i/aFMt~+ . T M ~  + & T r i  

= 1 / 2 s T ~  + PM(s,, + (q + iTri 
= J y i  - r T ( ~  + B)S + 1/2sTMs + iTri 

(67) 

where the matrix r is diagonal and positive definite. This yields 

= -rTMs + l/2aT(M - 2B)s + &T(l% - Y T s )  

If we uee adaptation law 
i = r - V s  

then 

V =  ME 5 o (69) 
due to the fact that the matrix M - 2B is skew-symmetric, and M is poaitive definite. Therefore, 
the system is stable in the aerie of Lyapnnov, because V is a positive, nonincreasing function 
bounded below by zero. s( t )  and Yt) are then bounded, and a( t )  is a mr+called square integrable 
or Ls function [13]. Provided that the fanetion Y is bounded, this is sufficient for the purpose of 
control because s(t)  converge to zero aa the .L2 function mnst eonverge to zero aa t -+ 00. The 
parameter estimation error P(t) will converge to eero only if persistent excited input is utilized. 

The output error 
s=&.P+% (70) 

converges to zero, which in turn implies that + -+ 0 aa t -+ w since 5 is positive. We can now 
readily conclude our adaptive control algorithm in Theorem 1. 

Theorem 1 For the dynamic system @5), the adaptive control law defined bg (6.9) and (68) is 
gloanllg stable and gwrantee.9 zem rkndy state e m r  in joint rpace. 

The composite error I is of PD type structure which is the same as the composite error defined by 
Slotine and Li [I l l -  In general the PD B t r U C t W  control adds damping to the system but the steady- 
state response is not &ected. The PI structure adds damping and improve the steady-state error at 
the same time, but rising time and settling time are penalized. To improve the system steady-state 
error, in the proposed adaptive control algorithm, the PID type s can also be used. Since when 
the PID type s is used, the order and type of the system is increased by one, the steady-state error 
is decreased, and thus the system is more robust to parameters uncertainties which usually cause 
a significant steady-state error. Moreaver, the PID type s allows two parameters, instead of one, 
to be adjustable in order to achieve a desired system performance. In what follows, we diSCU55 the 
stability of the control scheme when the PID type s ie employed, 

1 
Define 

= lp + (1% + G l  e& (71) 
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Figure 2 Block diagram of adaptive controller in joint space. 

and the gains el and can be selected such that the eigenvalues of the tracking error equation 

;a + (1% +ea% = 0 (72) 

have negative real parts. This ensures the global stability of the syetem when (I converges to zero. 
Using the PID type s and the same definitions of 8' and P", we can derive that 

M% = Me"d - Me" 

= M[8" - s - e+,, - (p+] - [-Bi + Mq + Be'] 
= -Y(8, i , id,idp - (M t B)8 - M~Ic$ - Mcze, 

where 
y i  = fie" + fie' 

i=&-a 

When the same type of Lyapunov fundion is used 

v = 1/2sTMs + 1/2ZTrs 

then, 

If adaptation law 

is used, then 

h = r - l y T s  

V = -sTMs < 0 

(73) 

(74) 

(75) 

(77) 
for all s due to the fact that the matrix M - 2B is skew-symmetric, and (1, (2 > 0, and M is 
pmitive definite. 

A block diagram of the proposed control algorithm with PD type s is shown in Figure 2. Our 
adaptive controller is conceptually simple and easy to implement. This approach does not require 
the use of joint d e r a t i o n s  and inversion of inertia matrix. Its computational cost is low because 
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it can be implemented through the use of Newton-Euler recursive formulation. It can be seen from 
Equation (62) which has the same structure as computed torque method, that the control law can 
be computed efftciently using a Newton-Euler formulation once i have been specified. A high gain 
feedback is not a must for the system stability. This adaptive approach can also be applied to 
industrial robot control by a slight modification. 

5 Adaptive Control in Inertia Space 

In this section, we extend our joint sppoe adaptive control approaches to the problems where control 
variables are specified in inertia space. 

Conceptually, for most applications, the desired robot hand trajectory (i.e., position, velocity 
and acceleration) must be specified in inertia space. For exampk, let's consider catching a moving 
object by a space robot. The desired trajectory after catching depends upon the tasks and the 
motion trajectory of the object More catching, and thus must be specified in inertia space. In 
other words, as in the case of fixed-base robot tasks are normally specified in Cartesian space, tasks 
in space applications are unlikely to be specified in joint space. Fortunately, the mapping from 
robot hand position in inertia space to displacements in joint space can be uniquely determined for 
space robot system with an nttitude conttolled base, which differs from the case of a completely 
free-flying space robot system. This unique kinetic relationship has been first studied by Longman 
et al. [9], and also is illustrated by a planar example in our case study. 

However, the unique kinematics relationship UUL only be determined when dynamic parameters 
are given, for this relationship is indeed dynamic dependent. When some dynamic parameters are 
unknown, which is indeed the reason why we come to adaptive control, the mapping cannot be 
determined! Therefore, the primary diEculty of extending our a p p d  from Fit space to inertia 
space is that the desired trajectory in inertia space cannot be transformed to the desired trajectory 
in joint space because m e  dynamic parameters are unknown. In previous discussion, we have 
utilized a desired trajectory in joint space, as other researchers have done [16], without giving any 
explanation about how the trajectory is generated, The problem is not significant if the objective 
is to identify dynamic parameters, but is important if the objective is to control the system. 

The problem can be resolved if the same structured adaptive control scheme can be implemented 
in inertia space. This, however, is not feasible because the proposed adaptive control scheme in 
joint space req- that the dynamic model must be linearly parameterized. Therefore, the same 
type of the control scheme cannot be devebped in inertia apace. As has been known, the dynamic 
related generalized Jacobian of space robot makes it impossible to suitably choose a e t  of dynamic 
parameters such that the inertia space system dynamics can be linearized. That is why the same 
strnctured adaptive eontrohr in joint space is not feasible for adaptive control in inertia space. 

We approach the problem in the following way. First, given trajectory in inertia space, we use 
an initial estimation of d y n h c  parameters to compute initial joint trajectory. Then the initial 
joint trajectory and dynamic parameters are used in the proposed joint space adaptive control 
algorithms. After a certain period of time we update the system dynamic parameters by using 
new athated onea in the outer loop of OUT controller. We can then specify more precise joint 
space trajectory based on these new parameters and the inertia space trajectory. Since the inertia 
space trajectory is uniquely determined by the joint space trajectory and dynamic parameters, it 
can be shown from the Jacobian relatioriship that position errors in inertia space converges to a 
given boundary if position errors in joint space and parameter errors are bounded, provided that 
the robot is not in its singularity Eonfiguration. The control scheme is itlustrated in Figure 3. 

It is worthwhile to &USS two issues in the implementation of the proposed control scheme. 
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Figure 3: Block diagram of adaptive control d e m e  in inertia space. 

First, to accurately estimate unLnown parameters, a persistent excitation (PE) trajectory is re- 
quired to drive the robot joints. PE trajectories in joint space and in inertia space are not equivalent 
because the spectrum of trajectory Signal in inertia space is Merent from the spectrum of the same 
signal in joint space due to nonlinear kinematic transformation. Therefore, it is of importance to 
carefully choose initial trajectory in inertia space such that the same trajectory in joint space is 
PE. If the PE condition in not satisfied, parameter identification error occurs, although the joint 
space position errors may still converge. 

Second, the updating time for inverse kinemati- using the estimated parameters in outer loop 
of our controller must be slow enough to maintain the system stable. The outer loop, as shown in 
Figure 3, is used to update the in- kinematics and therefore the desired joint trajectory which 
is used in joint space adaptive controller. A fast updation, especially using incorrect parameters 
fi<, may not guarantee the convergence of parameter errors. In the simulation, the updating time 
for inverse kinematics is set to 10 seooads. Simulation reeults have shown that p i t i o n  errors in 
inertia space converge to zero a8 errors in joint space converge to aepo and estimated parameters 
converge to their true valua. 

In fact, if the updating time for inverse kinematics in long enough, we can also view the control 
scheme as a two-phase a p p d ,  parameter identification phase and control phase. That is, to 
estimate dynamic parametera in joint space U s i n g  the joint space trajectory transformed by the 
given inertia s p a  trajectory and initial guess of parameters, then to control the system in inertia 
space, once the dynamic parameters has been correctly identified. If the dynamic parameters are 
estimated ideally, the control phase may also be executed using dynamic control algorithm. 

6 Simulation Study 
In previous discussion, we studied kinematics and dynamics, and presented an adaptive algorithm 
in joint space for a general multipl+degmes-of-freedom space robot system with an attitude con- 
trolled base. In this section, we conduct a case study to show the computation of the proposed 
algorithms and their feasibility in robot motion control. Though the following discussion is con- 
fined to adaptation to mass variation only, our algorithm is also applicable to other parameter 
adaptation, provided that a set of combmations of those parameters ran be chosed such that the 
dynamics can be linearly expresaed in terms of the parameters interested. 

A tweDOF revolute manipulator with link length given by l1 and 11 (11=12=1) is considered 
as a lumped-parameter model with point mas8 ml and rnl at the end of each link. For simplicity, 
we assume that the base attitude can be successfully controlled 80 that we need only consider the 
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Figure 4: A planar space robot system model. 

control of the M It itself. However, it must be pointed out that our adaptive contrc algorithm 
can be applied to control the robot motion and the base orientation Bimultaneously, albeit more 
complicated. The system model for simulation study is shown in F i i  4. 

At initialization, m. and R, are computed, and they remain unchanged unleas a load is added. 

, 

mc = m0S ml + m2 

m.R. = mo% + mlRl + m z ~ z  

RI = Bo + rl 

R z = R o + r a  
When the robot is in motion, 

The generalized Jacobian is 

and 

where B and c stand for sine and wine ,  e.g., 81 = sin(ql), c1z = cos(ql +q2). The system dynamics 
has the following form, 

Mi + B(q,G)G = r (88) 
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where 

therefore, 

where 

It is noted that M is linear in terms of combined dynamic parameters n,p1 and p3. This is an 
example to show that dynamics of the space robot system with an attitude controlled base can be 
linearly parameterized in joint space. We ale0 note that mo, ml and mz can be uniquely determined 
by P l , n  and P 3 1  

1 1 1  
m1= Pm(- + - + -) 
mz = mm(- + - + -) 

m n P 3  
1 1 1  

n 4 m  
1 1 1  
n n P 3  

mo = nm(- + - + -1 
The matrix B is determined by 

where 

Our adaptive control law i~ 
r = Mq" +Bn' = Yi 

Y = [ Riq" lbq" R3q" + R4q' ] 
15 



with the following adaptation law 

To study the proposed adaptive algorithms, we use the following common set of conditions: 

In the first case we used the following maas parametera, n h ~  = 41kg, ml = 5kg, m2 = 4kg, 
and the initial guess of all three parameters is set to 50% of their true values. It can be found 
from Figure 5 that joint errors converge to zero and all parameters converge to their true values 
4.1, 0.4, and 3.28 (with small relative errors 12%, 2.1%, 2.5%, respectively) after a transient 
period (approximately 10 seconds). The results showed the validity and efficiency of the adaptive 
algorithm proposed. 

We then compare the performance of adaptive controller and dynamic controller without adap- 
tation when there is uncertainty in dynamic parameters. In order to make the dynamic control 
more favorable, we use 80% of true d u e s  as initial estimates of those dynamic parameters. The 
dynamic control algorithm is based on PD type structure in Fit space without consideration of 
parameter uncertainty. Figure 6 given plots of the variations of two joint position errors by using 
adaptive control and dynamic control. The adaptive contrd performance is distinctly superior to 
the dynamic control response. 

To study the dect of mass ratio of the base with respect to the robot, we performed simulation 
when the base mass is sufficiently large compared to that of robot. Figure 7 gives the simulation 
results when the base maas is 5M)oOkg. The results have shown that the performance is not sensitive 
to the mass ratio, which also shows that the pro@ control algorithm is applicable to fixed-base 
robots. 

Figure 8 shows identification of combined parameters m, pz, and PJ, and the resultant mass 
ml,  m, and nh~, in the above case. From Figure 8 we found that estimation of aJl parameters mi, 
mz, and m~ are very dose to their true values. This demonatrated that identification of combined 
dynamic parameters is equivalent to the identifieation of dynamic parameters ml, ml, and m, as 
we have discussed PreViOUdy. It in interesting to note that in Figure 8 the estimation of nonlinear 
dynamic parameters fir and pj converged to ml and rnz due to the fact that the base mass is 
almost infinite. 

In order to compare two different adaptive control algorithms, PD type and PID type, various 
cases have been tested. For a persistent excitation (PE) trajectory, both algorithms presented 
almost identical performance. For a non-PE trajectory, such as 

r 
a d  = -(60 - t t 0.05P) 180 

16 



the steady state performance is improved significantly using PID type adaptive controller, as shown 
in Figure 9. 

For inertia space adaptive contrdler, an initid guess of the updating parameters is set to 
80% of the true value. The inertia space trajectory and joint space trajectory employed in the 
simulation are shown in Figure 10. We used 10 seconds as updating time for inverse kinematics. 
The effectiveness of this adaptive scheme has been verified by the tracking errors shown in Figure 
11. It is found that position errors in inertia space converge to rn as errors in joint space converge 
to zero and estimated parameters converge to their true value8. 

7 Conclusions 
In this report, we have discussed adaptive controlof a space robot system with an attitude controlled 
base on which the robot is attached. Adaptive control is critical for Various robotic applications in 
space, such as m a t d  tramport and light manipulation, in which robots have to face uncertainty 
on the dynamic parameters of the load or the structure. Bared on Lagrangian dynamics and linear 
momentum conservation law, we derived system dynamic equations. Then we showed that the 
system dynamica in pint space can be linearly parameterized, Le., the dynamics can be linearized 
in joint space by a set of combined dynamic parameters, while the same conclusion is not true in 
inertia space. 

An adaptive control scheme in joint space is proposed to cope with dynamic uncertainties based 
on the dynamic model developed. The scheme is effective and feasible for space robot applications 
by eliminating the we of pint acceleration measurement, inversion of inertial matrix, high gain 
feedback, and considerable computation cost. At meantime, the scheme is also applicable for the 
iixed-base robot system by slight modification. 

Considering that the tasks in space are specified in hertia space in most applicationa, we 
discussed the issues of adaptive control of the robot for the tasks that must be mull in inertia 
space. Two main problems have been identified. If the pint adaptive control is implemented, the 
desired joint trajectory cannot be generated from the given inertia space trajectory since kinematic 
mapping is dynamics dependent, and thus is subjected to uncertainty in parameters. Moreover, the 
same structured adaptive control as in joint space is not feasible for inertia space due to nonlinear 
parameterization in inertia space. We approached this problem by making use of the proposed 
joint space adaptive controller while updating joint trajectory by using the estimated dynamic 
parameters and the given trajectory in inertia space. This method has shown its effectiveness in 
simulation. Parameter estimation and updating time are direussed. 

Finally, a planar system is studied numerically to investigate the linear parameterization prob- 
lem and illustrate the procedure to design the controller. The results demonstrated validity and 
effectiveness of the proposed adaptive control schemes in both joint and inertia space descriptions. 
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Figure 5 'Racking errors and parameter estimations using joint space adaptive control 



Figure 6 Comparison between adaptive control and dynamic control 



Figure 7 Example of adaptive control for fixed-based robot 
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Figure 8 Illustration of combined dynamic parameter identification 
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Figure 9 Comparison between PD type and PID type adaptive control schemes 
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Figure 10 Trajectories in joint space and in inertia space 
using inertia space adaptive controller 

0 6 W S m a 

Figure 11 Thcking errors in joint space and in inertia space 
using inertia space adaptive controller 
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