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Abstract

We address the task of covering a closed orientable

surface embedded in <3 without any prior information

about the surface. For applications such as paint depo-

sition, the e�ector (the paint atomizer) does not explic-

itly cover the target surface, but instead covers an o�-

set surface | a surface that is a �xed distance away

from the target surface. Just as Canny and others use

critical points to look for changes in connectivity of the

free space to ensure completeness of their roadmap al-

gorithms, we use critical points to identify changes in

the connectivity of the o�set surface to ensure full sur-

face coverage. The main contribution of this work is

a method to construct unknown o�set surfaces using a

procedure, also developed in this paper, to detect critical

points.

1 Introduction

Conventional path planning determines a path be-

tween two points in the free con�guration space FS of a

system [14]. Recent path planning results describe cov-

erage path planning algorithms that determine a path

that enables an \e�ector" to pass over all points in the

free con�guration space [8], [12], [21]. Applications of

this recent work include humanitarian de-mining, au-

tonomous lawn mowing and 
oor cleaning, all of which

are planar coverage tasks. This paper takes the �rst

step towards lifting these planar coverage algorithms

into three dimensions for applications such as the in-

spection of complicated surfaces (non-planar), materi-

al deposition, material removal, and CNC tool path

planning. These applications require coverage of two-

dimensional surfaces embedded in three dimensions. For

applications such as visual inspection, the camera itself

does not cover the target surface; to achieve visual cov-

erage, the camera covers an o�set surface, a surface that

is a �xed distance away from the target surface. This

paper describes how a robot equipped with a range sen-

sor at its end e�ector, can incrementally construct (i.e.,

explore) an o�set surface without any prior information

about the target surface.

Our approach to coverage uses a slice, a co-dimension

one surface (i.e., a plane), that is swept through the

free space. We are interested in slices where topologi-
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Fig. 1. Cellular decomposition for 
at planar environments.

cal (e.g., connectivity) changes occur; these changes oc-

cur at points termed critical points. Just as Canny [3],

[4], [5] uses critical points to ensure the connectivity of

roadmaps, we use critical points to de�ne cells in a cel-

lular decomposition. In each cell, simple motions are

suÆcient to cover each cell and then complete coverage

is achieved by visiting each cell in the decomposition. In

this paper, we de�ne a cellular decomposition for a large

class of two-dimensional surfaces embedded in three di-

mensions in terms of critical points on the o�set surface.

To achieve sensor based coverage of the o�set surface, we

introduce a new method to detect critical points on the

o�set surface. This method assumes that the robot can

measure distance from its e�ector to the target surface.

2 Prior Work

Our work rests on two tasks: coverage and gener-

ating o�set surfaces. Most recent work in coverage is

geared towards the plane and is either implicitly or ex-

plicitly, based on exact cellular decompositions. These

algorithms decompose the space into di�erent shapes

such as rectangles [2], trapezoids [18], [19], \clumped

trapezoids" [6], [8] or �ne cells (grids) [10], [20], [21].

Choset et al [7] present a method to achieve an exact

cellular decomposition of a planar environment that is

formulated in terms of critical points. Between critical

points, the number of connected portions of the slice

in the free space remains the same. This means that

each cell in the decomposition can be covered with sim-

ple back and forth motions and complete coverage is

achieved by visiting each cell. Acar et al [1] sense crit-

ical points using distance information and show that

the distance function gradient becomes perpendicular

to the slice at the critical points ( see Figure 1). We use

an analogous approach to detect critical points on the

o�set surfaces.
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Surveys [15], [17] of o�set curves/surfaces literature

indicate that there has been a vast amount of research in

generating o�set curves; however this �eld is still young.

Farouki [9] gives procedures to determine a geometric

representation for o�set surfaces of simple solids, but

these methods do not consider o�set surfaces of concave

objects or curved surfaces. Pham [16] describes meth-

ods to generate approximations of the o�set surface for

the NURB surface, but the method does not yield o�set

surfaces free from self intersections, discontinuities, and

sharp ridges. There have been a few attempts to elimi-

nate self intersections using non-analytical approaches.

Kimmel and Bruckstein [13] use the wavefront approach

in 
uid dynamics to obtain the o�set surface, while Gur-

buz and Zeid [11] employ the approach of �lling closed

balls of a �xed radius at each point on the object. How-

ever, both methods are based on grid/cell decomposi-

tions; hence, their resolution and accuracy greatly de-

pend upon the size of the grid. Since our work uses

numerical tracing to construct the \sliced" o�set sur-

face of an arbitrarily shaped object, it is free from self

intersections and discontinuities.

3 O�set Surface Coverage

A coverage o�set surface has two dimensions and is

embedded in <3. We determine a path that covers

this surface by repeatedly intersecting it with a two-

dimensional slice. Each intersection generically is one

or more loops; we term these loops as coverage o�set

surface edges, or COSedges.

3.1 Coverage O�set Paths

We use a numerical technique that traces the roots of

a function to generate the COSedge. This function has

two parts: an o�set surface component and a slice com-

ponent. Let x be a point in <3. The distance between

x and an object Ci is given by di(x) (di:<
3 7! <). The

coverage o�set surface, COS i is

COSi = fx 2 <3: di(x)� 
 = 0g; (1)

where 
 2 < is the desired �xed distance. By the pre-

image theorem, COS i is dimension two. Now, we inter-

sect COSi with a planar slice �i;k = fx 2 <3: hns; xi �
k = 0g, where ns 2 <

3 is the normal to the plane, and k

de�nes the location of the plane. Varying k has the ef-

fect of sweeping the slice. The intersection of slice plane

�i;k and COSi de�nes the COSedge, which can be repre-
sented by the pre-image of a function Gi;k;
:<

3 7! <2,

Gi;k;
(x) =

�
di(x) �


hns; xi � k

�
: (2)

For concise notation, let G(x) be Gi;k;
(x), and let COS
denote COS[iCi . By the pre-image theorem, we know

that for regular values, the pre-image of G(x) is a one-

dimensional manifold. We have shown, but omitted its
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Fig. 2. Switching slice plane algorithm.

proof due to space limitations, that away from critical

points and assuming a generic placement of objects, the

o�set edges form closed loops.

Once the planner traces the COSedge loop, it must

then shift to the next slice plane. Changing slice planes

is not a trivial task. We have developed an algorithm

that either determines a point on the COSedge in the

next slice plane or concludes that there is no COSedge in

the next slice corresponding to the COSedge in the cur-

rent plane. The algorithm has the following two steps:

1. Shifting the slice planes: The planner moves a

point along the slice normal, until it reaches the

next slice plane, or until it reaches the boundary

of an object. In the latter case, the planner then

starts moving along the boundary while increasing

the distance to the current slice. In other words,

it follows the slice gradient projected onto the sur-

face boundary. See Figure 2. While following the

boundary, if the planner comes across a point on the

object surface such that it cannot move away from

the previous slice, then the planner has reached a

critical point on the object.

2. Moving onto a COSedge or detecting that it does

not exist: Once in the new slice plane, the plan-

ner moves a point away from the closest object

while keeping the point in the plane, i.e., it fol-

lows ��rdi(x), until it reaches a point on the

COSedge or a point on a two way equidistant sheet

SSij = fx : di(x) = dj(x);rdi(x) 6= rdj(x)g. In

the latter case, the planner traces SSij \ � look-

ing for a point on the COSedge. After tracing

the intersection completely, if the planner does not

�nd any COSedge point, then it concludes the ab-

sence of COSedge in the new slice, corresponding

to COSedge in the old slice. This conclusion repre-

sents that the planner has passed a critical point on

the o�set surface lying between the new and the old

slice. Such a critical point on COS appears when

there is a corresponding critical point on the ob-
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Fig. 3. Multiple loops in a single slice plane

ject, or when the object has a narrow \neck" which

splits the o�set surface into two disconnected parts.

3.2 Critical Points and the Adjacency Graph

For convex objects, there is at most one COSedge in

any slice plane; hence, repeatedly tracing a loop and

then �nding a seed point for the next loop in the next

slice plane will cover the COS completely. However,

for solids that are not convex, there may be more than

one COSedge loop in a single slice plane, therefore, the

planner needs to know the number of COSedges in a

given slice plane to achieve complete coverage. In Figure

3, as we sweep the slice from bottom to top, at slice �2,

the number of COSedge loops in a slice change from one

to two. If the planner naively adopts the \trace the loop

and jump to next slice" policy, it covers only one \arm"

and fails to cover the other arm.

We use critical points on the o�set surface to deter-

mine when the number of COSedge loops changes. The

change depends upon the \convexity" nature of a neigh-

borhood of an o�set critical point. Let CP be a criti-

cal point on the o�set surface , and let B�(CP ) be the

neighborhood of CP , which is an open ball with cen-

ter CP and of radius � > 0. Since the o�set surface

is a space-dividing surface, let the volume bounded by

the o�set surface that contains the object be denoted

by SO. Then, the critical points are divided into three

classes : convex, concave, and semi-concave.

Definition 3.1 A critical point CP is

� convex if B�(CP ) \ SO is convex,

� concave if B�(CP ) \ (FS n int(SO)) is convex,
� semiconcave if neither B�(CP ) \ SO nor

B�(CP ) \ (FS n int(SO)) is convex.

The critical points correspond to nodes in our adjacen-

cy graph; edges correspond to cells whose boundaries

are de�ned by two \adjacent" critical points. In this

work, the planner incrementally constructs the adjacen-

cy graph by �rst covering a cell until it detects a critical

point. The convexity nature of the critical point deter-

C1

C1

Slice
no

Slice �1 �1 �2

�2

COSedge

COSedge

Fig. 4. Convex critical point: 0-to-1 connectivity change

mines how many cells are associated with the critical

point. In the next section, we show that a convex or

concave critical point corresponds to a terminal node (a

leaf) in the adjacency graph and a semi-concave critical

point corresponds to a node that generically has three

edges emanating from it. If the planner encounters a

semi-concave critical point, the planner chooses one cell

and covers it until the planner encounters another crit-

ical point. When the planner encounters a convex or

concave critical point, then it returns to a semi-concave

critical point with an \uncovered" cell associated with

it. When all critical points have no uncovered cells, cov-

erage is complete.

The challenge then becomes how to detect a critical

point and what its type is.

4 Detecting the Critical Points

As we pass the critical point while covering COS,
generically only four kinds of local connectivity changes

are possible: 0-to-1 (the number of loops changes from

0 to 1 as we pass the critical point), 1-to-0, 1-to-2 or

2-to-1.

Note that a slice is de�ned by the preimage of a

scalar-valued function �:<3 7! <. ��1(c) is a slice, and
�(x) denotes the value of the slice function evaluated at

a point x on the COS .

Lemma 4.1 At a convex critical point X, there is

always a 0-to-1 or 1-to-0 change in the number of

COSedge loops (see Figure 4).

Proof: By de�nition, B�(X) \ SO is convex. Since X

is a critical point, it must be either a local minimum or

maximum of the slice function evaluated on the o�set

surface. Since � is a convex function and B�(X)\SO is a

convex set, 8x1; x2 2 (B�(X)\SO), such that x1; x2 6=
X , either �(x1) < �(X) and �(x2) < �(X), or �(x1) >

�(X) and �(x2) > �(X). Since COS = @SO, the same
is true for all x1; x2 2 B�(X) \ COS. Thus, there does
not exist x1; x2 2 (B�(X) \ COS) such that �(x1) >

�(X) and �(x2) < �(X). Hence, all points in B�(X) \
COS must lie on one side of the slice that contains X ,

and there is no point in the B�(X) \ COS which lies

on the other side of the critical slice. Therefore, there

must be a 0-to-1 or 1-to-0 change at the convex critical

point. �
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Fig. 5. Semiconcave critical point: 2-to-1 connectivity change

Lemma 4.2 At a concave critical point Y , there is

always a 0-to-1 or 1-to-0 change in the number of

COSedge loops.

Proof: Here, by de�nition, B�(Y ) \ (FS n int(SO)) is
convex. Again, COS is the boundary of a convex set

B�(Y )\ (FS n int(SO)). The proof follows mutatis mu-

tandis, as per Lemma 4.1. �

Lemma 4.3 There is a 1-to-m or m-to-1 change in the

number of COSedge loops at a semiconcave critical point

Z, where m > 1 (see Figure 5).

Proof: For a semiconcave critical point, both B�(Z)\SO
and B�(Z) \ (FS n int(SO)) are not convex. Their in-
tersection, (B�(Z) \ SO) \ (B�(Z) \ (FS n int(SO)) is
B�(Z)\@SO, which is the same as B�(Z)\COS . Hence,
9z1; z2 2 B�(Z) \ COS such that �(z1) > �(Z) and

�(z2) < �(Z). Thus, if z1 lies on one side of the slice

plane that contains Z, then z2 must lie on the other.

Without loss of generality, if there is only one COSedge
on the side where z1 lies, since there is a change in con-

nectivity at the critical point, there must be m(> 1)

number of COSedge loops on the z2 side. Hence, there

must be a 1-to-m or m-to-1 change at the semiconcave

critical point. A 1-to-m or m-to-1 connectivity change

can be seen as m� 1 number of 1-to-2 or 2-to-1 connec-

tivity changes at the same critical point. In this paper,

we will always treat the 1-to-m change as m� 1 1-to-2

changes and vice-versa. �

Now, we present methods to detect critical points on

a closed, orientable and connected o�set surface. When

the planner is covering an unknown environment, only

detecting a 1-to-0 connectivity change for the convex

and concave critical points suÆces. A 1-to-0 change

is automatically detected by the switching slice plane

algorithm. However, the 1-to-2 change at a semiconcave

critical point is not very apparent to the planner. The

planner uses cusps, or the non-smooth boundary points

on the COSedge where a discrete change occurs in the

direction of the tangent to the COSedge, to determine

the semiconcave critical point. The planner looks for

the cusps in the neighborhood of the critical point, and

then traces the cusps to reach the critical point. Here,

−
Σ

Σ

Σ+
CP

CP

@Ci @Cj

SSij

B
�(CP )

Fig. 6. Semiconcave critical point emanates cusps.

we consider a deleted neighborhood B�
�
(Z) = B�(Z) nZ

of the critical point Z.

Lemma 4.4 For every semiconcave critical point CP ,

there exists a cusp in its deleted neighborhood.

Proof: From Lemma 4.3, we know that there is a 1-

to-2 or 2-to-1 change in the number of COSedge loops

at a semiconcave critical point. Therefore, there ex-

ists a \critical slice" where two loops intersect non-

transversely (i.e. the loops kiss each other). See Fig-

ure 6. Let �CP denote the critical slice. Since we have

assumed that a critical point is isolated, the loops inter-

sect only at one point, the critical point. Clearly, both

loops have at least one di�erent convex object closest to

them. Let Ci and Cj be the closest objects at the critical

point. Then at the critical point, the distance of point

CP from Ci and Cj is the same and is equal to 
. Then,

the equidistant sheet SSij passes through CP and lo-

cally splits the COS. Note that the double equidistant
sheet intersects the COS only on the \one loop side" of

CP . Also, this intersection is one-dimensional and it lo-

cally separates the COS . Let �� be the slice plane with

a slice value smaller than that of �CP . Similarly, let �+

have a larger slice value than that of �CP . Without loss

of generality, let the number of COSedge loops change

from 2 to 1 as the planner moves from �� to �+. Then,

by continuity of the slice function, there exists a slice ��

whose slice value is � greater than that of �CP such that

��\COS is separated by SSij \COS. Thus, SSij sepa-
rates the COSedge in slice �� into two parts (both parts

exclude COSedge \ SSij) such that points belonging to

one part are closer to a set of objects CA�, while points
in the other part are closer to a di�erent set of objects

CB�, i.e., CA� 6= CB�: Hence at SSij \ COS \�� = fKig,
there is a discrete change in the gradient vector.

From Equation 2, we know that Null

�
rd(x)
ns

�
is

the tangent to the COSedge. Since there is a discrete

change in rd(x) at Ki, the tangent at Ki has a discrete

change in direction. Thus, COSedge is non-smooth or,
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Fig. 7. Detecting the semiconcave critical point : tracing the

cusps.

in other words, Ki is a cusp. This argument holds for

suÆciently small values of �, hence the proof. �

Thus, there exists a one-dimensional path, EquiCOS,

which is the intersection of the o�set surface and the

equidistant sheet, such that the cusp points and the

critical point (when it exists) lie on it. To guarantee

that the semiconcave critical point is detected, the plan-

ner traces all the EquiCOS edges between the current

and the previous slice planes. See Figure 7. Initially,

it traces all EquiCOS edges emanating from the cusps

in previous slice, and some of these cusps lead to cusps

in the current slice plane. It then traces the EquiCOS

edges from the remaining cusps in the current slice.

The EquiCOS is the pre-image of the function

EC(x):

EC(x) =

�
di(x)�


di(x)� dj(x)

�
; (3)

where objects Ci and Cj are the �rst closest objects at

the cusp. While tracing the EquiCOS, if at any point,

the slice normal ns lies in the convex hull of vectors

rdi(x) and rdj(x) [8], then the planner has found the

semiconcave critical point. If there is a 1-to-m change

at this critical point, then m can be easily found by

noting the starting point of each EquiCOS edge in the

previous slice. If these EquiCOS starting points lie on

n distinct COSedge loops, then m = n+ 1.

However, tracing all the EquiCOS edges lying be-

tween the previous and current slice planes may be com-

putationally very expensive. A very useful heuristic uses

the change in the number of cusps between the current

and previous slices. Note that it is necessary that the

number of cusps changes in the neighborhood of a criti-

cal point, but it is not suÆcient. So, when such a change

occurs, the positions of the cusps in the current slice are

compared with the position of the cusps in the previ-

ous slice. Only the \new" cusps are traced. A 2-to-1

connectivity change increases the number of cusps in

the current slice plane, while 1-to-2 connectivity change

decreases the number of cusps. Thus, the planner can

detect all three types of critical points and, therefore,

can complete the o�set surface coverage by construct-

ing the adjacency graph.

5 Simulation

We simulate the critical point detection procedure us-

ing known polyhedral environments. For polyhedral en-

vironments, we use critical points on the target surface

{ the boundary of the polyhedral solid { to determine

the critical points on the o�set surface. We classify the

critical points on the polyhedral object similarly to the

o�set critical points: convex, concave or semiconcave.

For non-degenerate cases, the critical points of the tar-

get surface appear only at the vertices of the polyhe-

dron. It is easy to determine which vertices are critical

points by looking at the positive span of the surface nor-

mals that form the vertex. If the slice gradient lies in

this positive span, then the vertex is a critical point [8].

Each critical point is then \lifted" to the o�set surface,

but this \lifted" critical point is not necessarily a critical

point on the o�set surface. We term these points as can-

didate critical points. If the distance between the can-

didate critical point and the closest point on the target

surface is the o�set distance, then the candidate criti-

cal point is indeed a critical point for the o�set surface.

It is worth noting that for convex, semi-concave, and

concave critical points, there will be one, two, and three

closest points respectively. Finally, not all critical points

on the o�set surface are derived from the target surface;

these critical points, however, are detected while execut-

ing the switching slice plane algorithm. By looking at

the target surface and by invoking the switching plane

algorithm, we are guaranteed to encounter all critical

points of the o�set surface and hence ensure complete

coverage.

The simulations are carried out by generating the

o�set surfaces for di�erent o�set distances and di�er-

ent slicing directions. We verify that the simulation

yields the locations of critical points exactly as predict-

ed. Figure 8 shows the coverage of the o�set surface

with semiconcave and convex critical points. The simu-

lation shows the 2-to-1 connectivity change at the semi-

concave corner. Figure 9 shows an object with a hole

in it. For this object, again there are semiconcave and

convex critical points on its o�set surface. Thus, these

simulations successfully demonstrate the critical point

detection procedure for o�set surfaces.

6 Conclusion

In this work, we introduce complete methods to cover

an unknown closed, orientable and connected o�set sur-

face in <3. The o�set surface is the set of points that

are a �xed distance away from a target surface (such

as an automobile body). The o�set surface is covered

by incrementally tracing several paths on the o�set sur-

face using local numerical techniques. These paths are

formed by repeatedly intersecting a slice with the cov-

sunny
703



Fig. 8. Complete coverage of o�set surface for a car-shaped ob-

ject.

Fig. 9. O�set surface for an object with a hole.

erage o�set surface and tracing the intersection. Note

that these paths do not consider the kinematics of the

robot, which will be considered in future work. We also

assume that the o�set surface is a separator (separating

inside from outside); future work will consider scenar-

ios where \obstacles" on the target surface will be not

covered, yielding an o�set surface that has \holes" in

it. This is useful for applications such as paint stripping

hulls of ships where the \obstacles" are port-holes.

The o�set surface is decomposed into cells where the

boundaries of the cells are de�ned by critical points of a

slice function evaluated on the o�set surface. Each cell

thus generated is easy to cover using our o�set path trac-

ing procedure. The primary contribution of this paper

is to provide methods which can detect critical points

for o�set surfaces of unknown environments. The result

that semiconcave critical points \emanate" cusps can be

particularly useful for surface coverage algorithms. Cur-

rently, we do not have a surface crawling robot to test

our algorithms, so we have demonstrated the approach

in this paper in known polyhedral environments.

The coverage algorithms presented in this work can

be useful for a variety of applications such as robotic

automobile-body spray painting, paint stripping, robot-

ic inspection or CNC tool path generation. However,

for applications like car painting, it is not only neces-

sary that the target surface be covered completely, but

it is also crucial that the target surface receive a uni-

form amount of paint. Our current coverage procedure

guarantees complete coverage of an o�set surface, but

it does not take into account the e�ect of di�erent de-

position patterns. The cellular decomposition obtained

by our method needs to be matched with decomposi-

tions based on geometrical aspects such as curvature.

Our future work will include coverage procedures which

consider these issues.
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