Proceedings of the 2001 IEEE O
International Conference on Robotics & Automation
Seoul, Korea « May 21-26, 2001

Exact Cellular Decomposition of Closed Orientable Surfaces
Embedded in 13

Prasad N. Atkar Howie Choset

Alfred A. Rizzi Ercan U. Acar

Carnegie Mellon University
Department of Mechanical Engineering and Robotics Institute
Pittsburgh, PA 15213

Abstract

We address the task of covering a closed orientable
surface embedded in R without any prior information
about the surface. For applications such as paint depo-
sition, the effector (the paint atomizer) does not explic-
itly cover the target surface, but instead covers an off-
set surface — a surface that is a fized distance away
from the target surface. Just as Canny and others use
critical points to look for changes in connectivity of the
free space to ensure completeness of their roadmap al-
gorithms, we use critical points to identify changes in
the connectivity of the offset surface to ensure full sur-
face coverage. The main contribution of this work is
a method to construct unknown offset surfaces using a
procedure, also developed in this paper, to detect critical
points.

1 Introduction

Conventional path planning determines a path be-
tween two points in the free configuration space #.S of a
system [14]. Recent path planning results describe cov-
erage path planning algorithms that determine a path
that enables an “effector” to pass over all points in the
free configuration space [8], [12], [21]. Applications of
this recent work include humanitarian de-mining, au-
tonomous lawn mowing and floor cleaning, all of which
are planar coverage tasks. This paper takes the first
step towards lifting these planar coverage algorithms
into three dimensions for applications such as the in-
spection of complicated surfaces (non-planar), materi-
al deposition, material removal, and CNC tool path
planning. These applications require coverage of two-
dimensional surfaces embedded in three dimensions. For
applications such as visual inspection, the camera itself
does not cover the target surface; to achieve visual cov-
erage, the camera covers an offset surface, a surface that
is a fixed distance away from the target surface. This
paper describes how a robot equipped with a range sen-
sor at its end effector, can incrementally construct (i.e.,
explore) an offset surface without any prior information
about the target surface.

Our approach to coverage uses a slice, a co-dimension
one surface (i.e., a plane), that is swept through the
free space. We are interested in slices where topologi-

0-7803-6475-9/01/$10.00 © 2001 IEEE

Object
Slice Normal

Normal to
boundary

Slice

Object Boundary

Fig. 1. Cellular decomposition for flat planar environments.

cal (e.g., connectivity) changes occur; these changes oc-
cur at points termed critical points. Just as Canny [3],
[4], [5] uses critical points to ensure the connectivity of
roadmaps, we use critical points to define cells in a cel-
lular decomposition. In each cell, simple motions are
sufficient to cover each cell and then complete coverage
is achieved by visiting each cell in the decomposition. In
this paper, we define a cellular decomposition for a large
class of two-dimensional surfaces embedded in three di-
mensions in terms of critical points on the offset surface.
To achieve sensor based coverage of the offset surface, we
introduce a new method to detect critical points on the
offset surface. This method assumes that the robot can
measure distance from its effector to the target surface.

2 Prior Work

Our work rests on two tasks: coverage and gener-
ating offset surfaces. Most recent work in coverage is
geared towards the plane and is either implicitly or ex-
plicitly, based on exact cellular decompositions. These
algorithms decompose the space into different shapes
such as rectangles [2], trapezoids [18], [19], “clumped
trapezoids” [6], [8] or fine cells (grids) [10], [20], [21].

Choset et al [7] present a method to achieve an exact
cellular decomposition of a planar environment that is
formulated in terms of critical points. Between critical
points, the number of connected portions of the slice
in the free space remains the same. This means that
each cell in the decomposition can be covered with sim-
ple back and forth motions and complete coverage is
achieved by visiting each cell. Acar et al [1] sense crit-
ical points using distance information and show that
the distance function gradient becomes perpendicular
to the slice at the critical points (see Figure 1). We use
an analogous approach to detect critical points on the
offset surfaces.

699

ralph
Proceedings of the 2001 IEEE
International Conference on Robotics & Automation
Seoul, Korea 匀 May 21-26, ㈀　　�

ralph
0-7803-6475-9/01/$10.00 © 2001 IEEE

sunny
699

Surveys [15], [17] of offset curves/surfaces literature
indicate that there has been a vast amount of research in
generating offset curves; however this field is still young.
Farouki [9] gives procedures to determine a geometric
representation for offset surfaces of simple solids, but
these methods do not consider offset surfaces of concave
objects or curved surfaces. Pham [16] describes meth-
ods to generate approximations of the offset surface for
the NURB surface, but the method does not yield offset
surfaces free from self intersections, discontinuities, and
sharp ridges. There have been a few attempts to elimi-
nate self intersections using non-analytical approaches.
Kimmel and Bruckstein [13] use the wavefront approach
in fluid dynamics to obtain the offset surface, while Gur-
buz and Zeid [11] employ the approach of filling closed
balls of a fixed radius at each point on the object. How-
ever, both methods are based on grid/cell decomposi-
tions; hence, their resolution and accuracy greatly de-
pend upon the size of the grid. Since our work uses
numerical tracing to construct the “sliced” offset sur-
face of an arbitrarily shaped object, it is free from self
intersections and discontinuities.

3 Offset Surface Coverage

A coverage offset surface has two dimensions and is
embedded in ®3. We determine a path that covers
this surface by repeatedly intersecting it with a two-
dimensional slice. Each intersection generically is one
or more loops; we term these loops as coverage offset
surface edges, or C'OSecqges-

3.1 Coverage Offset Paths

We use a numerical technique that traces the roots of
a function to generate the C'OS,q4.. This function has
two parts: an offset surface component and a slice com-
ponent. Let x be a point in $#3. The distance between
o and an object C; is given by d;(z) (d;: R* — R). The
coverage offset surface, COS; is
COS; = {z e R*:d;(z) — Q =0}, (1)
where (2 € R is the desired fixed distance. By the pre-
image theorem, COS; is dimension two. Now, we inter-
sect COS; with a planar slice ¥, = {z € R3: (ns,z) —
k = 0}, where ns € R? is the normal to the plane, and k
defines the location of the plane. Varying k has the ef-
fect of sweeping the slice. The intersection of slice plane
ik and COS; defines the COS,q4¢, which can be repre-
sented by the pre-image of a function G; i o: R* — R?,
Giralr) = (&ls(i% _(2) (2)
For concise notation, let G(z) be G; x o(x), and let COS
denote COS ,¢,. By the pre-image theorem, we know

that for regular values, the pre-image of G(z) is a one-
dimensional manifold. We have shown, but omitted its

Fig. 2. Switching slice plane algorithm.

proof due to space limitations, that away from critical
points and assuming a generic placement of objects, the
offset edges form closed loops.

Once the planner traces the COSecqge loop, it must
then shift to the next slice plane. Changing slice planes
is not a trivial task. We have developed an algorithm
that either determines a point on the COScqge in the
next slice plane or concludes that there is no COS.44¢ in
the next slice corresponding to the C'OS.44e in the cur-
rent plane. The algorithm has the following two steps:

1. Shifting the slice planes: The planner moves a
point along the slice normal, until it reaches the
next slice plane, or until it reaches the boundary
of an object. In the latter case, the planner then
starts moving along the boundary while increasing
the distance to the current slice. In other words,
it follows the slice gradient projected onto the sur-
face boundary. See Figure 2. While following the
boundary, if the planner comes across a point on the
object surface such that it cannot move away from
the previous slice, then the planner has reached a
critical point on the object.

2. Moving onto a COS.q4e or detecting that it does
not exist: Once in the new slice plane, the plan-
ner moves a point away from the closest object
while keeping the point in the plane, i.e., it fol-
lows [IxVd;(z), until it reaches a point on the
COS,q4e or a point on a two way equidistant sheet
SSZ']' = {.T : dl(m) = d](:v),le(a:) 7é Vd](a:)} In
the latter case, the planner traces SS;; N ¥ look-
ing for a point on the COScqqe. After tracing
the intersection completely, if the planner does not
find any COS.q4e point, then it concludes the ab-
sence of COSeqge in the new slice, corresponding
to COSeqge in the old slice. This conclusion repre-
sents that the planner has passed a critical point on
the offset surface lying between the new and the old
slice. Such a critical point on COS appears when
there is a corresponding critical point on the ob-

700

sunny
700

I, TS!iceDirection

Fig. 3. Multiple loops in a single slice plane

ject, or when the object has a narrow “neck” which
splits the offset surface into two disconnected parts.

3.2 Critical Points and the Adjacency Graph

For convex objects, there is at most one COS,q4e in
any slice plane; hence, repeatedly tracing a loop and
then finding a seed point for the next loop in the next
slice plane will cover the COS completely. However,
for solids that are not convex, there may be more than
one COSeqqe loop in a single slice plane, therefore, the
planner needs to know the number of COSc44es in a
given slice plane to achieve complete coverage. In Figure
3, as we sweep the slice from bottom to top, at slice X,
the number of COSe¢q4e loops in a slice change from one
to two. If the planner naively adopts the “trace the loop
and jump to next slice” policy, it covers only one “arm”
and fails to cover the other arm.

We use critical points on the offset surface to deter-
mine when the number of COS,q4e loops changes. The
change depends upon the “convexity” nature of a neigh-
borhood of an offset critical point. Let CP be a criti-
cal point on the offset surface , and let B.(C'P) be the
neighborhood of C'P, which is an open ball with cen-
ter CP and of radius € > 0. Since the offset surface
is a space-dividing surface, let the volume bounded by
the offset surface that contains the object be denoted
by SO. Then, the critical points are divided into three
classes : convex, concave, and semi-concave.

DEFINITION 3.1 A critical point CP is
o convex if B.(CP) NSO is conver,
o concave if B.(CP) N (&S \ int(SO)) is convex,
e semiconcave if neither B.(CP) N SO mnor
B.(CP)N (FS \ int(S0O)) is convez.

The critical points correspond to nodes in our adjacen-
cy graph; edges correspond to cells whose boundaries
are defined by two “adjacent” critical points. In this
work, the planner incrementally constructs the adjacen-
cy graph by first covering a cell until it detects a critical
point. The convexity nature of the critical point deter-

COScage

PP

c1 .
b Slicex;

NO COS.44e

Slice =,

Fig. 4. Convex critical point: 0-to-1 connectivity change

mines how many cells are associated with the critical
point. In the next section, we show that a convex or
concave critical point corresponds to a terminal node (a
leaf) in the adjacency graph and a semi-concave critical
point corresponds to a node that generically has three
edges emanating from it. If the planner encounters a
semi-concave critical point, the planner chooses one cell
and covers it until the planner encounters another crit-
ical point. When the planner encounters a convex or
concave critical point, then it returns to a semi-concave
critical point with an “uncovered” cell associated with
it. When all critical points have no uncovered cells, cov-
erage is complete.

The challenge then becomes how to detect a critical
point and what its type is.

4 Detecting the Critical Points

As we pass the critical point while covering COS,
generically only four kinds of local connectivity changes
are possible: 0-to-1 (the number of loops changes from
0 to 1 as we pass the critical point), 1-to-0, 1-to-2 or
2-to-1.

Note that a slice is defined by the preimage of a
scalar-valued function \: R* — R. A~1(c) is a slice, and
A(z) denotes the value of the slice function evaluated at
a point z on the COS.

LEMMA 4.1 At a convex critical point X, there is
always a 0-to-1 or 1-to-0 change in the number of
COSeqge loops (see Figure 4).

Proof: By definition, B.(X) N SO is convex. Since X
is a critical point, it must be either a local minimum or
maximum of the slice function evaluated on the offset
surface. Since A is a convex function and B.(X)NSO is a
convex set, Vol,22 € (B.(X)NSO), such that x1,22 #
X, either A\(z1) < A(X) and A(22) < A(X), or A(z1) >
A(X) and A(z2) > A(X). Since COS = S0, the same
is true for all z1,22 € B.(X) NCOS. Thus, there does
not exist z1,22 € (B.(X) N COS) such that A(zl) >
A(X) and A(z2) < A(X). Hence, all points in B.(X) N
COS must lie on one side of the slice that contains X,
and there is no point in the B.(X) N COS which lies
on the other side of the critical slice. Therefore, there
must be a 0-to-1 or 1-to-0 change at the convex critical
point. |

701

sunny
701

sunny
701

COS.age

Slice =4
COScqdge

v M

Slice =9

Fig. 5. Semiconcave critical point: 2-to-1 connectivity change

LEMMA 4.2 At a concave critical point Y, there is

always a 0-to-1 or 1-to-0 change in the number of
COSeqge loops.

Proof: Here, by definition, B.(Y) N (FS \ int(SO)) is
convex. Again, COS is the boundary of a convex set
B.(Y)N(#FS \ int(SO)). The proof follows mutatis mu-
tandis, as per Lemma 4.1. |

LEMMA 4.3 There is a 1-to-m or m-to-1 change in the
number of COScage loops at a semiconcave critical point
Z, where m > 1 (see Figure 5).

Proof: For a semiconcave critical point, both B.(Z)NSO
and B.(Z) N (FS \ int(SO)) are not convex. Their in-
tersection, (B:(Z) NSO) N (B(Z) N (FS \ int(S0O)) is
B.(Z)N0SO, which is the same as B.(Z)NCOS. Hence,
321,22 € B(Z) N COS such that A(z1) > A(Z) and
A(22) < A(Z). Thus, if 21 lies on one side of the slice
plane that contains Z, then 22 must lie on the other.
Without loss of generality, if there is only one COSeq4e
on the side where 21 lies, since there is a change in con-
nectivity at the critical point, there must be m(> 1)
number of COSeqge loops on the 22 side. Hence, there
must be a 1-to-m or m-to-1 change at the semiconcave
critical point. A 1-to-m or m-to-1 connectivity change
can be seen as m — 1 number of 1-to-2 or 2-to-1 connec-
tivity changes at the same critical point. In this paper,
we will always treat the 1-to-m change as m — 1 1-to-2
changes and vice-versa. |

Now, we present methods to detect critical points on
a closed, orientable and connected offset surface. When
the planner is covering an unknown environment, only
detecting a 1-to-0 connectivity change for the convex
and concave critical points suffices. A 1-to-0 change
is automatically detected by the switching slice plane
algorithm. However, the 1-to-2 change at a semiconcave
critical point is not very apparent to the planner. The
planner uses cusps, or the non-smooth boundary points
on the COS¢qq Where a discrete change occurs in the
direction of the tangent to the COS,g44¢, to determine
the semiconcave critical point. The planner looks for
the cusps in the neighborhood of the critical point, and
then traces the cusps to reach the critical point. Here,

58

aC; aC;

) Brcp)

2+

Fig. 6. Semiconcave critical point emanates cusps.

we consider a deleted neighborhood B} (Z) = B.(Z)\ Z
of the critical point Z.

LEMMA 4.4 For every semiconcave critical point CP,
there exists a cusp in its deleted neighborhood.

Proof: From Lemma 4.3, we know that there is a 1-
to-2 or 2-to-1 change in the number of COScq4e loops
at a semiconcave critical point. Therefore, there ex-
ists a “critical slice” where two loops intersect non-
transversely (i.e. the loops kiss each other). See Fig-
ure 6. Let Yop denote the critical slice. Since we have
assumed that a critical point is isolated, the loops inter-
sect only at one point, the critical point. Clearly, both
loops have at least one different convex object closest to
them. Let C; and C}j be the closest objects at the critical
point. Then at the critical point, the distance of point
CP from C; and C} is the same and is equal to §2. Then,
the equidistant sheet S.S;; passes through C'P and lo-
cally splits the COS. Note that the double equidistant
sheet intersects the COS only on the “one loop side” of
C'P. Also, this intersection is one-dimensional and it lo-
cally separates the COS. Let ¥ _ be the slice plane with
a slice value smaller than that of ¥cp. Similarly, let ¥4
have a larger slice value than that of ¥ p. Without loss
of generality, let the number of COS,g44. loops change
from 2 to 1 as the planner moves from ¥_ to ¥,. Then,
by continuity of the slice function, there exists a slice ¥,
whose slice value is € greater than that of ¥ p such that
¥ .NCOS is separated by SS;; NCOS. Thus, SS;; sepa-
rates the COSeqqe in slice X, into two parts (both parts
exclude COScq4e N SS;;) such that points belonging to
one part are closer to a set of objects C 4, while points
in the other part are closer to a different set of objects
Cge, i.e., Cac # Cpe. Hence at SS;; NCOSN X, = {K;},
there is a discrete change in the gradient vector.
Vd(x) > .
is
Ng
the tangent to the COS¢q4.. Since there is a discrete
change in Vd(z) at K;, the tangent at K; has a discrete
change in direction. Thus, COSecqge is non-smooth or,

From Equation 2, we know that Null

702

sunny
702

Slice2

\ \r(ﬁ) { Slice 1

D cosa,

Fig. 7. Detecting the semiconcave critical point :
cusps.

tracing the

in other words, K; is a cusp. This argument holds for
sufficiently small values of €, hence the proof. |
Thus, there exists a one-dimensional path, EquiCOS,
which is the intersection of the offset surface and the
equidistant sheet, such that the cusp points and the
critical point (when it exists) lie on it. To guarantee
that the semiconcave critical point is detected, the plan-
ner traces all the EquiCOS edges between the current
and the previous slice planes. See Figure 7. Initially,
it traces all EquiCOS edges emanating from the cusps
in previous slice, and some of these cusps lead to cusps
in the current slice plane. It then traces the EquiCOS
edges from the remaining cusps in the current slice.

The EquiCOS is the pre-image of the function
EC(z):

_ di(z) —

20 = 46 ate))
where objects C; and Cj; are the first closest objects at
the cusp. While tracing the EquiCOS, if at any point,
the slice normal ng lies in the convex hull of vectors
Vd;(z) and Vd;(x) [8], then the planner has found the
semiconcave critical point. If there is a 1-to-m change
at this critical point, then m can be easily found by
noting the starting point of each EquiCOS edge in the
previous slice. If these EquiCOS starting points lie on
n distinct COSeage loops, then m =n + 1.

However, tracing all the EquiCOS edges lying be-
tween the previous and current slice planes may be com-
putationally very expensive. A very useful heuristic uses
the change in the number of cusps between the current
and previous slices. Note that it is necessary that the
number of cusps changes in the neighborhood of a criti-
cal point, but it is not sufficient. So, when such a change
occurs, the positions of the cusps in the current slice are
compared with the position of the cusps in the previ-
ous slice. Only the “new” cusps are traced. A 2-to-1
connectivity change increases the number of cusps in
the current slice plane, while 1-to-2 connectivity change
decreases the number of cusps. Thus, the planner can
detect all three types of critical points and, therefore,
can complete the offset surface coverage by construct-
ing the adjacency graph.

5 Simulation

We simulate the critical point detection procedure us-
ing known polyhedral environments. For polyhedral en-
vironments, we use critical points on the target surface
— the boundary of the polyhedral solid — to determine
the critical points on the offset surface. We classify the
critical points on the polyhedral object similarly to the
offset critical points: convex, concave or semiconcave.
For non-degenerate cases, the critical points of the tar-
get surface appear only at the vertices of the polyhe-
dron. It is easy to determine which vertices are critical
points by looking at the positive span of the surface nor-
mals that form the vertex. If the slice gradient lies in
this positive span, then the vertex is a critical point [8].
Each critical point is then “lifted” to the offset surface,
but this “lifted” critical point is not necessarily a critical
point on the offset surface. We term these points as can-
didate critical points. If the distance between the can-
didate critical point and the closest point on the target
surface is the offset distance, then the candidate criti-
cal point is indeed a critical point for the offset surface.
It is worth noting that for convex, semi-concave, and
concave critical points, there will be one, two, and three
closest points respectively. Finally, not all critical points
on the offset surface are derived from the target surface;
these critical points, however, are detected while execut-
ing the switching slice plane algorithm. By looking at
the target surface and by invoking the switching plane
algorithm, we are guaranteed to encounter all critical
points of the offset surface and hence ensure complete
coverage.

The simulations are carried out by generating the
offset surfaces for different offset distances and differ-
ent slicing directions. We verify that the simulation
yields the locations of critical points exactly as predict-
ed. Figure 8 shows the coverage of the offset surface
with semiconcave and convex critical points. The simu-
lation shows the 2-to-1 connectivity change at the semi-
concave corner. Figure 9 shows an object with a hole
in it. For this object, again there are semiconcave and
convex critical points on its offset surface. Thus, these
simulations successfully demonstrate the critical point
detection procedure for offset surfaces.

6 Conclusion

In this work, we introduce complete methods to cover
an unknown closed, orientable and connected offset sur-
face in ®2. The offset surface is the set of points that
are a fixed distance away from a target surface (such
as an automobile body). The offset surface is covered
by incrementally tracing several paths on the offset sur-
face using local numerical techniques. These paths are
formed by repeatedly intersecting a slice with the cov-

703

sunny
703

Fig. 8.
ject.

Complete coverage of offset surface for a car-shaped ob-

Fig. 9. Offset surface for an object with a hole.

erage offset surface and tracing the intersection. Note
that these paths do not consider the kinematics of the
robot, which will be considered in future work. We also
assume that the offset surface is a separator (separating
inside from outside); future work will consider scenar-
ios where “obstacles” on the target surface will be not
covered, yielding an offset surface that has “holes” in
it. This is useful for applications such as paint stripping
hulls of ships where the “obstacles” are port-holes.

The offset surface is decomposed into cells where the
boundaries of the cells are defined by critical points of a
slice function evaluated on the offset surface. Each cell
thus generated is easy to cover using our offset path trac-
ing procedure. The primary contribution of this paper
is to provide methods which can detect critical points
for offset surfaces of unknown environments. The result
that semiconcave critical points “emanate” cusps can be
particularly useful for surface coverage algorithms. Cur-
rently, we do not have a surface crawling robot to test
our algorithms, so we have demonstrated the approach
in this paper in known polyhedral environments.

The coverage algorithms presented in this work can
be useful for a variety of applications such as robotic
automobile-body spray painting, paint stripping, robot-
ic inspection or CNC tool path generation. However,
for applications like car painting, it is not only neces-
sary that the target surface be covered completely, but
it is also crucial that the target surface receive a uni-
form amount of paint. Our current coverage procedure

guarantees complete coverage of an offset surface, but
it does not take into account the effect of different de-
position patterns. The cellular decomposition obtained
by our method needs to be matched with decomposi-
tions based on geometrical aspects such as curvature.
Our future work will include coverage procedures which
consider these issues.

References

[1] E. Acar and H. Choset. Critical point sensing in unknown
environments. In Proc. of IEEE ICRA’00, San Francisco,
CA, 2000.

[2] Z. Butler, A. A. Rizzi, and R. L. Hollis. Contact-sensor based
coverage of rectilinear environments. In Proc. of IEEE Int’l
Symposium on Intelligent Control, Sept., 1998.

[3] J.F. Canny. The Complezity of Robot Motion Planning. MIT
Press, Cambridge, MA, 1988.

[4] J.F. Canny. Constructing roadmaps of semi-algebraic sets i:
Completeness. Artificial Intelligence, 37:203—-222, 1988.

[5] J.F. Canny and M. Lin. An opportunistic global path plan-
ner. Algorithmica, 10:102—-120, 1993.

[6] Z. L. Cao, Y. Huang, and E. Hall. Region filling operations
with random obstacle avoidance for mobile robots. Journal
of Robotic systems, pages 87-102, February 1988.

[7] H. Choset, E. Acar, A.A. Rizzi, and J. Luntz. Exact cellular
decompositions in terms of critical points of morse functions.
In Proc. of IEEE ICRA’00, San Francisco, CA, 2000.

[8] H. Choset and P. Pignon. Coverage path planning: The
boustrophedon decomposition. In Proceedings of the Interna-
tional Conference on Field and Service Robotics, Canberra,
Australia, December 1997.

[9] R.T.Farouki. Exact offset procedures for simple solids. Com-
puter Aided Geometric Design, 2(4):257-80, 1985.

[10] Y. Gabriely and E. Rimon. Spanning-tree based coverage of
continous areas by a mobile robot. Annals of Mathematics
and Artificial Intelligence, Accepted, 2000.

[11] A.Z. Gurbuz and Zeid I. Offsetting operations via closed
ball approximation. Computer Aided Design, 27(11):805-10,
1995.

[12] S. Hert, S. Tiwari, and V. Lumelsky. A Terrain-Covering
Algorithm for an AUV. Autonomous Robots, 3:91-119, 1996.

[13] R. Kimmel and Bruckstein A.M. Shape offsets via level sets.
Computer Aided Design, 25(3):154-62, 1993.

[14] J.C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, MA, 1991.

[15] T.Maekawa. An overview of offset curves and surfaces. Com-
puter Aided Design, 31(3):165-73, 1999.

[16] B. Pham. Offset approximation of uniform B-splines. Com-
puter Aided Design, 20(8):471-474, 1988.

[17] B. Pham. Offset curves and surfaces: a brief survey. Com-
puter Aided Design, 24(4):223-9, 1992.

[18] F.P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985. p198-257.

[19] J. VanderHeide and N. S. V. Rao. Terrain coverage of an
unknown room by an autonomous mobile robot. Technical
Report ORNL/TM-13117, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 1995.

[20] I.A. Wagner and Bruckstein A.M. Cooperative cleaners: A
study in ant-robotics. Technical Report CIS-9512, Center for
Intelligent Systems, Technion, Haifa, 1995.

[21] A. Zelinsky, R.A. Jarvis, J.C. Byrne, and S. Yuta. Planning
Paths of Complete Coverage of an Unstructured Environ-
ment by a Mobile Robot. In Proceedings of International
Conference on Advanced Robotics, pages pp533-538, Tokyo,
Japan, November 1993.

704

sunny
704

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

