
Robust Mission Execution for
Autonomous Urban Driving

Christopher R. BAKER a,1, David I. FERGUSON b, and John M. DOLAN a

a Carnegie Mellon University, Pittsburgh, PA, USA
b Intel Research Pittsburgh, Pittsburgh, PA, USA

Abstract. We describe a multi-modal software system for executing navigation
missions in an urban environment, focusing on the robust treatment of anomalous
situations such as blocked roads, stalled vehicles and tight maneuvering. Various
recovery mechanisms are described relative to the nominal mode of operation, and
results are discussed from the system’s deployment in the DARPA Urban Chal-
lenge.

Keywords. Error Recovery, Autonomous Vehicles, Urban Challenge, Tartan
Racing, Boss

Introduction

The ability to cope reliably with unforeseen circumstances is a critical feature of any
fully autonomous robotic system. This is especially true in the case of complex, highly
structured environments such as urban road networks in the context of the Urban Chal-
lenge [6], an autonomous vehicle competition sponsored by the US Defense Advanced
Research Projects Agency (DARPA). Contestant robots were required to autonomously
execute a series of navigation missions in a simplified urban environment consisting of
roads, intersections, and parking lots, while obeying road rules and interacting safely
and correctly with other vehicles. Unlike the previous challenge [1,2], which focused
on rough-terrain navigation, this competition combined the possibilities of local obstruc-
tions with the uncertainties of interacting with other traffic, forming a complex prob-
lem space that defied rigorous treatment a priori. As with other mission-oriented, fully
autonomous robotic systems [3], robust mission execution required a system for select-
ing and executing various recovery maneuvers aimed at overcoming or circumventing
anomalous situations. This paper describes the mission recovery mechanisms employed
by Boss, Tartan Racing’s winning entry to the Urban Challenge, shown in Figure 1(a).
Section 1 provides a brief overview of the total software system to provide a context for
discussion of the robot’s motion planning capabilities and error recovery mechanisms in
Sections 2 and 3. The performance of the system during the Urban Challenge Final Event
is reviewed in Section 4, and we conclude with key lessons learned in Section 5.

1Corresponding Author: Christopher R. Baker, Robotics Institute, Carnegie Mellon University, 5000 Forbes
Ave., Pittsburgh, PA 15213, USA; E-mail cbaker@andrew.cmu.edu



(a) Boss: Tartan Racing’s Entry (b) Software Subsystem Architecture

Figure 1. Total system structure for the Urban Challenge

1. System Architecture

The software system that controls Boss is divided into four primary subsystems, shown
in Figure 1(b). They communicate via message-passing according to the anonymous
publish-subscribe [4] pattern and work in concert to ensure safe, reliable and timely
mission execution. Their responsibilties and interactions, discussed briefly below, are
presented more thoroughly in [9].

The Perception subsystem processes sensor data from the vehicle and produces a
collection of semantically-rich data elements such as the current pose of the robot, the
geometry of the road network, and the location and nature of various obstacles such as
road blockages and other vehicles.

The Mission Planning subsystem computes the fastest route to reach the next check-
point from all possible locations within the road network, encoded as an estimated time-
to-goal from each waypoint in the network. This estimate incorporates knowledge of
road blockages, speed limits, intersection complexity, and the nominal time required to
make special maneuvers such as lane changes or U-turns.

The Behavioral Executive combines the global route information provided by the
Mission Planner with local traffic and obstacle information provided by Perception to
select a sequence of incremental goals for the Motion Planning subsystem to execute.
Typical goals include driving to the end of the current lane or maneuvering to a particular
parking spot, and their issuance is predicated on conditions such as precedence at an
intersection or the detection of certain anomalous situations. These anomalous situations
trigger the selection of recovery goals as described in Section 3.

The Motion Planning subsystem is responsible for the safe, timely execution of the
incremental goals issued by the Behavioral Executive. The isolation of goal selection
from goal execution promotes the development of powerful, highly general planning ca-
pabilities, which fall into two broad contexts: on-road driving and unstructured driving.
A separate path-planning algorithm is used for each context, and the nature and capa-
bilities of each planner have a strong influence on the overall capabilities of the system,
including the nature of common failure scenarios and the options for attempting recovery
maneuvers. The following section describes these planning elements in greater detail to
provide a foundation for discussion of the rest of the recovery system.



Figure 2. Left: Motion planning on roads. The centerline of the desired lane is shown (red) with the generated
trajectories (various colors) extending along the lane. The obstacle map is overlaid (red cells are lethal; blue
are curb estimates), and two detected vehicles are shown as rectangles. Right: Motion planning in unstructured
areas. The vehicle is executing a path (red) to a parking spot between several other vehicles.

2. Motion Planning

Given a goal from the Behavioral Executive, the Motion Planner first creates a path
towards the goal, then tracks it by generating a set of candidate trajectories following the
path to varying degrees and selecting the best collision-free trajectory from this set. The
algorithms used to generate this path are different for on-road and unstructured driving
situations, as illustrated in Figure 2.

During on-road navigation, the goal from the Behavioral Executive describes a de-
sired position along a lane. In this case, the Motion Planner constructs a curve along the
centerline of the desired lane, representing the nominal path of the vehicle. A set of local
goals are selected at a fixed longitudinal distance down this centerline path, varying in
lateral offset to provide several options for the planner. Then, a model-based trajectory
generation algorithm [7] is used to compute dynamically feasible trajectories to these
local goals. The resulting trajectories are evaluated against their proximity to static and
dynamic obstacles, their distance from the centerline path, their smoothness, and vari-
ous other metrics, and the best trajectory is selected for execution by the vehicle. This
technique is very fast and produces smooth, high-speed trajectories for the vehicle, but it
can fail to produce feasible trajectories when confronted with aberrant scenarios, such as
blocked lanes or extremely tight turns. In these cases, the recovery algorithms discussed
in Section 3 call on the unstructured planner described below to extricate the system.

When driving in unstructured areas, the goal from the Behavioral Executive simply
describes a desired pose for the vehicle, typically a parking spot or lot exit. To achieve
this pose, a lattice planner searches over vehicle position (x, y), orientation (θ ), and
velocity (v) to generate a sequence of feasible maneuvers that are collision-free with
respect to static and dynamic obstacles [8]. This planner is much more powerful and
flexible than the on-road planner, but it also requires more computational resources and
is limited to speeds below 15 mph. The recovery system leverages this flexibility to
navigate congested intersections, perform difficult U-turns, and circumvent or overcome
obstacles that block the progress of the vehicle. In these situations, the lattice planner is
typically biased to avoid unsafe areas, such as oncoming traffic lanes, but this bias can
be removed as the situation requires.



3. Behavioral Executive

During normal operation, the Behavioral Executive selects and issues goals to the Motion
Planner according to three situational contexts:

• Lane Driving, in which the system traverses a road of one or more lanes while
requiring maintenance of safe inter-vehicle separation and adherence to rules gov-
erning passing maneuvers and stop-and-go traffic;

• Intersection Handling, requiring the determination of precedence among stopped
vehicles and safe merging into or across moving traffic at an intersection; and

• Zone Maneuvering, in which the system maneuvers through an unstructured ob-
stacle or parking zone.

The active context is determined by the location of the system within the road net-
work and by the best incremental action to take from that location to reach the next
checkpoint. That action is issued as a goal to the Motion Planning subsystem, and its
execution is monitored until it is either completed successfully or it is determined to have
failed. Goal failures can either be directly reported by the Motion Planner or inferred by
monitoring forward progress over some span of time. In both cases, the failure is treated
equally and triggers the selection and issuance of a recovery goal.

A good recovery goal selection algorithm should be able to generate a non-repeating
sequence of novel recovery goals in the face of repeated failures ad infinitum. It should
be sensitive to the original driving context, as each calls out a specific underlying planner
which has certain properties that must be considered when selecting recovery goals. In
addition, each context is governed by a specific set of road rules that must be adhered
to if possible, but disregarded if necessary in a recovery situation. The recovery system
should also be minimally complex so as to be implementable in the available time.

Keeping these requirements in mind, recovery goals are selected as a direct function
of the original failed goal, which encodes the driving context, and a notion of the current
recovery level. When in normal operation, the recovery level is set to zero, and it is in-
cremented whenever any goal, normal or recovery, fails. The intent is that smaller values
for the recovery level yield low-risk, easy-to-execute maneuvers that are tuned to handle
common and benign situations. If these initial recovery goals fail, increasing values for
the recovery level yield higher-risk maneuvers, enabling more drastic measures in more
convoluted situations. It is important to note that the recovery goal selection process does
not explicitly incorporate any surrounding obstacle data, making it intrinsically robust to
transient environmental effects or perception artifacts that may cause spurious failures in
other subsystems.

All recovery goals are specified as a span of poses to achieve, leveraging the power
of the underlying lattice planner to perform whatever actions are necessary to get the sys-
tem back on-course. The successful completion of any recovery goal resets the system
back to normal operation, requiring that all recovery goals terminate at valid locations in
the world. This eliminates the possibility of complex multi-maneuver recovery schemes,
but it was deemed that situations requiring a more complex recovery system were simply
out of scope. Should the same, or a very similar, normal goal fail immediately after a
seemingly successful recovery sequence, the previous recovery level is reinstated instead
of simply incrementing from zero to one. This bypasses the recovery levels that presum-
ably failed to get the system out of trouble and immediately selects goals at a higher
level.



1 2 34

5

Figure 3. Example Lane Recovery Sequence

Each nominal driving context is backed by a unique recovery goal selection algo-
rithm designed to complement the functionality of the underlying planner and observe as
many situational rules as possible while still moving forward with the mission. The first
and most commonly encountered recovery scenario is an error reported by the Motion
Planner while driving down a lane. Typical causes for such a failure include:

• Small or transient obstacles, such as traffic cones, that do not block, but constrain
the road such that the assumptions made by the lane planner are violated. In this
case, a recovery goal specified a short distance ahead in the center of the lane will
allow the lattice planner to quickly generate a path around the partial obstruction;

• Larger obstacles such as road barrels, or other cars that are detected too late for
the distance-keeping behavior to come to a graceful stop, with the resultant pose
requiring a back-up or other non-trivial maneuver to extricate the system;

• Low-hanging canopy that requires cautious and careful planning, perhaps includ-
ing departure from the lane of travel, to guarantee the safety of the system;

• Lanes, especially virtual paths through an intersection, whose local shapes are
kinematically infeasible, requiring a series of three-point turn maneuvers to re-
align the system with the road.

Keeping these and other similar causes in mind, the algorithm for lane recovery goal
selection, illustrated in Figure 3, selects an initial set of goals forward along the lane
from the original failure position with the distance forward described by:

Drecovery = Doffset + RecoveryLevel ∗ Dincremental (1)

The values for Doffset and Dincremental were tuned through testing to 20m and 10m
respectively, providing good results in most situations. These forward goals (Goals 1,2,3
in Figure 3) are constrained to remain in the original lane of travel and are selected out
to some maximum distance (roughly 50m, corresponding to the system’s high-fidelity
sensor-range), after which a goal is selected a short distance behind the vehicle (Goal 4)
with the intent of backing up and getting a different perspective on the situation.

After backing up, the sequence of forward goals is allowed to repeat once more with
a 5m offset, after which continued failure triggers higher-risk maneuvers depending on
the nature of the road. If there is a lane available in the opposing direction, the road is
eventually marked as fully blocked, and the system issues a U-Turn goal (Goal 5) and
attempts to follow an alternate path to goal. Otherwise, the system is trapped on a one-
way road, so the forward goal selection process from Equation 1 is allowed to continue
forward beyond the 50m limit. These farther-reaching goals remove the constraint of
staying in the original lane, giving the lattice planner complete freedom to achieve the
goals by any means possible. In either case, these maneuvers disregard all normal rules



Original

Goal1 2

34

56

Figure 4. Example Intersection Recovery Sequence

governing interaction with other traffic on the road and thus are only issued at high
recovery levels, typically greater than 20.

The second and perhaps most intricate scenario is recovering from failed intersection
goals. The desired path through an intersection is a smooth interpolation between the
two connected roads, as shown in Figure 4. It can often be narrow with high curvature
and can intersect various obstacles such as guard rails and road signs, so the first and
simplest recovery goal (Goal 1) is to try to achieve a pose slightly beyond the original
goal using the lattice planner, giving the whole intersection as its workspace. This quickly
recovers the system from small or spurious failures in intersections and compensates for
intersections with turns that are beyond the one-pass kinematic capabilities of the robot.

If that first recovery goal fails, alternate routes out of the intersection (Goals 2,3,4)
are attempted until all alternate routes to goal are exhausted. Thereafter, the system re-
moves the constraint of staying in the intersection and selects pose goals incrementally
deeper (Goals 5,6) into the lane or parking lot associated with the original failed goal.
For lanes, this is almost identical to the selection of lane recovery goals, except that there
is no initial offset. For parking lots, the goals are specified as incrementally deeper and
larger spaces within the lot, as the specific terminal pose of the vehicle does not matter
so long as it finds its way into the parking lot.

The case where specifics do matter, however, is the third recovery scenario, failures
in parking lots. Because the lattice planner is always invoked when planning in parking
lots, failure implies one of the following:

1. The path to the goal has been transiently blocked by another vehicle. While the
rules guaranteed that parking spots will always be free, they made no such guar-
antees about traffic accumulations at lot exits, or about the number of vehicles
that may be operating in the parking lot at any one time. In these cases, the sys-
tem should try to move close to the original goal and allow the blockage some
time to pass.

2. Due to some sensor artifact, the system believes there is no viable path to goal. In
this case, selecting nearby goals that offer different perspectives on the original
goal area may relieve the situation.

3. The path to the goal is genuinely fully blocked and the parking lot is effectively
subdivided. This was considered to be beyond the scope and spirit of the compe-
tition and is very challenging to handle in the general case.



1

2

5

4

3

6

7

8

9

Original Goal

Figure 5. Example Parking Lot Recovery Sequence

The goal selection algorithm for failed parking lot goals selects a sequence of goals
in a regular, triangular pattern, centered on the original goal as shown in Figure 5. If
failures continue through the entire pattern, the next set of actions is determined by the
exact nature of the original goal. For parking spot goals, the pattern is repeated with a
small incremental angular offset ad infinitum, guided by the assumption that the parking
spot is empty. Over time, all possible approaches to the parking spot may be attempted,
but the system will not proceed on the mission until the parking spot has been attained2.
Lot exits, on the other hand, will be marked as blocked and the system will attempt to
re-route through alternate exits in a way similar to the alternate path selection in the
intersection recovery algorithm above.

If all other exits are exhausted, the system issues goals extending outward along
the road network from the exit according to a semi-random breadth-first search. In this
fourth and last-ditch recovery strategy, increasing values of the recovery level call out
farther paths, and the lattice planner is not constrained to stay on roads or in parking lots.
These high-risk, loosely specified goals are meant to be invoked when each of the other
recovery goal selection schemes has been exhausted. In addition to parking lot exits,
these are selected for lane recovery goals that run off the end of the lane and similarly
for intersection recovery goals when all other attempts to get out of an intersection have
failed.

Through these four recovery algorithms, all possible paths forward can be explored
from any single location, leaving only the possibility that the system is stuck due to a sen-
sor artifact or software bug that requires a small local adjustment to escape, as opposed
to the selection of a farther, riskier goal. To compensate for this possibility, a completely
separate recovery mechanism monitors the vehicle’s absolute motion, and if the vehicle
does not move at least one meter every five minutes, it overrides the current goal with a
randomized local maneuver. When that maneuver is completed, the entire goal selection
system is re-initialized from the new location, clearing error recovery and execution state
for another attempt. The goals selected by this recovery mechanism are meant to be kine-
matically feasible and can be either in front of or behind the vehicle’s current pose. They
are biased somewhat forward of the robot’s position so there is statistically net-forward
motion if the robot is forced to choose these goals repeatedly over time. This functional-
ity suppresses the functionality of the other goal selection systems, and is analogous to
the “Wander” behavior from [5].

2The parking spot could easily be bypassed after some number of attempts, but the penalty for skipping a
checkpoint was unspecified and may have been interpreted as a failed mission.



Mission Recovery Recovery Time Single-Level Multi-Level
Run Time Events Total Average Recoveries Recoveries

Mission 1 89m, 41s 10 8m, 18s 49.8s 8 2(9, 22)

Mission 2 56m, 21s 3 39s 13s 3 0

Mission 3 85m, 53s 4 2m, 37s 39.2s 3 1(23)

Cumulative 231m, 55s 17 11m, 34s 40.8s 14 3

Table 1. Recovery System Performance in the Urban Challenge Final Event

4. Event Analysis

The Urban Challenge Final Event (UCFE) consisted of a series of three missions, cov-
ering roughly 60 miles of urban roads and meant to be completed in less than 6 hours.
Analysis of over 140 gigabytes of logs from the event shows that the recovery system
played an important role in the vehicle’s success, being called on to recover the system
from over a dozen anomalous situations as summarized in Table 1.

Of the 17 recovery events during the UCFE, only three exceeded the first recovery
level. These more complicated situations consumed 5m, 41s, representing nearly half of
the total time spent in recovery, and can be traced to small collections of software bugs
or sensor malfunctions. The level-9 recovery in the first mission was incited by an all-
pause3 event that lasted roughly ten minutes. When the all-pause was lifted, recovery
goals were issued along the road, but the planner was unable to find a collision-free action
away from a roadside barrier due to GPS drift while the vehicle was paused. Eventually,
the positioning system corrected itself and the robot was able to proceed. The primary
contribution of the recovery system in this instance was the continual issuance of novel
goals in the face of repeated failures, though no one particular goal resolved the situation.

The two higher-order recovery events, level 22 in mission one and level 23 in mission
three, were due to a combination of perception and planning bugs that caused the system
to believe that the path forward along the current lane was completely and persistently
blocked by other traffic where there was, in fact, no traffic at all. After repeated attempts
to move forward, the recovery system declared the lane fully blocked, commanded a U-
Turn, and followed an alternate route to goal. This demonstrated the recovery system’s
ability to compensate for subtle but potentially lethal bugs in other components.

Discarding these more complex events, the remaining 14 were resolved in an average
of 25 seconds and had a span of causes ranging from dust and transient sensor artifacts to
vehicles proceeding out of turn at intersections. In all cases, the system recovered quickly
and gracefully, demonstrating an appropriate emphasis on the selection of nearby, low-
risk recovery maneuvers early in the recovery sequence.

5. Conclusions

The results from deployment in the UCFE show that the recovery system was well suited
to the challenges posed by this competition. The decision against complex environmental
reasoning in favor of comparatively simple, incremental goal selection algorithms led to

3Urban Challenge officials had the ability to temporarily disable all vehicles on the course to, for example,
remove a disabled vehicle from the course or to resolve some dangerous situation.



a highly robust mechanism for overcoming a wide range of anomalous circumstances.
The ability to quickly recover from simple failures also provided a safety net for all
other elements of the system, as transient false-positives from obstacle detection systems
or tracking failures from the Motion Planning subsystem were easily tolerated, often
transparently so to an external observer. More complex scenarios often took longer than
desirable to resolve, but the relative infrequency of these scenarios, when coupled with
the fact that the system eventually recovered itself in every occurrence, demonstrate again
the system’s effectiveness in the scope of the Urban Challenge. That the Final Event
did not exercise the deepest reaches of the various recovery mechanisms is a testament
to the system’s preparedness and to the importance of rigorous, clever and sometimes
adversarial testing by a highly dedicated test team.

While many of the details of the recovery heuristics were tailored to the nature of
the competition, several core concepts are generally applicable to autonomous mobile
robots. Splitting the navigation problem into separate entities for goal selection and ex-
ecution allows for the development of powerful, highly general motion planning capa-
bilities which can then be leveraged by any goal selection mechanism to explore many
possible resolutions to any one failure. Given a powerful underlying planner, the blind
selection of incrementally higher-risk recovery goals is an effective means of quickly
and safely resolving benign situations while retaining the ability to incrementally discard
environmental rules regarding structure and interaction in favor of continuing onward.
Most importantly, an effective recovery mechanism is a critical element of any fully au-
tonomous robotic system, providing alternate paths forward from both internal faults and
external obstacles and guaranteeing the timely completion of the system’s mission.

Acknowledgments

This work would not have been possible without the dedicated efforts of the Tartan Rac-
ing team and the generous support of our sponsors including General Motors, Caterpillar,
and Continental. This work was further supported by DARPA under contract HR0011-
06-C-0142.

References

[1] Special Issue on the DARPA Grand Challenge, Part 1. Journal of Field Robotics, 23(8), 2006.
[2] Special Issue on the DARPA Grand Challenge, Part 2. Journal of Field Robotics, 23(9), 2006.
[3] Christopher Baker et al. A campaign in autonomous mine mapping. In Proceedings of the IEEE Confer-

ence on Robotics and Automation (ICRA), volume 2, pages 2004 – 2009, April 2004.
[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-Wesley, 2003.
[5] Rodney A Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and

Automation, 2(1):14–23, March 1986.
[6] Defense Advanced Research Projects Agency (DARPA). Urban challenge website, July 2007.

http://www.darpa.mil/grandchallenge.
[7] T. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled mobile robots. Interna-

tional Journal of Robotics Research, 26(2):141–166, 2007.
[8] M. Likhachev and D. Ferguson. Planning Dynamically Feasible Long Range Maneuvers for Autonomous

Vehicles. In Proceedings of Robotics: Science and Systems (RSS), 2008.
[9] Chris Urmson et al. Autonomous Driving in Urban Environments: Boss and the DARPA Urban Challenge.

Accepted to Journal of Field Robotics, 2008.


