Evaluating the Effect of Predicting Oral Reading Miscues

Satanjeev Banerjee, Joseph E. Beck, and Jack Mostow

Project LISTEN (http://www.cs.cmu.edu/"listen)
School of Computer Science, Carnegie Mellon University
{sat anj eev. banerj ee, j oseph. beck, nost ow}@s. cnu. edu

Abstract

This paper extends and evaluates previously published meth-
ods for predicting likely miscues in children’s oral reading in a
Reading Tutor that listens. The goal is to improve the speech
recognizer’s ability to detect miscues but limit the number of
“false alarms” (correctly read words misclassified as incorrect).
The “rote” method listens for specific miscues from a training
corpus. The “extrapolative” method generalizes to predict other
miscues on other words. We construct and evaluate a scheme
that combines our rote and extrapolative models. This com-
bined approach reduced false alarms by 0.52% absolute (12%
relative) while simultaneously improving miscue detection by
1.04% absolute (4.2% relative) over our existing miscue predic-
tion scheme.

1. Introduction

Project LISTEN’s Reading Tutor helps children in grades 1 — 4
(typically ages 6 — 10) learn to read by using automatic speech
recognition (ASR) to listen to them read aloud and giving spo-
ken and graphical feedback. It displays text one sentence at a
time, called the target sentence, and uses speech recognition to
detect reading mistakes, called miscues. Many miscues are real
word miscues where the child replaces the correct (target) word
with a different word [1]. It is important for the Reading Tutor
to detect miscues but also to avoid flagging correctly read words
as miscues and providing negative feedback on them.

Unlike systems [3] where children read one word at a time,
Project LISTEN’s Reading Tutor allows children to read the
whole sentence. But children skip words, jumping forward or
back in the sentence. This phenomenon rules out using forced
alignment of the utterance against the target text as a way to de-
tect miscues. Miscues might be detected by using an all-phone
decoder to find sequences of phonemes that do not match any
of the target words (as in [4]), or by using confidence metrics
(as in [5]). However none of these methods utilize knowledge
about the kinds of real word miscues that students make. Pre-
vious work [1] utilized such knowledge to predict words that a
student is likely to substitute for the target word. The goal of
this paper is to evaluate the effect of such predicted miscues on
recognition accuracy.

2. Experimental Data

Previous work [1, 2] in predicting likely miscues used a
database of oral reading miscues developed by Richard Olson,
Helen Datta, and Jacqueline Hulslander at the University of
Colorado. This database contains over 100,000 transcribed oral
reading miscues uttered by 868 children mostly aged 8 to 12
years.

To evaluate our miscue prediction algorithms, we use

children’s recorded utterances collected during the 2001-2002
school year by 99 Reading Tutors deployed at 8 schools in the
area of Pittsburgh, PA, and one school in North Carolina. Each
utterance is a single attempt of a student to read all or part of
a sentence. Our speech data analyst, John Helman, has tran-
scribed 11,797 of these utterances. Words are transcribed or-
thographically and non-words phonetically. For example, an
imperfect reading of the target sentence “dreams about com-
petitors” would be transcribed as “deems about /K AA M P 1Y
T AX R Z/” because “deems” is a real word, whereas “/K AA
M P IY T AXR Z/” does not represent a real word.

The 11,797 transcribed utterances were spoken by a total of
125 children. For this paper we use data from 50 children as a
training set and from 25 other children as an independent test
set, leaving untouched data from 50 students for further experi-
mentation later on.

3. Detecting Miscues

The Reading Tutor’s goal is to detect miscues, not necessar-
ily identify them. For example, in Table 1, the target sentence
was “little deems my royal dame” which the child read as little
dreams my real dame. The ASR output hypothesisislittl e
deens ny deens day. Wealign both the transcript and the
recognizer’s output hypothesis to the target text, and then find
the miscues that the recognizer correctly detects. These three to-
ken sequences are aligned as shown. ASR correctly detects that
the child has misread the word “royal” (although it incorrectly
identifies “deems” as the word the child uttered instead). Sim-
ply aligning the hypothesis to the transcript and reporting word
error rate would not give credit for detecting such a miscue.
ASR fails to detect that the child misread the word “deems”.

Table 1: Alignment of transcript, target text, and hypothesis.

Transcript little dreams my real dame
Target little deems my royal dame
Hypothesis | little deens nmy | deens day
miscue miscue | false

undetected detected | alarm

4. Evaluation Metrics

To evaluate the performance of a miscue detector, we define
miscue detection rate as the number of miscues detected divided
by the total number of miscues the child made. We define false
alarm rate as the number of text tokens erroneously flagged as
read incorrectly, divided by the total number of text tokens the
child read correctly. In the example in Table 1, the number of
miscues is 2 (dreams for “deems” and real for “royal”), one

of which is detected. Thus the miscue detection rate is 50%.
The number of false alarms is 1 (day for “dame”) out of three
correctly read words, giving a false alarm rate of 33%. We seek
to detect more miscues with fewer false alarms. As in [7], we
reduce our false alarm rate by half by ignoring miscues when
the target word is any of 36 function words (e.g. a, the, etc.) on
which miscues seldom affect comprehension. In our data, 5981
content and 3166 function tokens were read correctly, and 335
content and 147 function tokens had miscues.

5. Experimental Methodology

We compare various methods for miscue prediction in the fol-
lowing way. For each target sentence, we construct its language
model as described in [7]. Next we predict miscues for each
content word in the sentence and add them to the lexicon. Next
we run the speech recognizer, and align its hypothesis against
the target text to detect miscues. In this paper we evaluate the
miscue detection and false alarm rate of two approaches re-
ported in [1], as well as of a combined algorithm that we pro-
pose here.

For a baseline, we report the miscue detection rate and false
alarm rate when no predicted miscues are used. That is, for each
utterance the recognizer listens only for those words that are al-
ready in the sentence, and detects a miscue only if it sounds
more like some other word in the sentence than like the target
word. Row 1 of Table 2 shows the miscue detection rate and the
false alarm rate for this method. Of the 562 text words the chil-
dren misread, 21.58% were detected, all of which were content
words (since miscues on function words are ignored), while of
the 9477 sentence words read correctly, 2.42% were incorrectly
flagged by the recognizer as having been read incorrectly.

6. Rote Prediction of Miscues

The rote method described in [1] predicts that miscues that at
least two children have made in the past will be repeated by
other students in the future. This method utilizes the Colorado
miscue database to find such miscues. Our procedure for select-
ing rote miscues differs from [1] in the following ways. First,
in [1], miscues were restricted to having the same first letter as
the sentence word. For example, for the target word “accord”
we would predict miscues like “accords” but not “cords”. We
now allow distractors to start with a different first letter than
the sentence word. Second, we consider as possible distractors
only the 25,000 most frequent words in our corpus of children’s
stories. Although it is possible for a student to say an obscure
word such as “enervate,” it is unlikely. Therefore, we exclude
such words from the rote model.

For each target word, we sort the miscues recorded in the
Colorado database according to the number of students who
made that particular error. Our intuition is that the more stu-
dents who made the same mistake, the more likely it is that other
students will too. We select miscues for target words from this
database in two ways — for each target word, we either pick the
top m ranked miscues, or we pick all miscues that at least n
students uttered.

Table 2 shows the miscue detection rates and false alarm
rates for the various threshold values we tested. This table is
sorted on false alarm rate. Observe that “at least 10 students”
- the situation in which miscues are selected for a word only if
at least 10 students uttered the same miscue - performs worse
(lower miscue detection, higher false alarm rate) than the sim-
pler choice of taking only the most frequent miscue for each tar-

get word. Similarly, observe that “at least 5 students” performs
worse than simply picking the top 3 most frequent miscues.
This trend suggests that in general picking a constant number
of miscues performs better than relying on the number of stu-
dents who uttered the miscue. We conjecture that this is because
the latter method predicts a large number of distractors for the
common words, leading to a higher false alarm rate.

Table 2: Rote model performance

Model type | Miscue detection | False alarm rate
rate (in %) (in %)
Baseline 21.58 2.42
Top 1l 22.82 2.88
At least 10
students 22.61 3.04
Top 2 24.90 3.27
Top 3 25.73 3.54
At least 5
students 24.9 3.62
Top 4 26.35 3.86
Top 5 26.14 4.02
All literal
miscues 27.39 5.12

7. Extrapolative Prediction

[1] noted that the rote method does not perform very well on
rarer words, and therefore described an extrapolative method
that uses a classifier learning approach to generalize from the
miscues in the Colorado miscue database. In this paper we reuse
a few features and introduce a few new features. In particular
We reuse:

e Frequencies of the target word and the miscue word in
English.

e Frequency of the miscue word in the corpus of miscues.

e Edit distance between the spelling of the target word and
the miscue word.

e Phonemic edit distance between the target word and the
miscue word.

e Phonemic edit distance between the target word and the
miscue word, normalized by the number of phonemes in
the target word.

e A feature that has a value of 1 if the target word and the
miscue word both start with the same phoneme, and 0
otherwise.

We removed the following features from our model because
they had little predictive power:

e Grade level the student is at.

e A feature that has a value of 1 if the target word and the
miscue word both end with the same phoneme, and 0
otherwise.

We added the following new features:

e Edit distance between the spelling of the target word and
the miscue word normalized by the length of the spelling
of the target word.

A feature that has a value of 1 if the target word and
the miscue word both start with the same letter, and 0
otherwise.

e A feature that has a value of 1 if the miscue word is a
substring of the target word, and 0 otherwise.

e The position of the miscue word as a substring of the
target word (e.g. position of “where” in “nowhere” is 3),
or 0 if the miscue word is not a substring of the target
word.

e The position of the target word as a substring of the mis-
cue word, or O if the target word is not a substring of
the miscue word (e.g. “nowhere” is not a substring of
“where”, and so gets a value of 0.).

e A feature that has a value of 1 if the target word is a
substring of the miscue word, and 0 otherwise.

As in [1], positive examples of miscues are taken from the
Colorado miscue database, while negative examples are words
that are among the 25,000 most frequent words in English, are
within a spelling edit distance of 3 and normalized phonemic
distance of 3.75 from the target word (where distance between
two maximally different phonemes is defined as 5), and do not
belong to the positive examples.

In [1], logistic regression was used as a classification tech-
nique. Using the features described above, and testing on a sep-
arate set of students than those used to build the models, logistic
regression had an 86.5% classification accuracy for distinguish-
ing real miscues that students actually said from the negative
examples created as described above. LogitBoost had a classi-
fication accuracy of 90.2%. Therefore, we used LogitBoost for
this round of experiments. We used the default settings for Log-
itBoost in Weka [6]: 10 iterations, with 100% of the data kept
across boosting rounds.

The classifier takes as input a target word and a miscue
word, and outputs an estimate of the probability that the miscue
is uttered instead of the target word. For a single target word,
we sorted all its candidate miscues according to this probabil-
ity estimate, and then selected miscues from this sorted list in
one of two ways, either picking the top n miscues, or picking
all miscues above a fixed probability threshold. Table 3 shows
the performance of miscues picked using each of these various
selection criteria, where the rows are sorted according to the
false alarm rate. Observe once again that the simple algorithm
of picking the single most probable miscue strictly outperforms
picking miscues that have a probability value of more than 0.95
on both miscue detection rate as well as miscue detection rate.
Similarly “top 2” strictly outperforms “p > 0.9”.

To evaluate whether using the information about real word
miscues through the various features described above helps the
classifier pick useful miscues, we ran an experiment where for
each target word we picked its “worst 2” miscues, that is, the
two miscues that the classifier gave the lowest probabilities of
being likely miscues of the target word. Observe from rows 4
and 5 of Table 3 that the “top 2” had a false alarm rate that
was 0.19% worse than the “worst 2” but 1.66% better in mis-
cue detection rate absolute. We also wanted to see how much
of the false alarm and miscue detection rate improvements over
the no-distractor baseline can be attributed to just the effect of
having any distractors in the language model. Accordingly, we
predicted two random words as miscues for each target word.
Row 7 of Table 3 shows that this “random 2” experiment per-
formed pretty poorly and that the “top 2” algorithm was strictly
better. This result illustrates that the knowledge that goes into

Table 3: Extrapolative model performance

Model type | Miscue detection | False alarm rate

rate (in %) (in %)

P>0.99 23.03 2.77
Top 1 25.52 3.59
P>0.95 24.48 3.67
Worst 2 27.80 4.01
Top 2 29.46 4.20
P>0.9 28.63 4.53
Random 2 25.93 4.83
Top 3 32.78 5.16
Top 4 34.44 6.01
Top 5 35.48 6.40
P>0.7 40.25 9.15

building the distractor sets is indeed yielding better false alarm
and miscue detection rates.

8. Combining Rote and Extrapolative
Prediction

An obvious next step is to combine these two methods to take
advantage of their different strengths. In our evaluation of the
two methods above we observed that simply ranking predicted
miscues and predicting a fixed number of the most likely mis-
cues for the target word performs better than thresholding. One
simple way of combining these two methods is as follows. As-
sume we wish to find at least n miscues for a given target word.
We use the top n most likely miscues for this word as predicted
by the rote method. If the rote method predicts fewer than n
miscues, we make up the difference by adding miscues pre-
dicted by the extrapolative method. Observe that this method
gives preference to miscues predicted by the rote method in that
miscues predicted by the extrapolative method are resorted to
only when the rote method does not predict enough miscues.
The intuition is that we use the more accurate predictions of the
rote method for high frequency words, and the predictions of
the extrapolative method for low frequency words for which the
rote method may not predict any miscue due to a lack of suf-
ficient training data. Table 4 shows miscue detection rates and
false alarm rates obtained by the combined miscue prediction
algorithm.

Table 4: Combined model performance

Model type | Miscue detection | False alarm rate

rate (in %) (in %)

Cheating 42.53 2.90
Top 1 25.73 3.77
Truncation 24.69 4.29
Top 2 31.54 4.62
Top 3 33.61 5.54
Top 4 34.85 6.25
Top 5 36.72 6.96

To establish an upper bound on miscue detection perfor-
mance we performed the following “cheating” experiment. For
each target word in the test data we predicted only those words
as miscues that the child actually uttered according to the tran-
scripts of the test data, thereby creating a set of “perfect” dis-

tractors. The first row of table 4 lists the miscue detection rate
and false alarm rate of this experiment. 30.5% of all miscues oc-
cur on function words that we ignore as mentioned before. Thus
the cheating experiment successfully detects 61.2% of miscues
on content words, and fails to detect the remaining miscues de-
spite a “perfect” set of distractors. A visual inspection of 10
random instances of undetected miscues showed that very often
the target word was phonetically very close to the transcribed
miscue, e.g. “fog” and “frog”, “can” and “can’t”, “set” and
“sent”, and ASR chose to recognize the correct word because
its language model was biased towards accepting correct read-
ing over incorrect reading. The low false alarm rate of this ex-
periment is due to the fact that there was only a very small set
of distractors that ASR was listening for, leading to less chance
of hallucinating miscues.

Currently the Reading Tutor has a simple approach to mod-
eling students’ mispronunciations. In this approach, described
in [7], truncations are defined for each target word as prefixes
of the phoneme sequence that constitutes the pronunciation of
the target word. All such truncations are listened for by the rec-
ognizer, except for the truncation that represents only the first
phoneme of the target word (because a single phoneme “word”
is easy to hallucinate) and the truncation that is one short of the
full word itself (because it is too easily confusable with the tar-
get word itself). For example, the target word “abolish”, whose
pronunciation is /AX B AA L I1X SH/, has the following trunca-
tion distractors: /AX B/, /AX B AA/, and /AX B AAL/. The in-
tuition behind constructing such distractors was that they model
false starts in children’s reading. Moreover this method is sim-
ple and easy to implement.

To compare our new methods with the old truncation
method, we computed false alarm rates and miscue detection
rates using the truncation distractors, shown in the second row
of Table 4. Observe that the “top 1” algorithm does better than
the truncation algorithm in both false alarm and miscue detec-
tion. Thus the new method represents a slight improvement over
the current approach in the Reading Tutor.

For all results in tables 2, 3, and 4, the miscue detection
rate has a standard error rate of approximately + 2% (absolute)
while the false alarm rate has a standard error rate of approxi-
mately + 0.2%. False alarm rates are better estimated than mis-
cue detection rates because there are 5981 correctly read con-
tent word tokens, but only 335 miscues. However, this formula
makes the simplifying assumption that miscue probabilities are
independent, which ignores the fact that miscues are not dis-
tributed randomly, but concentrated among some readers and
utterances.

9. Conclusions

Detecting miscues for a given target word is important for a
reading tutor that listens. However, depending upon the choice
of algorithm, listening for the “wrong” set of words may hurt
more than help our cause. This paper evaluated the rote and
extrapolative methods of miscue prediction, based on their abil-
ity to help the Reading Tutor detect student reading mistakes
without too many false alarms. We constructed and evaluated a
scheme that combines those two methods. This combined ap-
proach results in a reduction of false alarms by 0.52% absolute
(12% relative) while simultaneously improving miscue detec-
tion by 1.04% absolute (4.2% relative) over the Reading Tutor’s
current truncation-based method of modeling miscues.

10. Acknowledgements

We thank Richard Olson, Helen Datta, and Jacqueline Hulslan-
der for the University of Colorado miscues database, the Weka
team at the University of Waikato, New Zealand, for the ma-
chine learning software used in the experiments in this paper,
and Ted Pedersen at the University of Minnesota Duluth for the
classification program WekaClassify.

This work was supported by National Science Foundation
under Grant No. REC-9979894. Any opinions, findings, and
conclusions, or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the National Science foundation or the official policies, either
expressed or implied, of the sponsors or of the United States
Government.

11. References

[1] Mostow, J., Beck, J., Winter, S. V., Wang, S., and To-
bin, B., “Predicting oral reading miscues”. In Proceed-
ings of the Seventh International Conference on Spoken
Language Processing, ICSLP’02, Denver, USA. p. 1221—
1224.

[2] Fogarty, J., Dabbish, L., Steck, D., and Mostow, J., “Min-
ing a database of reading mistakes: For what should an au-
tomated Reading Tutor listen?”. In Artificial Intelligence
in Education: AI-ED in the Wired and Wireless Future,
Johnson, W. L., Editor. 2001, Amsterdam: 10S Press: San
Antonio, Texas. p. 422-433.

[3] Russell, M., Brown, C., Skilling, A., Series, R., Wallace
J., Bonham B., and Barker P. “Applications of automatic
speech recognition to speech and language development
in young children”. In Proceedings of the Fourth Interna-
tional Conference on Spoken Language Processing, (IC-
SLP96), Philadelphia, USA, 3-6 October 1996.

[4] Witt, S. M., “Use of Speech Recognition in Computer
Assisted Language Learning”, PhD Thesis, University of
Cambridge, 1999.

[5] Hazen, T. J., Seneff, S., and Polifroni, J. “Recognition
confidence scoring and its use in speech understanding
systems”. In Computer Speech and Language, 2002, 16,
49-67.

[6] Witten, I. H., and Frank, E., Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations. 2000: Morgan Kaufmann.

[71 Mostow, J., Roth, S. F., Hauptmann, A. G., and Kane, M.,
“A prototype reading coach that listens [AAAI-94 Out-
standing Paper Award]”. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence. 1994. Seattle,
WA: American Association for Artificial Intelligence. P.
785-792.

