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Abstract 
Lowering the perplexity of a language model does not always translate into higher speech recognition 
accuracy. Our goal is to improve language models by learning from speech recognition errors. In this paper 
we present an algorithm that first learns to predict which n–grams are likely to increase recognition errors, 
and then uses that prediction to improve language models so that the errors are reduced. We show that our 
algorithm reduces a measure of tracking error by more than 24% on unseen test data from a Reading Tutor 
that listens to children read aloud. 
 
 
1. Introduction 
 
The accuracy of automatic speech recognition (ASR) depends, among other things, on a language model 
that specifies the probability distribution of words the speaker may utter next, given his (immediate or long-
term) history of uttered words. One of the most widely used types of language models in the realm of 
speech recognition is the n-gram language model, which predicts the probability that an n-gram (a 
sequence of n words) will be uttered. For example it may specify that the sequence “I am here” is more 
probable than the sequence “Eye am hear”.  

Language models are usually trained (that is, the n-gram probabilities are estimated) by observing 
sequences of words in corpora of text that contain, typically, millions of word tokens [4] and by reducing 
perplexity on training data. It has been observed however that reduced perplexity does not necessarily lead 
to better speech recognition results [9]. Therefore algorithms that improve language models based on their 
effect on speech recognition are particularly appealing. In [8], for example, the training corpus of language 
models was modified by decreasing or increasing the counts of those word sequences that increased or 
decreased speech recognition error respectively. In [9], the log probabilities of bigrams that appeared in the 
transcript but not in the hypothesis were increased (to make those bigrams likelier to be recognized in the 
next iteration), while those associated with bigrams that appeared in the hypothesis but not in the transcript 
were reduced. 

In this paper we present a novel algorithm that first uses machine learning to predict whether a given 
bigram will increase or decrease speech recognition errors, and then uses this prediction to modify the 
bigram’s log probability so as to make it harder or easier to recognize. We perform this research within the 
context of Project LISTEN’s Reading Tutor, which helps children learn to read by using ASR to detect 
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reading errors as they read aloud. Our work is different from [9] because we use features of the bigram, the 
context in which it occurs, as well as features of the child (e.g. her reading level) to generalize to bigrams, 
contexts and children outside the training set.  

Machine learning has been used previously in ASR to train confidence measures to predict the accuracy 
of hypothesis words [7], and, in the context of the Reading Tutor, to decide whether a sentence word has 
been read correctly [5]. The work reported in this paper is distinct from these approaches in that we apply 
machine learning further upstream by modifying the language models. 
 
 
2. Language Model Generation in the Reading Tutor 
 
Project LISTEN’s Reading Tutor presents a story one sentence at a time to the child, and then uses ASR to 
listen to the child attempt to read that sentence. Since the sentence is known beforehand, the Reading Tutor 
does not need to use a single, general–purpose, large–vocabulary language model. Instead, the Tutor 
incorporates a language model generating function [3] that inputs the sentence the child is about to read, 
and outputs a language model for that sentence. The first step of this function is to generate the active 
lexicon – the list of words that the ASR should listen for. This includes all the words in the sentence, plus 
distractors such as phoneme sequences that model false starts (e.g.: “/S P AY/” for the word “spider” 
whose pronunciation is “/S P AY DX AXR/”). Given this active lexicon, the language model generating 
function then assigns heuristically created probabilities to bigrams of words from this lexicon as described 
in [3]. ([2, 1] later expanded the generation of distractors to include real words that a child is likely to utter 
instead of the target word, like “spire” for “spider”.) Our goal is to learn how to improve the language 
models output by this language model generating function. To do so we first define the language model 
evaluation function that we shall optimize. 
 
 
3. Tracking Error Rate 
 
In performing offline evaluation of the speech recognizer in the Reading Tutor, we have access to three 
sequences of tokens: the target text – the text the child was supposed to read, the hypothesis – the words the 
recognizer recognized, and the transcript – the actual words the child said as transcribed by a human 
transcriber (which of course the Reading Tutor doesn’t have access to). As a student reads the target text, 
the Reading Tutor tracks which word in the sentence the child is attempting to read, so as to detect and give 
help on mis-readings. To measure how accurately the speech recognizer is tracking the student’s progress 
through the sentence, we first align the transcript against the target text to produce a transcript trace of the 
reader’s path through the sentence as described in [5]. We represent the trace as a sequence of positions in 
the text, signed + or - according to whether the child read that word correctly according to the transcript. 
Similarly, we align the hypothesis to the target text to create the hypothesis trace. Table 1 shows an 
example of such alignments. The symbol +2 in the transcript trace for instance means that the second word 
was read correctly according to the transcript, while the symbol -2 in the hypothesis trace means that the 
second word was read incorrectly according to the hypothesis, etc. 

 
 

Transcript  spider fright frightened her away 
Transcript trace  +2 -3 +3 +4 +5 
Alignment classification ins match subst match match del 
Hypothesis trace +1 +2 -2 +3 +4  
Hypothesis a spider spire frightened her  

 

Table 1. Alignment of hypothesis and transcript traces (Target text: "a spider frightened her away") 

 



We then align the two traces and classify each column of the alignment as a match, a substitution, a 
deletion or an insertion.  If the hypothesis and transcript trace tokens aligned against each other are the 
same, they are classified as a match, and if they are different, they are classified as a substitution. A 
transcript token is marked as a deletion if it is not aligned against any hypothesis token, while a hypothesis 
token is marked as an insertion if it is not aligned against any transcript token. We then define deletion rate 
as the number of deletions divided by the total number of transcript trace tokens, substitution rate as the 
number of substitutions divided by the total number of transcript trace tokens, and tracking error rate as 
the sum of the deletion and substitution rates. In the example in table 1 there are 5 transcript tokens, of 
which 3 are classified as matches, 1 as a substitution, and 1 as a deletion. Thus the tracking error rate is 2/5 
= 40%. We do not include insertions in the formulation of tracking error rate since insertions often include 
short words that can help the recognizer remain on track by “absorbing” (untranscribed) background noise. 

 
 

4. Language Model Modification Algorithm 
 

Our goal is to improve on the heuristically assigned bigram probabilities described in section 2. To address 
this aim, we first learn to predict which bigrams in the language models will lead to an increase in tracking 
error rate, and which ones to its reduction. We then use these predictions to modify the bigram probabilities 
in such a way that if the utterances were re–recognized with the modified language models, there should be 
a decrease in the tracking error rate. 
 
4.1 Learning to Predict the Goodness of Bigrams 
 
We use machine learning to train a classifier that inputs features of a particular bigram in a particular target 
text read by a particular student, and outputs the probability that the bigram will lead to an increase or a 
decrease in tracking error rate. To generate training data to train this classifier, we use 3,421 utterances 
spoken by 50 students aged 6 to 10 in the 2001-2002 school year. This data was captured by the Reading 
Tutor in the course of daily use by the children at several elementary schools. For each of these utterances 
we have the target text that the child was attempting to read and the transcript of what the child really said 
according to a human transcriber. We generate language models for each utterance as described in section 
2. We then use an automatic speech recognizer to create hypotheses, and finally we create hypothesis and 
transcript traces as described in section 3.  

Every pair of successive hypothesis words corresponds to a particular bigram in the language model. We 
label that bigram as one that reduces tracking error rate if the second word has been classified as a match, 
or as one that increases error rate if the second word has been classified as a substitution. If the second 
word follows a deletion with respect to the transcript trace, then the bigram is labeled as one that increases 
tracking error rate, regardless of the classification of the second token. For example, bigram “a spider” in 
table 1 is labeled as one that reduces tracking error, while “spider spire” is labeled as one that increases it. 
Intuitively this labeling scheme assigns credit to a bigram if after recognizing it the recognizer remains on 
track, and assigns blame if not. Note that since insertions are not included in the tracking error rate metric, 
a bigram whose second word has been labeled as an insertion is neither credited nor blamed.  

To generalize the learning to target texts and students outside the training data, we create for each bigram 
in the training data a feature vector consisting of the following features: 
 

• Positional features:  
o the absolute positions of the two words in the target text 
o the positions of the two words normalized by target text length 
o the difference in the positions 

• Word features for each of the two words:  
o whether the word is one of 36 function words (e.g.: a, the, etc) listed in [3] 
o whether the word is a distractor 
o the frequency of the word in a corpus of text 
o the length of the word in letters and phonemes as a rough measure of the word’s 

difficulty 
• Student feature:  



o the student’s age at the time of the utterance 
o his estimated grade equivalent reading level 

• Target text feature:  
o the length of the text in words 

 
In our experiments we used the LogitBoost algorithm which gave us a classification accuracy of 95% on 
training data which consisted of 19,432 training examples, of which 18,593 were examples of bigrams that 
decrease tracking error, and 839 were examples of those that increased error. The preponderance of 
bigrams that decrease tracking error (that is, bigrams whose second tokens are marked as matches) is not 
surprising because a large amount of the data consists of correctly read text which is often easy to 
recognize correctly. We used the default settings for LogitBoost in Weka [6]: 10 iterations, with 100% of 
the data kept across boosting rounds. 

 
 
4.2 Updating the Language Model and Re-recognizing Utterances 
 
The second step in our language model modification algorithm uses the classifier trained above to modify 
the bigram weights in the language models. This is done by first using the original language model 
generating function to create language models for each utterance in the training set. Next, for each bigram 
in each language model we create the feature vector as described above. We then use the classifier trained 
above to estimate the probability that this bigram will reduce the tracking error rate. Given this probability, 
say p, we modify the bigram weight from wold to wnew according to the following formula: 

 
wold  =  wnew  +  α  ( 2 p – 1 )                                                             (1) 

 
where α is the step size. Intuitively, the closer to 1.0 the probability p that a bigram will reduce tracking 
error rate, the more its weight should increase. Conversely, the closer the probability is to 0.0, the more its 
weight should decrease. The step size α controls the maximum change a weight can go through in one 
iteration. We generate new language models with the updated bigram probabilities, and then re-recognize 
the utterances. If the tracking error reduces due to this modification, we iterate over these two steps again. 
That is, we induce another classifier from the new set of hypotheses, update the language models yet again, 
and compute the new tracking error. This loop halts when the tracking error rate at the current iteration is 
higher than that at the previous iteration. Thus at the end of this process we obtain a sequence of classifiers. 
To test the classifiers, we first create language models on unseen test utterances using the heuristic 
algorithm, and then modify the language models by applying the sequence of classifiers one after another. 
As future work we will attempt to combine the classifiers into one to reduce computational expense. 

 
 

5. Results and Discussion 
 
Table 2 shows the results of testing the sequence of classifiers on a separate test set of 1,883 utterances 
spoken by a set of 25 children (which is disjoint from the set of 50 children who form the training set). 
Iteration 0 refers to the deletion, substitution and tracking error rates of the original heuristic language 
model generation algorithm. After using the 1st classifier (learnt after one iteration of the algorithm on the 
training data) to modify these language models, the tracking error rate goes down by 0.42 percentage points 
from 8.97% to 8.55%. Similarly, after applying the 2nd classifier (learnt after two iterations of the algorithm 
on training data) to further modify the language model weights, the tracking error rate is reduced to 8.07%. 
After 6 iterations, the tracking error rate reduces to 6.82% on the test data, which represents a decrease of 
more than 24% relative. At the 7th iteration, the error rate starts increasing for both the training data (not 
shown in table) and the test data, and the algorithm halts.  
 

 
 



 
Iteration # Deletion Rate Substitution Rate Tracking Error 

Rate 
0 2.58 6.39 8.97 
1 2.41 (0.17) 6.14 (0.25) 8.55 (0.42) 
2 2.21 (0.20) 5.86 (0.28) 8.07 (0.48) 
3 1.93 (0.28) 5.68 (0.18) 7.61 (0.46) 
4 1.86 (0.07) 5.37 (0.31) 7.23 (0.38) 
5 1.81 (0.05) 5.13 (0.24) 6.94 (0.29) 
6 1.71 (0.10) 5.11 (0.02) 6.82 (0.12) 
7 1.76 (-0.05) 5.31 (-0.20) 7.08 (-0.26) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Error rates of testing the classifier sequence on testing data. Numbers in parantheses show 
difference from previous iteration. 

 
These results were generated by setting the value of step-size α in equation 1 to 0.1. In other experiments 

we have tried values 0.01, 0.02, …, 0.1, 0.2, …, 1.0, and found the value of 0.1 to be a good step size. One 
possible variation of this simple mechanism is to start with a large value of α and then gradually decrease 
its value as more iterations are done. 

To investigate the benefit of the learning, we used random probabilities that a bigram is a good one or 
not, and found that after 7 iterations, the deletion rate rose from 2.58% to 2.96% and the substitution rate 
from 6.39% to 8.78%, implying that the learning algorithm does buy us a lot. To clarify what kinds of 
bigrams the algorithm was learning to credit or blame the most we looked at the 30 bigrams that had 
undergone the most change in weights between iteration 0 and iteration 7 in the testing data. This 
investigation revealed that the algorithm was learning to credit bigrams that represent correct reading 
(reading two words in a row correctly) while penalizing those that represent jumping backward in the 
sentence.  

 
 

6. Conclusion 
 

In this paper we have presented an algorithm to learn to predict which language model bigrams are likely to 
hurt and which to help the recognizer in tracking the student’s progress through the target text. We used 
those predictions to iteratively improve bigram weights in the language models so that the modified 
language models can better track oral reading. We have shown that by using this algorithm we can reduce 
tracking error from 8.97% to 6.82% in 6 iterations, resulting in a relative decrease of 24%, on unseen data 
read by students outside the training set. 
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