
A Memory Enhanced Evolutionary Algorithm

for Dynamic Scheduling Problems

Gregory J. Barlow and Stephen F. Smith

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
gjb@cmu.edu, sfs@cs.cmu.edu

Abstract. This paper describes a memory enhanced evolutionary al-
gorithm (EA) approach to the dynamic job shop scheduling problem.
Memory enhanced EAs have been widely investigated for other dynamic
optimization problems with changing fitness landscapes, but only when
associated with a fixed search space. In dynamic scheduling, the search
space shifts as jobs are completed and new jobs arrive, so memory entries
that describe specific points in the search space will become infeasible
over time. The relative importances of jobs in the schedule also change
over time, so previously good points become increasingly irrelevant. We
describe a classifier-based memory for abstracting and storing informa-
tion about schedules that can be used to build similar schedules at future
times. We compared the memory enhanced EA with a standard EA and
several common EA diversity techniques both with and without memory.
The memory enhanced EA improved performance over the standard EA,
while diversity techniques decreased performance.

1 Introduction

Dynamic optimization with evolutionary algorithms (EAs) lends itself to prob-
lems existing within a narrow range of problem dynamics, requiring a balance
between solution fitness and search speed. If a problem changes too quickly,
search may be too slow to keep up with the changing problem, and reactive
techniques will outperform optimization approaches. If a problem changes very
slowly, a balance between optimization and diversity is no longer necessary: one
may search from scratch, treating each change as a completely new problem.
Many problems do lie in this region where optimization must respond quickly to
changes while still finding solutions of high fitness.

Prior work has shown many techniques for improving the performance of
evolutionary algorithms on dynamic problems of this sort [1, 2]. Approaches to
these types of problems must consider two competing objectives: improving the
fitness of solutions, and decreasing the search time necessary to reach good solu-
tions. There are three broad categories of approaches for improving evolutionary
algorithms on dynamic problems: keeping the population diverse to avoid pop-
ulation convergence [3], using a memory or multiple populations to maintain
good solutions for future use [1, 4], and anticipating changes to produce solu-
tions that will be robust to change [5, 6]. The first two categories address the

2 G.J. Barlow and S.F. Smith

issue of population convergence, which can hinder the ability of the EA to find
better solutions after a change. Approaches in the third category produce solu-
tions that not only have high fitness in the current environment, but are robust
to environmental changes.

A variety of dynamic benchmark problems have been considered, includ-
ing the moving peaks problem [4, 7], the dynamic knapsack problem, dynamic
bit-matching, dynamic scheduling, and others [1, 2]. The commonality between
most benchmark problems is that while the fitness landscape changes, the search
space does not. For example, in the moving peaks problem, any point in the
landscape—represented by a vector of real numbers—is always a feasible solu-
tion. One exception to this among common benchmark problems is dynamic
scheduling, where the pending jobs change over time as jobs are completed and
new jobs arrive. Given a feasible schedule at a particular time, the same schedule
will not be feasible at some future time when the pending jobs are completely
different. Previous work on evolutionary algorithms for dynamic scheduling prob-
lems have focused primarily on extending schedulers designed for static problems
to dynamic problems [8, 9], problems with machine breakdowns and redundant
resources [10], improved genetic operators [11], heuristic reduction of the search
space [12], and anticipation to create robust schedules [5, 6]. While Louis and
McDonnell [13] have shown that case-based memory is useful given similar static
scheduling problems, there has been no work on memory for dynamic scheduling.
Since the addition of memory has been successful in improving the performance
of EAs on other dynamic problems, there is a strong case for using memory for
dynamic scheduling problems as well.

In most dynamic optimization problems, the use of an explicit memory is rel-
atively straightforward. Stored points in the landscape remain viable as solutions
even as the landscape is changing, so a memory may store individuals directly
from the population [4]. In dynamic scheduling problems, the jobs available for
scheduling change over time, as do the attributes of any given job relative to the
other pending jobs. If an individual in the population represents a prioritized
list of pending jobs to be fed to a schedule builder, any memory that stores an
individual directly will quickly become irrelevant. Some or all jobs in the mem-
ory may be complete, the jobs that remain may be more or less important than
in the past, and the ordering of jobs that have arrived since the memory was
created will not be addressed by the memory at all. For these types of problems
that have both a dynamic fitness landscape and time-dependent constraints that
shift the feasible region of the search space, a memory should provide some in-
direct representation of jobs in terms of their properties to allow mapping to
similar solutions in future scheduling states.

In this paper, we present one such memory for dynamic scheduling, which we
call classifier-based memory. Instead of storing a list of specific jobs, a memory
entry stores a list of classifications which can be mapped to the pending jobs
at any time. In the remainder of this paper, we will describe classifier-based
memory for dynamic scheduling problems and compare it to both a standard
EA and to other approaches from the literature.

A Memory Enhanced EA for Dynamic Scheduling Problems 3

2 Dynamic Job Shop Scheduling

The dynamic job shop scheduling problem used for our experiments is an exten-
sion of the standard job shop problem. In this problem, n jobs must be scheduled
on m machines of mt machine types with m > mt. Processing a job on a par-
ticular machine is referred to as an operation. There are a limited number of
distinct operations ot which we will refer to as operation types. Operation types
are defined by processing times pj and setup times sij . If operation j follows
operation i on a given machine, a setup time sij is incurred. Setup times are se-
quence dependent—so sij is not necessarily equal to sik or skj (i 6= j 6= k)—and
are not symmetric—so sij is not necessarily equal to sji. Each job is composed
of k ordered operations; a job’s total processing time is simply the sum of all
setup times and processing times of a job’s operations. Jobs have prescribed due-
dates dj , weights wj , and release times rj . The release of jobs is a non-stationary
Poisson process, so the job inter-arrival times are exponentially distributed with
mean λ. The mean inter-arrival time λ is determined by dividing the mean job
processing time P̄ by the number of machines m and a desired utilization rate
U , i.e. λ = P̄ / (mU). The mean job processing time is P̄ = (ς + p̄) k̄ where ς is
an expected setup time, p̄ is the mean operation processing time, and k̄ is the
mean number of operations per job. There are ρ jobs with release times of 0,
and new jobs arrive non-deterministically over time. The scheduler is completely
unaware of a job prior to the job’s release time. Job routing is random and op-
erations are uniformly distributed over machine types; if an operation requires
a specific machine type, the operation can be processed on any machine of that
type in the shop. The completion time of the last operation in the job is the
job completion time cj . We consider a single objective, weighted tardiness. The
tardiness is the positive difference between the completion time and the due-
date of a job, Tj = max (cj − dj , 0). The weighted tardiness is WTj = wjTj . As
an additional dynamic event, we model machine failure and repair. A machine
fails at a specific time—the breakdown time—and remains unavailable for some
length of time—the repair time. The frequency of machine failures is determined
by the percentage downtime of a machine—the breakdown rate γ. Repair times
are determined using the mean repair time ε. Breakdown times and repair times
are not known a priori by the scheduler.

3 Evolutionary Algorithms for Dynamic Scheduling

At a given point in time, the scheduler is aware of the set of jobs that have been
released but not yet completed. We will call the uncompleted operations of these
jobs the set of pending operations P = {oj,k |rj ≤ t,¬complete(oj,k)} where oj,k

is operation k of job j. Operations have precedence constraints, and operation
oj,k cannot start until operation oj,k−1 is complete (operation oj,−1 is complete
∀j, since operation oj,0 has no predecessors). When the immediate predecessor
of an operation is complete, we say that the operation is schedulable. We define
the set of schedulable operations as S = {oj,k |oj,k ∈ P, complete(oj,k−1)}.

4 G.J. Barlow and S.F. Smith

Like most EA approaches to scheduling problems, we encode solutions as
prioritized lists of operations. In static problems, these are permutations of all
jobs; since this is a dynamic problem where jobs arrive over time, a solution
is a prioritized list of only the pending operations at a particular time. Since
the pending operations change over time, each individual in the population is
updated at every time step of the simulator. When operations are completed,
they are removed from every individual in the population, and when new jobs
arrive, the operations in the job are randomly inserted into each individual in
the population.

We use the well known Giffler and Thompson algorithm [14] to build active
schedules from a prioritized list. First, from the set of pending operations P we
create the set of schedulable operations S. From S, we find the operation o′ with
the earliest completion time tc. We select the first operation from the prioritized
list which is schedulable, can run on the same machine as o′, and can start before
tc. We then update S and continue until all jobs are scheduled.

1. Build the set of schedulable operations S
2. (a) Find o′ on machine M ′ with the earliest completion time tc

(b) Select the operation o∗i,k from S which occurs earliest in the prioritized
list, can run on M ′, and can start before tc

3. Add o∗i,k to the schedule and calculate its starting time
4. Remove o∗i,k from S and if o∗i,k+1

∈ E , add o∗i,k+1
it to S

5. While S is not empty, go to step 2

The EA is generational with a population of 100 individuals. We use the PPX
crossover operator [15] with probability 0.6, a swap mutation operator with
probability 0.2, elitism of size 1, and linear rank-based selection. Rescheduling
is event driven; whenever a new job arrives, a machine fails, or a machine is
repaired, the EA runs until the best individual in the population remains the
same for 10 generations.

4 Classifier-based Memory for Scheduling Problems

The use of a population-based search algorithm allows us to carry over good
solutions from the immediate past, but how can we use information from good
solutions developed in the more distant past? Some or all of the jobs that were
available in the past may be complete, there may be many new jobs, or a job
that was a low priority may now be urgent. Unlike many dynamic optimization
problems, this shifting search space means we cannot store individuals directly
for later recall. Instead, a memory should allow us to map the qualities of good
solutions in the past to solutions in the new environment. We present one such
memory for dynamic scheduling, which we call classifier-based memory. Instead
of storing prioritized lists of operations, we use an indirect representation, storing
a prioritized list of classifications of operations. To access a memory entry at a
future time, the pending jobs are classified and matched to the classifications in
the memory entry, producing a prioritized list of operations.

A Memory Enhanced EA for Dynamic Scheduling Problems 5

A memory entry is created directly from a prioritized list of pending op-
erations. First, operations are ranked according to several attributes and then
quantiles are determined for each ranking in order to classify each operation with
respect to each attribute. The number of attributes a and the number of subsets
q determine the total number of possible classifications qa. Rather than storing
the prioritized list of operations, we store a prioritized list of classifications as
a memory entry. To retrieve an individual from a memory entry, we map the
pending operations to a prioritized list of classifications. We rank each opera-
tion according to the same attributes, then determine quantiles and classify each
operation. Then, for each of these new classifications, we find the best match
among the classifications in the memory entry. We assign each pending opera-
tion a sort key based on the position of its classification’s best match within the
prioritized list in memory. The sort key for classification x in memory entry Y is
j such that minj=0,j<|Y |

∑a

i=0
|xi − Y (j)i| where Y (j) is classification j in list

Y . If there is more than one best match, we use the average of the positions as
the sort key. Then, we sort the pending operations by these sort keys to create
a prioritized list of operations which can be used as an individual for the EA.

The basic mechanisms for interacting with the memory are the same as those
for other explicit memories used for dynamic optimization with evolutionary
algorithms. At every generation, we create an individual from each memory
entry and insert the individuals into the population. Every ϕ generations and at
the end of every rescheduling cycle, a replacement strategy chooses whether to
insert the best individual in the population into memory. If the memory is full,
the classification list of this best individual replaces a current memory entry using
the mindist2 replacement strategy [1]. To maintain diversity in the memory, we
determine the two classification lists i and j that are closest together among
the classification of the best individual in the population and all of the memory
entries. We then choose the less fit list j as a candidate for replacement. The
distance between two classification lists S and T is the sum of the differences
between a classification’s position in one list and the position of its best match
in the other list. As before, if there is more than one best match, we use the
mean of the positions. Since this is not symmetric, it is done for both lists. If
S has length s and T has length t, then d =

∑s

i=0
|i − bestmatch (S(i), T)| +

∑t

i=0
|i − bestmatch (T (i), S)|. As long as the classification of the best individual

in the population is not the candidate for replacement, we replace classification
list j with the new classification list when fj

dij

dmax
≤ fbest where fx is the fitness

of the prioritized list produced by the classification list x, dij is the distance
between classification lists i and j, and dmax is the maximum possible distance.

Figure 1 shows a simplified example. Suppose we have a memory with q = 2
and a = 3 and the following attributes: job due-date (dd), operation processing
time (pt), and job weight (w). At time 400, we have a prioritized list of four
operations that we’d like to store in the memory. With q = 2 and four operations,
the lower two values for each attribute receive a classification of 0 and the higher
two values a classification of 1. So job A has a due-date classification of 1, a
process time classification of 0, and a weight classification of 1, for an overall

6 G.J. Barlow and S.F. Smith

At t = 400, store [C, B, A, D] At t = 10000, get [011, 000, 101, 110]

A = {dd : 800, pt : 100, w : 7} → 101 W = {dd : 10400, pt : 80, w : 1} → 110 → (3)
B = {dd : 450, pt : 110, w : 5} → 000 X = {dd : 10100, pt : 70, w : 5} → 011 → (0)
C = {dd : 500, pt : 130, w : 9} → 011 Y = {dd : 10500, pt : 50, w : 6} → 101 → (2)
D = {dd : 900, pt : 150, w : 3} → 110 Z = {dd : 10070, pt : 60, w : 2} → 000 → (1)

[011, 000, 101, 110] → memory [X, Z, Y, W] → population

Fig. 1. Classifier-based memory example

classification of class(A) → 101. At time 10000, we would like to use the memory
entry to create a prioritized list from the four pending operations. These new
operations are classified and given a score based on their best match within the
memory entry, creating a new individual to be inserted into the population.

This classifier-based memory also allows new jobs to be ordered alongside
older jobs that may have been available when the memory entry was created;
the classifier-based memory does not store specific information about operations,
only how a particular operation compares to other pending operations at a spe-
cific point in time. A memory entry may place a particular operation at different
positions in the prioritized list as its due-date becomes more imminent or as the
mix of pending operations changes the operation’s relative importance.

In this paper, we use four attributes (a = 4): job due-date, job weight, op-
eration processing time, and operation order within the job. We divide rankings
into quartiles (q = 4) for a total of 256 possible classifications. Many other at-
tributes exist that could easily be included, as this approach does not depend
on a particular set of attributes.

5 Experiments

To examine the effects of classifier-based memory on schedule fitness and search
time, we compare several common approaches. We use a standard evolutionary
algorithm (SEA) as a baseline, since we don’t know the optimal schedules for any
of the problem instances, and we also consider the standard EA with classifier-
based memory (SEAm). Prior results on benchmarks like the moving peaks prob-
lem suggest that memory-based approaches work better when combined with a
diversity strategy [1]. Hence, we also consider a standard EA with 25 random
immigrants [3] per generation (RI) and the same approach with classifier-based
memory (RIm). Finally, we consider the memory/search approach of [1], also
using the classifier-based memory. In memory/search, the population is divided
into a memory subpopulation and a search subpopulation. The memory popu-
lation can both store individuals to the memory and retrieve memory entries.
The search population can only store items to the memory, and the population
is re-initialized randomly every time the problem changes.

When creating problem instances, we select the utilization rate so that jobs
arrive at approximately replacement rate, so the number of jobs available at
time 0, ρ, is also the expected schedule size. We would like to be able to vary the

A Memory Enhanced EA for Dynamic Scheduling Problems 7

due-date tightness to change the difficulty of the problem, so we use a due-date
tightness parameter τ , the percentage of jobs we expect to meet their due-dates.
The expected waiting time before job completion is the expected number of jobs
in the schedule times the mean job completion time ρP̄ . Due-dates are generated
by dj = rj + P̄ +

[

0, 2ρP̄ τ
]

. The setup time severity is given by η = s̄/p̄ where s̄
is the mean setup time and p̄ is the mean operation processing time. The number
of breakdowns per machine is uniformly distributed with the mean number of
breakdowns per machine equal to nP̄

m

γ

ε
. Breakdown times for each machine are

uniformly distributed over
[

0, nP̄
m

]

. Repair times are uniformly distributed over
[

1

2
ε, 3

2
ε
]

.

For the experiments in this paper, we used the following settings to create
problem instances. The job shop contains 2 machines each of mt = 3 machine
types, for a total of m = 6 machines. There are 50 operation types, with mean
operation processing time p̄ = 100 and processing times uniformly distributed
over [50, 150]. The setup time severity is η = 0.5, so the mean setup time is
s̄ = 50. The setup times are uniformly distributed over [0, 2s̄]. The estimated
setup time is ς = 35. A problem instance consists of 500 jobs, each with k = 3 op-
erations. There are ρ = 25 jobs with release times of 0. Job weights are uniformly
distributed over [1, 10]. The utilization rate is U = 0.7, and the breakdown rate
is γ = 0.1, for a total utilization of 0.8. The mean repair time is ε = 10p̄ = 1000.
To control the problem difficulty, we varied the due-date tightness of the jobs.
As the due-date tightness changes, the types of situations the scheduler faces
also change. We tested with due-date tightnesses τ ∈ {0.5, 0.8, 1.1}, from very
tight due-dates where many jobs will be late, to loose due-dates where we expect
most jobs to be on time. For each value of τ , we created 10 problem instances,
for a total of 30 problem instances.

Rather than rebuild the memory from scratch on every problem instance
during our experiments, we pre-built several seed memories using SEAm over
a larger number of jobs, varying the due-date tightnesses of the jobs. Though
we test over a limited number of jobs, if actually implemented in a scheduling
system, the EA would work over a long time horizon, and so we are more inter-
ested in the steady state performance of the EA. By pre-building the memory,
we better simulate this state of the algorithm. The memory may still change
with the same replacement strategy, but after seeing a large number of jobs,
the stability of the memory is much higher than if the memory was built from
scratch for every problem instance. For each run of an EA with memory, one of
the pre-built memories was chosen at random as a seed memory. Updating of
the memory occurred as normal: memory replacement took place every ϕ = 10
generations and at the end of each rescheduling cycle.

We performed simulation runs for each EA variant on each of the 30 prob-
lem instances. Since this is a dynamic problem, we are interested not just in
fitness improvements but in improvements in the speed of search. As in [5, 6,
9], we attempt to measure only the steady state performance by discarding the
first 100 and last 100 jobs. We use the summed weighted tardiness of the middle
300 jobs as the fitness. We measure search in a similar way, by only including

8 G.J. Barlow and S.F. Smith

optional search generations that occur while the middle 300 jobs are among the
pending jobs in the system. At the end of every rescheduling event, the sched-
uler is required to search for 10 generations where the best individual does not
improve. Any generations per rescheduling event aside from these 10 constitute
the optional search. Also, the number of rescheduling events is made up both of
new job arrivals and machine breakdowns. Since the scheduler performance de-
termines how long this period lasts, the number of machine breakdowns during
this period is not fixed, so neither is the total number of rescheduling events. We
can compare search more fairly by comparing the number of optional generations
per event.

6 Results

Table 1 shows the percentage of improvement in average fitness over the standard
EA. SEAm performs slightly better than SEA with tight and medium due-dates.
When the due-dates are loose, SEAm performs much better than SEA. When
diversity measures are introduced, performance actually drops. With just ran-
dom immigrants, fitness worsens for all τ , but especially for medium due-dates.
With RIm, performance on loose due-dates actually improves over SEA, though
not over SEAm. With memory/search, performance gains are very slight for
tight and loose due-dates, but performance worsens for medium tightness. The
improvement (or lack thereof) for each of the approaches is worst with τ = 0.8,
except for SEAm where there the improvement for medium due-dates is slightly
better than that for tight due-dates.

Table 1. Fitness improvement over the standard EA

τ = 0.5 τ = 0.8 τ = 1.1

Standard EA with memory 0.9% 1.5% 15.7%

Random immigrants -5.7% -49.6% -30.3%

Random immigrants with memory -8.3% -51.2% 13.1%

Memory/Search 0.2% -18.0% 2.1%

Table 2 shows the percentage improvement in average optional generations
per event over the standard EA. SEAm shows good search reduction for tight
and loose due-dates, with very slight improvement for medium due-dates. RIm
actually improves search speed over SEAm for medium due-dates, but if we
consider how much worse fitness was in this case, this improvement is not really
meaningful. Of all the approaches, memory/search is the only one that fails
to improve search speed for any due-date tightness. Again, medium due-dates
show the worst performance in three of the four approaches, with RI as the only
exception.

For both fitness and search, the addition of classifier-based memory improved
performance over the standard EA. While large improvement in fitness was only

A Memory Enhanced EA for Dynamic Scheduling Problems 9

Table 2. Search improvement over the standard EA

τ = 0.5 τ = 0.8 τ = 1.1

Standard EA with memory 10.0% 2.9% 22.8%

Random immigrants 9.4% -5.3% -13.5%

Random immigrants with memory 9.5% 8.5% 23.4%

Memory/Search -18.5% -35.6% -16.8%

evident for loose due-dates, search improved for most problem instances. We
saw improvement using SEAm for all three values of τ , but we saw the least
improvement for τ = 0.8. Our belief is that of the three, medium due-dates
present search landscapes that are larger and more difficult to search than those
for the other due-date tightnesses.

While the combination of memory and diversity techniques has yielded good
results for most dynamic benchmark problems, for this dynamic scheduling prob-
lem none of the diversity approaches performed well. Perhaps due to the shape
of the search landscape, diversity techniques are simply disruptive, rather than
helpful in finding areas of high fitness. Memory/search, which devotes half of
its population to searching for new individual to include in the memory, is at a
disadvantage in the steady state environment we are interested in, though this
approach might still be useful for pre-building memories, where search time is
not an issue.

7 Conclusion

This paper describes a memory enhanced evolutionary algorithm approach to
the dynamic job shop scheduling problem. Memory enhanced evolutionary algo-
rithms have been widely investigated for other dynamic optimization problems,
but not for problems like dynamic scheduling where changes in the fitness land-
scape are accompanied by shifts in the search space. We describe a classifier-
based memory that enables the mapping of information about jobs at one point
in time to the creation of valid schedules at another point in time. We compared
several EA variants, with and without memory, on problem instances of var-
ied difficulty. Our results show that classifier-based memory can improve both
schedule fitness and the speed of search over a standard evolutionary algorithm.
Our results also show that diversity techniques, which have had success on other
dynamic benchmark problems, show decreased fitness and search speed for the
dynamic scheduling problem we investigated.

We did not consider anticipation of robust schedules, heuristic reduction of
the search space, or other approaches from previous work for improving perfor-
mance on dynamic scheduling problems, because these approaches are comple-
mentary to the use of memory. We have also made no attempt to finely tune the
EA used by each approach, following the example of [1]. Given the lack of prior
work on memory enhanced EAs for dynamic scheduling, these experiments were
an attempt to determine the potential of classifier-based memory.

10 G.J. Barlow and S.F. Smith

As this is a preliminary investigation of the use of memory for dynamic
scheduling, there are many avenues for future work in dynamic scheduling with
evolutionary algorithms. Comparing the performance of classifier-based mem-
ory using different attributes, a variety of quantile sizes, larger memories, or
other changes in the memory structure would shed more light on the potential
of classifier-based memories for dynamic scheduling. Also, other memory types
could be constructed to include ways to retain information about setup times,
periodic changes in the mix of operation types over time, or other types of in-
formation that this memory cannot easily capture. Applying other approaches
from the literature, like self-organizing scouts [1], to dynamic scheduling prob-
lems might also be a good area for future work.

References

1. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2002)
2. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a sur-

vey. IEEE Transactions on Evolutionary Computation 9(3) (2005) 303–317
3. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Parallel

Problem Solving from Nature. (1992) 137–144
4. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization

problems. In: Congress on Evolutionary Computation. (1999) 1875–1882
5. Branke, J., Mattfeld, D.C.: Anticipatory scheduling for dynamic job shop problems.

In: AIPS Workshop on On-line Planning and Scheduling. (2002) 3–10
6. Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling.

International Journal of Production Research 43(15) (2005) 3103–3129
7. Morrison, R., DeJong, K.: A test problem generator for non-stationary environ-

ments. In: Congress on Evolutionary Computation. (1999) 2047–2053
8. Lin, S.C., Goodman, E.D., William F. Punch, I.: A genetic algorithm approach to

dynamic job shop scheduling problems. In: International Conference on Genetic
Algorithms. (1997) 481–488

9. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation 7(1) (1999) 1–17

10. Chryssolouris, G., Subramaniam, V.: Dynamic scheduling of manufacturing job
shops using genetic algorithms. Journal of Intelligent Manufacturing 12 (2001)
281–293

11. Vazquez, M., Whitley, L.D.: A comparison of genetic algorithms for the dynamic
job shop scheduling problem. In: Genetic and Evolutionary Computation Confer-
ence. (2000) 1011–1018

12. Mattfeld, D.C., Bierwirth, C.: An efficient genetic algorithm for job shop scheduling
with tardiness objectives. European Journal of Operations Research 155 (2004)
616–630

13. Louis, S.J., McDonnell, J.: Learning with case-injected genetic algorithms. IEEE
Transactions on Evolutionary Computation 8(4) (2004) 316–328

14. Giffler, B., Thompson, G.L.: Algorithms for solving production scheduling prob-
lems. Operations Research 8(4) (1960) 487–503

15. Bierwirth, C., Mattfeld, D.C., Kopfer, H.: On permutation representations for
scheduling problems. In: Parallel Problem Solving from Nature. (1996) 310–318

