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Abstract

This paper presents a prediction and planning framework for analysing

the safety and interaction of moving objects in complex road scenes. Rather

than detecting speci�c, known, dangerous con�gurations, we simulate all

the possible motion and interaction of objects. This simulation is used to

detect dangerous situations, and to select the best path. The best path can

be chosen according to a number of di�erent criterion, such as: smoothest

motion, largest avoiding distance, or quickest path. This framework can

be applied, either as a driver warning system (open loop), or as an action

recommendation system (human in the loop), or as an intelligent cruise

control system (closed loop). This framework is evaluated using synthetic

data, using simple and complex road scenes.
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1 Introduction

Many di�erent types of sensors have been developed to detect cars, obstacles

and pedestrians. These use a variety of techniques, such as laser scanners,

radar, ultrasound, vision, between car communication, and car-road com-

munication. These approaches all attempt to provide the car with a map

of the road and other road users, at the current time. This sensor data is

used to provide safety warnings for the driver in known dangerous situa-

tions, such as: blind spot detection for overtaking, side collision detection

[9], curb detection [1], or rear-end collision [12]. Other systems have used

simultaneous localisation and mapping [11] to identify obstacles. These ap-

proaches guarantee that a small number of known dangerous situations have

been avoided.

In this paper we argue that simply knowing there is an object at location

x at time t does not provide suÆcient information to asses its safety. A

framework is needed for understanding the behaviour of all the vehicles,

pedestrians, obstacles and other objects on the road. The safety of the

road must then be determined by considering the combined actions, and

interactions, of all these objects. Can we con�dently calculate that the road

is safe for the next t seconds?

This is a challenging task because we must simulate both the behaviour

of our own car, as well as that of all other objects in the scene. We must

consider the possibility of new objects entering the scene, objects leaving

the scene, and the possibility of sensor failure. In addition, the simulation

of objects is challenging because they are governed both by physical limits

(such as maximum speed) but predominantly by human behaviour. A well

behaved driver will obey road conventions, a conservative driver may try to

avoid accidents, and a reckless driver may take unexpected risks to avoid

slowing down. These situations must all be considered.

It is important to note that whether a collision is occurring now or

whether a car is driving towards us now, is not of direct use. What is im-

portant, is whether or not we will be involved in a collision in the near

future. To make this decision we must know the future, and there are many

possibilities. This paper presents a framework for enumerating all possi-

ble future scenarios, analysing them, and making recommendations for the

driver based on their likelihood.
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2 Framework

The prediction and planning framework consists of three components. First,

all possible future scenarios are predicted. Second, a path planning algo-

rithm uses the prediction results to determine the safest path through the

scene. Finally the output is used, either to control the car, or to display

safety information to the driver.

2.1 Elements of Prediction

Vehicle dynamics Every car is governed by physical mechanics. Given

the initial state of a car, a series of control inputs (such as acceleration and

steering), known properties of the road surface, tyres, and weather; it is

possible to calculate the trajectory of the car. In practice, drivers do not

use the full extent of their car's control inputs, all of the time. As a result,

predicting the path of a car is determined both by the physical capabilities

of the car, but predominantly by human behaviour.

Human behaviour A detailed study of how humans choose their path

in complex environments is presented in Fajen & Warren [3]. There is no

physical reason preventing oncoming traÆc from colliding. Both cars could

very easily turn in towards each other and crash. The reason they do not

collide, is that both drivers obey the rules of the road, and stay in their own

lane. This poses a problem for systems which attempt to asses the safety

of a road scene. Almost every scene with oncoming traÆc is theoretically

dangerous. Road death statistics in any country show that driving is dan-

gerous. What we must consider, is the degree of safety that we are prepared

to accept, and our con�dence in the ability of other drivers, to also drive

safely.

Sensor uncertainty In order to predict the future, we need to understand

the error in our understanding of the present. Sensors can be uncertain

for a number of reasons: they can incorrectly classify objects, they can

contain imprecise measurements, or detection could fail, or they could group

multiple objects into a single detection result. In this paper we will assume

a perfect sensor. The use of a sensor model will be included in future work.

This model must provide a probability distribution for each class of object,

over the surface of the road and surrounding area. It must also provide a

probability distribution for the likelihood of a missed detection, at each road

location, given the local context of that region of the road scene.
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Objects entering the scene Another important point to consider is the

possibility that new objects may enter the scene. The road in front the car

is the most obvious point of entry for a new car. On a straight road, this

point is on the horizon. On a corner this entry-point will be the point where

the road becomes occluded. All intersections, and gateways are possible

entry-points, as are blind spots caused by buildings, trucks and cars. The

detection of occlusion boundaries is a known graphics problem [4]. Every

occlusion boundary which borders the road, and is large enough to obscure

an object, must be considered as an entry-point.

Multiple hypothesis The most simple prediction of the future, is that

all objects will continue to move at their current speed. This, however, is

only one of many future outcomes. Each action the driver makes, leads to

a di�erent future outcome. In addition, all other objects can also change

their motion. The main issue for implementing the prediction algorithm, is

the choice of method for enumerating all possible driver actions, as well as

all the actions of all other objects in the scene, over the next t seconds.

2.2 Elements of Planning

The planning process considers each of the many future predictions of the

road scene and determines which hypothesis will lead to a collision, and

which are safe. Exactly which path is the best outcome, is dependent on

the priorities of our driver. Previously, start-goal path planning problems

[7] have been studied in the mobile robotics community. Many solutions

exist including potential function approaches [5, 10] and provably complete

sensor methods [8]. Our approach uses a map based approach [2]. Planning

algorithms have previously been applied to car-like robots [6], but not in the

context of safety analysis, with future prediction, in complex multi-object

environments.

Finding the safest path through a scene. Each hypothesis of the

future de�nes a series of actions for our car, and for all other objects in

the scene. These actions de�ne a paths for each object. A hypothesis is

determined to be dangerous if any two object paths collide.

There are many di�erent actions that we can make as driver, however,

we cannot control the whole scene. Other drivers can also in
uence the

future. For each action we can make, there are many hypothesis for the fu-

ture. Some of these future outcomes are safe and some are dangerous. The

safety of a particular control action, we make, is determined by considering

3



the likelihood and safety of each of the resulting hypothesis. A conservative

algorithm labels a control action as unsafe if any future outcome, resulting

from that action, is unsafe. A more realistic algorithm assesses the driver's

tolerance for risk, the driver's assumptions about other road users, and the

likelihood of each hypothesis, and combines these probabilities in a proba-

bilistic manner, to determine if a control action is safe, or not.

If the safety of all possible control actions is considered, then one control

action can be chosen as the safest. This choice of control action still results

in many future outcomes, but based on our hypothesis-safety function, we

know this will lead to the most likely safe outcome. In some cases, we may

choose to select the most likely path resulting from this action, and display

this information to the driver.

Dynamic safety A separate issue to path safety, is dynamic safety. How

likely is the car to physically realise a series of control inputs. This is

dependent on the properties of the car, the road surface, and the current

weather conditions. A separate but related issue, is the ability of a driver to

accurately implement a series of control actions. This is dependent on the

particular driver, and his current mental state, such as alertness. Whether

or not these terms are included in the hypothesis-safety function, depends

on the particular application being developed.

Driver preference In some situations the safest path may require sudden

movements, or may be very slow. In these circumstances, the driver may

choose to trade safety for comfort or speed. Thus the hypothesis-safety

function must consider many factors including: path safety, dynamic safety,

the ability and alertness of the driver, the speed, and the degree of comfort.

2.3 Visualisation and driver warnings

So far we have described the space of all actions which lead to a safe scenario,

and the best path for a speci�c object to navigate the scene. From this

information we also know the space of control actions (set of paths) that

will lead to a collision. But how can this danger information be displayed

concisely to the driver? We consider three options:

Display best path: The driver is shown a recommended path that the

system considers most safe. This is calculated using the technique

described in the previous section.
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Road map: Each path traverses the road surface, so every point on the

road will be touched by zero or more paths. We can classify each point

on the road surface with a degree of safety based on the distribution

of safe and unsafe paths that traverse that point. This projection of

the decision tree onto the road can be used as a warning display.

Object label: Similarly, in every path, there is a minimum distance be-

tween any two objects. This distance can be used to classify each

object as a possible threat to the driver, or not. One classi�cation

heuristic might be minimum distance. A warning is then displayed

alongside each potentially dangerous object.

It is important to note that warning systems are not an exact science.

Detailed user interface studies would need to be conducted, to determine

e�ective heuristics for displaying dangerous road-regions and objects, to

the driver. The calculation of the best path, however, is well principled,

assuming the human factors are suitably approximated.

Figure 1: This �gure shows an example warning display. It shows the rec-

ommended path, dangerous paths, dangerous objects and the best instan-

taneous control action.
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2.4 Applications

The path planning and warning algorithms can be used to solve many dif-

ferent problems.

Closed loop control: In this approach the car is controlled directly using

the best predicted action. The driver is not included in the control

loop, except in an emergency. This can be used to implement an

intelligent cruise control system.

Human in the loop: In this approach the car displays the recommended

path to the driver. This can be displayed as a route map on a road,

or as the instantaneous action to be applied. (e.g. brake now!, turn

right!, or turn left!).

Warning system: The car does not display the best path, but rather

displays warnings on the road and on objects to convey to the driver

regions of action space which are dangerous.

Sensor analysis: It is important for the computer vision and physical-

sensor communities to know a target accuracy for car and object de-

tectors. By applying this algorithm to a large number of typical road

scenes, it would be possible to determine whether automated control

is safe or not, given the level of accuracy of the sensors in question.
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3 Method

This section describes the prediction and planning framework in detail, start-

ing with some basic de�nitions about road scenes. First, a single time in-

stant is considered, then the e�ect of motion. The interaction of objects is

modeled using game theory, with all objects moving in turns, one turn at a

time. All the possible actions that an object might make are represented in

a decision tree. Each leaf node describes a possible path through the scene.

These paths can be classi�ed as safe or unsafe by running a simulation, and

checking that no two objects collide.

3.1 The road scene

A road scene consists of a drivable area, obstacles, cars, pedestrians, cyclists,

and entry-points, at a speci�c instant in time. Each object is assigned a

speed and velocity, and this is referred to as the objects state. An obstacle

is an object with zero speed. A moving object has non-zero velocity, and

an interactive object has the ability to change its velocity dependent on the

road scene. An entry-point is a disc with an radius which increase at a �xed

rate. This area represents the maximum distance that an unseen object can

cover in a given period of time. The drivable area consist of a 2D surface

with a Euclidean grid de�ned on its surface. All objects are assumed to move

on this surface and obey the laws of Newtonian mechanics. The surface is

assumed to be bounded, and the simulated car must remain strictly inside

this road boundary. An object collision occurs when two objects occupy the

same position on the road surface. A scene is safe if no two objects collide.

statei(t) = fpositioni(t); velocityi(t)g = fxi(t); _xi(t)g (1)

Figure 2: This scene consisting of a drivable area, non-drivable areas (side-

walk, grass), obstacles (parked cars), and a moving object (pedestrian).

3.2 Object motion and interaction

Interactive objects change their velocity (speed and direction), over time,

based on the current road scene and an internal strategy function for each
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object. An interactive object may change its speed according to some strat-

egy, which is dependent on the current state of the scene.

An action (2) is de�ned as the change in velocity of an object (3), which

is determined by its strategy function. Below, statei(tn) is the state of object

i at time tn (with i < m).

actioni(tn) = �x = strategyi(state1(tn); state2(tn); :::; statem(tn))

(2)

statei(tn+1) = fx; _xg = state(tn) � actioni(tn) (3)

The state update (�) is implemented, for turn duration �t, as:

xi(tn+1) = xi(tn) + _xi(tn) ��t+
1

2
�x(tn) ��t2 (4)

_xi(tn+1) = _xi(tn) + �xi(tn) ��t (5)

The path of an object (6) is de�ned as an initial state, followed by a

list of actions, for the following game-turns. A scenario (7) is de�ned as the

paths of all objects in the scene.

pathi = fstatei(t0); actioni(t0); : : : ; actioni(tmax)g (6)

scenario = fpath1(t0); path2(t0); :::pathm(t0)g (7)

3.3 Determining the safety of a scenario

A scenario consists of a list of objects together with a path for each object.

To determine whether a scenario is safe, simulate all road scenes between

t0 and tmax and determine whether each scene is safe. A road scene is

dangerous if any two objects collide. An object is controllable at tn if it

does not collide with any other object during the period tn � t � tmax.

3.4 Game theory

In a board game, such as chess, players take their turn to make a move. In

each turn, a player considers the state of the board, at that time, and then

makes his best move. After he has �nished, the next player considers the

new state of the board, and makes his move. This process continues until

the game is completed. A chess computer operates by simulating the future

moves of both players, and then deciding which of these future outcomes is

most bene�cial. The current move is based on whether or not it leads to

this bene�cial outcome.
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A simple chess computer can be implemented using a decision tree and

a board evaluation function. The primary (root) node of the decision tree

represents the current move. Each branch from this node represents a per-

missible move. Each branch results in a new state of the board. For each

node, we add branches for the moves that the opponent could make, based

on that state of the board. This process can be repeated for each player

in turn, until all possible futures have been considered, or until we run out

of computing resources. At this point, we apply the evaluation function to

all leaf nodes, and the branches taken to get there, and select the best leaf.

Since this is a tree structure, each leaf node must trace back to a primary

branch. This primary branch represents the move that the computer must

make now, to maximise its chance of winning the game.

One of the implementation issues is the game-turn allocation strategy,

which de�nes when objects may take their turn to act. There are two com-

mon strategies: (i) sequential turns, or (ii) simultaneous turns. In the se-

quential approach, only one object may act at a particular time, and there is

a predetermined sequence in which objects act. This is similar to Chess, Go

and Monopoly. In the simultaneous approach, all players take their move

at time tn based on the state of the game at time tn�1. All moves are

then applied simultaneously. This is similar to the approach used in most

reenactment war games. The simultaneous approach is usually preferable

because the results are not biased by the predetermined turn sequence.

3.5 The road scene decision tree

A scenario is de�ned as the initial state and a path for every object be-

ing simulated. This particular set of actions represents only one, of many,

possible future outcomes. The space of all possible scenarios is both large

and complex. The action of each object is dependent on the actions of all

the other objects in the scene. To simplify this problem, we propose that

the road environment should be modeled as a board game, using Game the-

ory. All objects are assumed to move in game-turns, one after another. In

each game-turn, one object considers the state of the road, and then makes

its best move based on its strategy function. After it has completed its

game-turn, the next object makes its move.

By making this approximation, all object decisions can be enumerated in

a decision tree. The primary (root) node in the decision tree represents the

state of the road (all objects) at the current time. Each branch represents a

permissible action that the �rst car could make. Each child-node describes

the state of the road resulting from that action. For each new child-node,
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we build a new set of branches for all moves that the second car could make.

This process is then repeated for all cars. All cars are then allowed to make

second and third game-turns, until the required simulation period tmax is

completed. Each walk from primary node to leaf de�nes a possible scenario,

because it de�nes one unique series of actions for each objects in the scene.

The safety of each scenario is then determined using Section 3.3.

Figure 3: This �gure shows an example decision tree. At the current time,

the car can either stop, or overtake. Each of these decisions have a di�erent

consequence. If we stop, it is always safe, even if the obstacle starts moving.

If the car overtakes, there is a chance that the oncoming car may stop, in

which case the path is safe, however if the oncoming car does not stop, then

it is dangerous. The best (conservative) action at the current time, is to

stop. However, if our priority is the quickest path, whatever the risk, then

there may be a safe outcome if the car overtakes.

3.6 Choosing the optimal path, for the current time

At this point we make an implementation decision. Our initial implemen-

tation does not consider the action of other drivers. This simpli�cation will

be removed in future work. This simpli�cation means that the decision tree

only contains actions of our own car, and is independent of other drivers. It

also means a path through the tree de�nes a path for our car.

The previous section described how the decision tree represents all pos-

sible future scenarios. Each of these scenarios can also be classi�ed as safe

or unsafe. We now select one of the safe paths as the \best path" based

on an optimality criterion. This criterion can be the path of least e�ort, or

the quickest path, or the path which leaves the largest avoiding distance to
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other objects, depending on the driving strategy being implemented. Af-

ter the best path has been chosen, only the action at time t0 is imple-

mented. We now know this action will lead to a safe outcome, over the

period t0 < t < tmax (as long as the current object completes the maneuver,

and that the other objects behave as predicted, and no new objects enter

the scene).

3.7 Evaluating the strategy function

In this implementation, we have chosen to implement the smoothest path

strategy, which is the path with smallest sum-of-squares actions. This path is

simple to implement, and should be reasonably comfortable. It is more safe

than the fastest path approach, which uses the sum-of-absolute magnitudes.

Certain areas of the road surface are more desirable for driving, than other

areas. For example, it is not desirable to drive on the wrong side of the

road. A scalar �eld is described on the surface of the road which represents

the desirability of a car to be present at each x location. This is called the

PositionPrior(x). In a similar manner, it is dangerous to drive too fast,

or too slowly, so a V elocityPrior(kxk) is used. The magnitude of the prior

terms is signi�cantly lower than the cost of an action, but add up over the

duration of the path. If this prior term is not used then the car will not

complete an overtaking manoeuvre. Likewise, if the speed term is not used,

then if the car ever stops to avoid a pedestrian, it will never start moving

again. Thus these prior terms are of critical importance.

cost(path) =

tmaxX
t=t0

cost(state(t)) +

tmaxX
t=t0

cost(action(t)) (8)

cost(state) = PositionPrior(x)2 + V elocityPrior(k _xk)2 (9)

cost(action) = k�xk2 (10)

PositionPrior(x) =

(
wrong lane xlateral:klateral

otherwise 0
(11)

V elocityPrior(speed) =

8><
>:
speed > speedmax speed:kfast

speed < speedmin speed:kslow

otherwise 0

(12)
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3.8 Representing decisions and road state

Decision tree So far we have described the algorithm using a decision

tree with quantised actions and a continuous state space (discrete time). In

practice, the size of the decision tree is very large, with order O(an) where

a is the number of actions and n is the number of game turns considered.

This is an action space representation. For each walk through the tree,

we run a separate simulation to determine if there are any collisions. The

only storage requirements, are a current path and best path. The main

computing resource required is processing time.

Graph representation To reduce the number of states and actions, the

road can be simpli�ed, using a graph representation. A multi-lane road can

be represented as a series of nodes on the graph. The car is only allowed to

change lanes, or to merge with an onramp, at speci�c points on the graph.

We have not used this representation because it does not allow pedestrians

and non-highway scenes to be represented. Instead we consider a quantised

euclidean surface.

State space representation What the decision tree representation does

not re
ect, is that di�erent walks through the decision tree may traverse

the same partial path in state space. For example, you may go around an

obstacle in the middle lane, by overtaking on the left or on the right, but

both of these paths return to the middle lane and follow the same completing

path. This lends itself to a dynamic programming implementation which

evaluates in state space rather than decision space. In particular, it reduces

the computational order to O(sn) where s is the magnitude of state-space.

This algorithm requires a very large number of states to be stored in memory.

The key implementation decision is whether sn < an which is determined

by the number of turns n, the number of states s and the number of actions

a.

Dynamic programming If we only consider the actions of our own car,

then we may precompute a simulation of all other objects in the scene. This

computation results in a binary obstacle map for each time-step:

obstacle(x; t) =

m[
i=1

ObjectAt(x; t; statei(t)) 2 ftrue; falseg (13)

This obstacle map is sampled at a higher temporal resolution than the

game time-step. This reduces the size of the decision tree. A collision can
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be detected by checking for an obstacle at every point x(t) along the path

(over time).

Safe(path) = Safe (state(t0); action(t0); : : : ; action(tmax)) =

tmax[
t=tn

obstacle(t;x(t))

(14)

Dynamic programming is an eÆcient algorithm for determining the best

path. We de�ne a quantised state space for the road road(t;x(t); _x(t)) =

faction; costg, where each cell contains the best action at that time and

state, and the total cost from that time until the end of the game. The

algorithm is presented in Figure 4.

3.9 Dynamic path planning

Every turn, new sensor information is available, and the decision making

process is repeated using the new data. If the previous prediction was ac-

curate, then the new sensor information should agree with our previous

prediction.
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begin

Initialise the future-most road-state with the corresponding obstacle map.

for all x; _x do

road(tmax;x; _x) =

(
obstacle(tmax;x) = true faction = 0; cost =1g

else faction = 0; cost = 0g

od

Evaluate all entries in the road-state, working backwards through time

for t = (tmax ��t) to t0 do

for all x; _x do

for all possible actions, �nd action with minimum cost(t; state(t)) do

future cost = Cost(road(t+�t; state(t) � action))

if obstacle(t;x(t))

then cost =1

else cost = Cost(action) + Cost(state(t)) + future cost

�

od

Assign road(t;x(t); _x(t)) with the best action and cost

od

od

Select the best path through the road-state

begin

state(t0) = The car's current state (speed and position)

for t = t0 to tmax do

action(t) = Action(road(t; state(t)))

state(t+�t) = state(t) � action(t)

od

end

end

Figure 4: Dynamic programming implementation
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4 Evaluation and discussion

4.1 Experiment 1:

In this experiment, we demonstrate the decision making capability of our

system. The road scene consists of a road with an obstacle, and the possi-

bility of an oncoming car. The system must decide whether to stop or drive

around the obstacle, depending on whether there is oncoming traÆc or not.

The results are shown in Figure 5. Experiment (a) shows the predicted best

path around the obstacle. Experiment (b) shows the path around the obsta-

cle, with an oncoming car at 75m. Notice how the car takes a steeper path

than in (a). Experiment (c) shows how the car cannot overtake an obstacle

with a car at 45m. The car waits for the oncoming pass, and then drives

around the obstacle. This is shown in (c-i through iii).

Notice that the algorithm safely avoids the obstacle without hitting the

oncoming car. The algorithm correctly makes the decision to wait for the

oncoming car, when the available overtaking distance is too short. The shape

of the car's path is not de�ned, stopping distances and time to impact are not

modeled. The shape of the manoeuvre, and decision making functionality,

is calculated as a result of the prediction and planning process.

4.2 Experiment 2:

The second experiment demonstrates the use of entry-points. There is a

car waiting at an intersection, and the system must consider the possibility

that the car might start to move. The �rst experiment (a) ignores the

possibility that the waiting car might move. The car initially plans to drive

straight past (a-i), and is then unable to avoid the waiting car (a-ii), when

it starts to move. The second experiment (b) uses an entry-point to model

the possibility that the waiting car might move. Notice that the car initially

plans to take a very wide path (b-i), but when it reaches the intersection,

new sensor data shows that the car is not moving, so it can take a normal

path through the intersection. In experiment (c) the waiting car is modeled

with an entry-point. When the waiting car starts to move, the simulated

car is able to drive past safely (unlike (a)).

By assigning each entry-point a maximum speed we can model the unsafe

region around each danger point. This guarantees a conservative solution

is chosen at each time-step. As new sensor data becomes available, the

danger area will always get smaller until a real object is detected. This

allows the car to take a sensible but conservative path, but still be able to

avoid a collision if necessary. It is hence essential to model the possibility of
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(a) Path planning result with no oncoming car (frame 0).

(b) It is safe to overtake with an oncoming car 75m ahead (frame 0).

(c-i) It is not safe to overtake with an oncoming car at 50m (frame 0).

(c-ii) The car must wait for the oncoming car to pass (frame 55).

(c-iii) After the car has passed it is safe to overtake (frame 95).

Figure 5: Experiment 1: This experiment analyses the safety of overtaking

a stationary obstacle, with (a) an empty road, (b) an oncoming car at 75m

ahead, and (c) a car at 45m. It is safe to drive around the obstacle in (a) and

(b), but in experiment (c) the car must slow down, wait, and then overtake

(see c-i to iii). Note: no overtaking manoeuvre is de�ned, the path is the

result of simulation and the prior preference to drive on the right, and to

keep moving.
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(a-i) Path planning at frame 0, without entry-point.

(a-ii) Collision at frame 60, without entry-point

(b/c-i) Path planning at frame 0, with entry-point

(b-ii) Path planning at frame 70, with entry-point, car is stationary.

(c-ii) Path planning at frame 70, with entry-point, car is moving.

Figure 6: Experiment 2: The use of entry-points. The car waiting at the

intersection may start to move. In (a) the possibility of a moving is ignored.

In (b) entry-points are used to model this possibility, but the car does not

move. Entry-points are used in (c) and the car does move. Notice that

entry-points are required to safely navigate the scene.
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new objects entering the scene, and the possibility of objects changing their

motion. This is not possible in traditional sensor based systems, which do

not consider the future. This justi�es the use of the prediction and planning

framework.

4.3 Experiment 3 - Narrow street with pedestrians.

The third experiment shows how entry-points can be used to model unex-

pected objects entering the scene. This scene is inspired by a scene from a

J.A.F. "Stop the accident" booklet. In this experiment, the car is driving

down a narrow one way street with many pedestrians on the road, and two

parked cars. At frame 70 an unseen pedestrian appears from behind the

�rst parked car. This scene is modeled with and without entry-points, and

with and without the unexpected pedestrian. Figure 7(a) shows the car hit-

ting the unseen pedestrian. Figure (b) shows the car's initial plan to stop

away from the pedestrian. As the car approaches, new sensor data shows

that a pedestrian has not stepped out yet, and the car plans a path through

the obstacles (c). At frame 70 the new pedestrian appears (d) and the car

adjusts its path accordingly.

This example shows how the prediction and planning framework can

navigate a complex scene with many pedestrians moving in di�erent direc-

tions. In complex scenes there are many points where new objects could

unexpectedly enter the scene. These events must considered if the system

to accurately predict a safe path through the scene.

4.4 Experiment 4 - Parked cars, unexpected pedestrian

This experiment also demonstrates the importance of entry-points. It is also

inspired by a scene from the J.A.F. "Stop the accident" booklet. The scene

consists of a narrow one-way street with cars parked on both sides of the

road. There is a pedestrian in the distance, walking towards the driver. On

the right hand side of the road is a delivery van with boxes stacked on the

ground. The point of the scene, is for the driver to notice the boxes, and

expect the delivery driver to walk out into the street. In this experiment,

we will ignore the speci�c cue of the boxes, and will consider the possibility

of a pedestrian entering the scene from behind any car. To do this, we add

an entry-point behind every car in the scene, and allow the prediction and

planning framework to chose the optimal path and speed, which ensures the

car is controllable at all times, even if a pedestrian enters the scene.

Figure 8(a) shows the predicted motion of all objects in the scene, at
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(a) Simulation without entry-points. Car hits new pedestrian.

(b) With entry-points, frame 0. Car slows, and turns wide of danger point.

(c) With entry-points, frame 35. New sensor data. Car can pass danger point.

(d) Path planning, frame 70. New pedestrian!! adjust path.

(e) Path planning, frame 130, obstacles will be avoided.

Figure 7: Experiment 3: This scene contains a narrow road, two parked

cars, and many pedestrians. At frame 70 a new pedestrian enters the scene

from behind the top car. In (a) new pedestrians are not modeled, and the

car hits the pedestrian. (b-f) shows the same simulation, using entry-points.

Notice how the car slows down, avoids the dangerous situation, misses the

pedestrian, and completes the scene. Considering new objects in the future

is essential!
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frame 0. At frame 45 a new pedestrian enters the scene and walks across

the road (b). In the control experiment, we do not use entry-points. The

initial path of the car is shown in (c). Between frames 44 and 45, the car

must dramatically change its planned path, to avoid the new obstacle. In

this experiment (without entry-points) the car is lucky that it is possible to

�nd an avoiding path for the new pedestrian.

The second experiment, Figures (d-j), uses an entry-point to model the

possibility of a pedestrian entering the scene. An entry-point is an elliptical

region of uncertainty which has zero radius at the current time. The radius

of the ellipse increases linearly over time at the theoretical maximum speed

of the new object. The shape of the entry-points are shown in (d), 5 seconds

in the future. Notice how the car plans to pass the danger points one parked

car at a time (f) and (g). When the new pedestrian enters the scene the car

slows down, waits for the pedestrian to pass (j), then continues on its way

(k).

The important point to notice in this scene is that entry-points allow

the car to predict new objects entering the scene. The car can then plan

to navigate the scene at a safe speed, with suÆcient time to stop, should a

pedestrian step into the scene. Compare this to the control experiment. In

the control case, the initial speed was speci�ed, and the car planned to avoid

the second pedestrian, so there was no need to drive slowly and carefully.

Hence the violent swerving action in (c-d). In conclusion, this experiment

shows that it is important to model the possibility of new objects entering

the scene. It also demonstrates that the prediction and planning algorithm

can e�ectively choose a safe speed to navigate a road. This would not be

possible with traditional sensor based systems, which rely on speed limits

to determine the safe driving speed.

20



(a) Motion prediction at frame 0, for the next 5 seconds.

(b) Motion prediction at frame 45. A new pedestrian enters scene.

(c) Path planning, frame 44, without entry-point.

(d) Path planning, frame 45, new pedestrian, sudden path change.

(f) Motion prediction at frame 0. Observe the entry-points, between cars.

(g) Path planning at frame 0. Purple stripe shows car's path (5 seconds)

(h) Path planning, frame 5. Notice how each car is passed, one at a time.

(j) Path planning, frame 45. Car slows for pedestrian, no swerve needed.

(k) Path planning, frame 85, obstacles will be avoided.

Figure 8: Experiment 4: This scene contains a narrow road, a pedestrian

walking towards the driver (a), and an unexpected pedestrian entering the

scene (b) at frame 45. Notice the sudden change in path in response to

the new pedestrian (c,d) if entry-points are not used. In this example the

pedestrian is lucky. The experiment is then repeated with entry-points (f)

which model the possibility of a pedestrian entering from behind a parked

car. Notice how the algorithm plans to pass each car one at a time, when

it knowns that it is safe (f,g). This approach guarantees that the unseen

pedestrian can be avoided (j).
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5 Future work

This framework has been shown to e�ectively predict and plan safe paths

through complex road environments, however, there are still several areas

where future research is needed. Interaction with other cars has been de-

scribed, but has not yet been demonstrated. The main issue that needs to

be addressed is the modeling of driver behaviour. If the models are too well

behaved then the problem is solvable but not useful, and if the human mod-

els are too general, then oncoming traÆc will pose a signi�cant problem.

Warning generation has also been described. The main issue is the amount

of detail available to the driver. The exact choice of algorithm will depend

on human interface studies.

In this paper, all sensors and car controls are perfect. All examples

were theoretically safe, which is an ultra-conservative condition. In the new

implementation the obstacle map will be probabilistic. The decision about

whether a situation is dangerous will depend on the drivers tolerance for risk,

which may vary. In addition, the car may not accurately implement control

actions (or the human driver is inaccurate). This extension is of particular

interest to the authors, because real world sensors are not perfect, and most

real road scenes cannot be driven without a small tolerance for risk.

The decision space of all opponent actions is very large. Instead of using

actions in a decision tree, the opponents actions could be modeled as a

probability distribution over position, speed and time. This reduces the

decision space, but adds complexity to the cost function because it must

now consider both, the probability of collision, and the probability of driver

action in the same framework.

6 Conclusion

This paper has presented a prediction and planning framework, for analysing

the safety of complex road scenes, consisting of moving and stationary ob-

jects. A decision tree has been used to enumerate all the possible future

paths of the simulated car. A method for determining the safety of each

path has been described. A strategy function is used to select the best safe

path through the scene. Techniques are described for using this action to

directly control the car, or to displaying warnings or recommending actions

to the driver. The framework has been tested using synthetic data, on two

simple and two complex road scenes.
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A Appendix: Road scene representation

The use of entry-points is mentioned in the main section of the paper. This

appendix provides a couple more examples to aid the explanation. An entry-

point is a point on the road surface, at the current time, where a new object

may enter the scene. The region of the entry-point at time t > 0, represents

all locations on the road surface where the unseen object could reach in a

given time. If we assume the unseen object has a �xed maximum speed,

then this region is described by a circle, with a radius increasing at the

�xed maximum velocity. This is a very conservative model. If too many

entry-points are used on a scene then the only conservative solution is for

the car to stop. This will be addressed in the future probabilistic version

of the framework. We now consider three examples, a blind corner, and

intersection, and a pedestrian crossing. The explanation of each example is

presented in the caption of Figures 9 through 11.

Figure 9: An entry-point is used represent a car entering around a blind

corner. The entry-point is located at the point where the road becomes

occluded in the current drivers view.
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Figure 10: An entry-point is used represent a car entering at an intersection.

The entry-point is located at the point on the road where the drivers view

becomes occluded.

Figure 11: A pedestrian crossing is a region with a very high likelihood of

detecting pedestrians. A pedestrian is modeled as a small object with slow

speed and erratic behaviour. A pedestrian crossing is modeled with two

entry points to represent the possibility of pedestrians stepping out into the

road on either side.
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