
Animated characters can play the role of

teachers or guides, teammates or com-

petitors, or just provide a source of interesting motion

in virtual environments. Characters in a compelling vir-

tual environment must have a variety of complex and

interesting behaviors, and be responsive to the user’s

actions. The difficulty of constructing such synthetic

characters currently hinders the development of these

environments, particularly when realism is required. In

this article, we present one approach to populating vir-

tual environments—using dynamic simulation to gen-

erate the motion of characters. We

explore this approach’s effectiveness

with two virtual environments: the

Border collie environment, in which

the user acts as a Border collie to

herd robots into a corral, and the

Olympic bicycle race environment,

in which the user participates in a

bicycle race with synthetic competi-

tors (see Figure 1).

Motion for characters in virtual

environments can be generated

with keyframing, motion capture,

or dynamic simulation. All three

approaches require a tradeoff

between the level of control given

to the animator and the automatic nature of the

process. Animators require detailed control when cre-

ating subtle movements that are unique or highly styl-

ized. Generating expressive facial animations usually

requires this low level of control. Automatic methods

are beneficial because they can interactively produce

motion for characters based on the continuously

changing state of the user and other characters in the

virtual environment.

Keyframing requires that the animator specify criti-

cal, or key, positions for the animated objects. The com-

puter then fills in the missing frames by smoothly

interpolating between those positions. The specification

of keyframes for some objects can be partially automat-

ed with techniques like inverse kinematics. However,

keyframing still requires that the animator possess a

detailed understanding of how moving objects should

behave over time as well as the talent to express that

information through the character’s configuration. A

library of many keyframed animations can be generat-

ed offline and subsequently accessed in an interactive

environment to provide the motion for a character that

interacts with the user.

In motion capture, one of the most commonly used

animation techniques, magnetic or vision-based sensors

placed on an actor record the positions of body parts or

joint angles as the actor performs a desired action. This

recorded motion is then played back through a graphi-

cal character. Motion capture is growing in popularity

because of the relative ease of recording many human

actions. In particular, sports video games often use

motion capture to generate the stylistic movements of

athletes in an interactive environment. However, a num-

ber of problems prevent motion capture from being an

ideal solution for all applications. As with keyframing,

recorded motion capture sequences must be blended

together skillfully to create realistic movements that

change in response to the user’s actions. Discrepancies

between the shapes or dimensions of the motion cap-

ture subject and the graphical character also can lead to

problems. If, for example, the subject was recorded

touching a real table, the hands of a shorter graphical

character might appear to intersect the table. 

Current motion capture technology also makes it dif-

ficult to record certain movements. Magnetic systems

often require connecting the subject to a computer by

cables that restrict the range of motion. These systems

also produce noisy data when used near metal objects

like treadmills. Optical systems have problems with

occlusion caused by one body part blocking another

from view. Motion capture will become easier to use in
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interactive environments as

researchers develop automatic tech-

niques that reuse motion captured

segments to animate graphical char-

acters of many shapes and sizes and

increase the variety of character

actions by blending two motion cap-

tured movements with a smooth

transition.

Unlike keyframing and motion

capture, simulation uses the laws of

physics to generate the motion of

figures and other objects. Virtual

characters are usually represented

as a hierarchy of rigid body parts

connected by telescoping and rotary

joints. The equations of motion that

simulate these body parts calculate

the movements that result from

acceleration due to gravity, forces

caused by the ground during colli-

sions, and torques applied at a joint.

Each simulation also contains con-

trol algorithms that calculate the

appropriate torques at each joint to

accomplish such desired behaviors as hopping, riding,

and balancing. Higher level algorithms can use these

control algorithms to direct a group of simulations to

move as a herd or to navigate along a narrow path.

Dynamic simulation offers two potential advantages

over other sources of motion for synthetic characters in

virtual environments. First, simulation generates phys-

ically realistic motion that may be difficult to create

using keyframing. While not all environments need or

even benefit from physical realism, a growing set of

applications like sports training, task training, and team-

oriented games require it. Second, because their motion

is computed on the fly, dynamically simulated charac-

ters offer a more precise form of interactivity than char-

acters animated with a fixed library of precomputed or

recorded motion. For example, in football video games,

the motion resulting from a collision between opposing

players is a function of the magnitude and direction of

their velocities as well as their body configurations at

the time of impact. Because of the very large number of

initial conditions, it’s difficult to model this interaction

accurately with a library of fixed motions.

Computational cost is one disadvantage of dynamic

simulation. For the two examples presented here, we

used multiple processors with either virtual or physical

shared memory to obtain the required performance.

Dynamic simulation also imposes some limitations on

the behavior of synthetic characters. Simulated charac-

ters are less maneuverable than those modeled as point-

mass systems and those that move along paths specified

by animators. For example, although a point-mass

model can change direction instantaneously, a legged

system can change direction only with a foot planted on

the ground. If the desired direction of travel changes

abruptly, the legged system may lose its balance and fall.

These limitations, although physically realistic and

therefore intuitive to the user, make it more difficult to

design robust algorithms for group behaviors, obstacle

avoidance, and path following.

To illustrate the use of dynamically simulated char-

acters, we built the Border collie and Olympic bicycle

race environments. Each includes a geometric descrip-

tion of the terrain and scenery, a user interface in the

form of a bicycle, interactive characters and their asso-

ciated behaviors, and the system architecture necessary

for real-time simulation of multiple characters.

In the Border collie environment, the user navigates

by steering and pedaling a stationary bicycle and, like a

Border collie, attempts to herd a group of dynamically

simulated one-legged robots into a corral. Each robot

uses knowledge of the locations of the other robots and

the user to reactively avoid collisions. The Border collie

environment has served as a testbed for the insertion of

dynamically simulated characters into virtual environ-

ments. Further refinement could transform this envi-

ronment into an intriguing game that might entice

amateur athletes into a longer or harder workout.

The Olympic bicycle race environment lets the user

experience the 13-kilometer road race from the 1996

Olympics. The user interacts with synthetic cyclists

while riding a stationary racing bicycle mounted on a

platform. The platform pitches to match the slope of the

racing course, provides pedaling resistance, and mea-

sures the steering angle of the front fork. Each dynam-

ically simulated synthetic cyclist rides in a realistic

fashion around the racecourse. We implemented a dis-

tributed system that lets us simulate multiple bicycles

in real time and display the graphical environment at

30 frames per second (fps).

While we intended the Border collie environment as

entertainment, we envision that environments like the

Olympic bicycle race may someday prove valuable to

avid cyclists or professional racers limited by time,

weather, or insufficient situational training. For exam-
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ple, racers at the Olympics are allowed only limited

training time on the course without traffic. The athletes

would benefit from additional practice time, allowing

them to better tune their racing strategy for a particu-

lar course or field of competitors.

Background
Over the past decade, many researchers have

explored the problems inherent in creating

autonomous, believable characters for virtual environ-

ments. These problems include the control of individ-

ual characters, multiagent behavioral control, virtual

environment interfaces, and system design.

Control of individual characters
The first problem is the control of individual charac-

ters. Many recent results from computer animation

relate to this problem, but we briefly review just the

work of those who have applied their results to virtual

environments. Their solutions include fully autonomous

characters as well as characters controlled at various

levels by the user. An appropriate level of autonomy

depends, in part, on the application domain. Users pro-

vide explicit direction to their graphical representa-

tions—called avatars—and in many training

applications, the characters must be responsive to direc-

tions from a supervisor or coach to create the desired

training situation. Single-player video games, on the

other hand, need fully autonomous characters to serve

as opponents or companions.

Blumberg developed autonomous characters using a

layered approach for behaviors, motor skills, and geom-

etry.1 Two additional layers provide some abstraction or

generalization between characters with different func-

tionality. This architecture was used to create an ani-

mated responsive dog in the ALIVE system.

Perlin and Goldberg developed the Improv system to

facilitate the creation of autonomous interactive char-

acters.2 Like Blumberg’s system, Improv uses a layered

architecture with a behavior engine for selecting among

higher level behaviors. It also has an animation engine,

which uses high-level descriptions to move the charac-

ters, and a geometry layer. Improv allows direction at

several levels and has been used to design a virtual envi-

ronment with a variety of interacting characters that

exhibit distinct personalities.

The Jack system, developed at the University of Penn-

sylvania, facilitates the animation of human characters

in virtual environments by providing autonomous walks

and other behaviors.3 A real-time behavioral controller

generates paths that guide Jack through an environ-

ment, while reactive navigation controllers avoid obsta-

cles and compute footstep placements. In this

environment, Jack can walk along the city’s streets and

sidewalks while observing pedestrian crossing signals.

Other research groups have used the Jack system exten-

sively to develop medical and military training scenar-

ios in virtual environments.

The Mira Lab at the University of Geneva and the

Computer Graphics Laboratory at the Swiss Federal

Institute of Technology have a rich tradition of research

in animating human motion. Recently, researchers in

those labs have focused on the development of syn-

thetic humans for use in virtual environments. In par-

ticular, they have explored controlling avatars with

many degrees of freedom, generating autonomous

walking and grasping motions, and controlling ani-

mated crowds.4 They have also developed systems to

facilitate creating networked virtual environments.5

Multiagent behavioral control
Reynolds was one of the first graphics researchers to

animate group behaviors.6 Actors in his system are bird-

like objects similar to the point masses used in particle

systems except that each bird has an orientation, and

the model includes important dynamic features such as

gravity, lift, and banking. The birds maintain position

and orientation in the flock by balancing their desire to

avoid collisions with neighbors, match the velocity of

nearby neighbors, and move toward the center of the

flock. Each bird uses only information about nearby

neighbors. This localization of information simulates

one aspect of perception and reaction in biological sys-

tems and allows for proper balancing of the three flock-

ing tendencies. Reynolds’ work convincingly

demonstrates that applying simple rules to determine

the behaviors of the individuals in a flock can create real-

istic animations of group formations.

Brogan and Hodgins expanded on Reynolds’ work

by applying similar control algorithms to dynamically

simulated characters.7 They explored the algorithm’s

performance with a herd of 105 hopping robots and a

group of 18 cyclists for a test suite of three problems:

steady-state motion, turning, and avoiding obstacles.

Both the legged robots and the cyclists must control

balance, facing direction, and forward speed as well

as movement within the group. These limitations on

the maneuverability of the individuals in the group

make it more difficult to design robust control algo-

rithms for herding.

Tu and Terzopoulos populated a virtual marine world

with fish that hunt, flee, mate, and wander.8 To create

fully autonomous artificial creatures, they modeled the

physics of the animal and environment, locomotion

style, perception, and higher level behaviors. To make

the interactions more interesting, they modeled fish that

differed not only in shape and color, but also in behav-

ior by including predators, prey, and pacifists. The fish

were modeled as spring-mass systems with sinusoidal

patterns actuating the springs and propelling the fish

through the water. Their layered architecture consists

of an intention generator that creates goal-directed

behavior, a motor system that implements higher level

motion primitives such as “swim forward” or “turn left,”

and motion controllers that translate low level control

parameters such as speed and direction into muscle

actions. Yu and Terzopoulos adapted this system for

real-time performance by replacing the fishes’ simulat-

ed motion with kinematic motion derived from a pre-

recorded database of systematically simulated fish

maneuvers.9

Virtual environment interfaces
Researchers have explored many different naviga-
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tional interfaces for virtual environments. Flying with

a six degree-of-freedom (DOF) input device and loco-

moting with a 2D treadmill or stationary bicycle are

among the most common. Bicycling provides a partic-

ularly intuitive interface because the virtual camera’s

motions correspond to familiar motions from the real

world. Although bicycling is not a good interface for all

applications, restricting the user’s motion to riding

makes it easy to measure all of the user’s actions and to

have an accurate representation of the user’s avatar in

the virtual environment.

Bülthoff and Distler created a virtual environment to

investigate cognition and visual perception in complex

environments.10 The user navigates by riding a station-

ary bicycle while looking at a flat screen display. This

system allowed Bülthoff and Distler to conduct experi-

ments in visual attention, effects of cognitive load on

peripheral vision, object recognition in 3D scenes, nav-

igation, and optical flow and time-to-collision in virtu-

al environments.

Researchers at Bell Laboratories created a virtual Pelo-

ton to explore virtual reality systems for interaction and

collaboration over the World Wide Web.11 Users navigate

by riding a stationary bicycle as the system applies resis-

tive torques to the wheel to simulate hill riding.

Several commercially available systems for sports

training use bicycling as an interface. The Compu-

trainer provides a load generator to simulate pedaling

resistance on hills and monitors energy expenditure.

Using an 8-bit Nintendo Entertainment System, the

user can view an animated cyclist riding along the 2D

course. Tectrix markets a stationary exercise bicycle

called a VRBike that lets the user pedal and steer

through a 3D environment while experiencing changes

in resistance for hills and water. Several VRBikes can be

connected together with a local network for group

competition.

System design
Virtual environments are often supported by a net-

work of computers that provide the graphics processing

power for multiple users and the computational power

for calculating the motion of synthetic actors. One such

network-based system, Spline (Scalable Platform for

Large Interactive Networked Environments),12 provides

a framework for creating networked virtual environ-

ments that allows multiple users in an environment to

experience spoken interaction, 3D sound, and many

forms of motion generation. A demonstration environ-

ment called Diamond Park let users ride around a park

on modified Tectrix VRBikes and converse with other

users. The park was populated with vehicle simulations,

autonomous characters, and figures driven by motion

capture data.

NPSNet-IV is a 3D virtual environment for multiplay-

er participation over the Internet.13 The system supports

networked virtual environments that include large scale

communication, networked multimedia for sound and

video, and autonomous agents. Our motivation is sim-

ilar in that we would also like to create training envi-

ronments for situations either too expensive or

dangerous to create in the real world.

Dynamically simulated characters
We constructed the Border collie and Olympic bicy-

cle race environments to explore the use of interactive,

dynamically simulated characters in virtual environ-

ments. In these two systems, every character is a phys-

ically realistic, rigid-body simulation of either a hopping

one-legged robot or a bicycling human. Mass, moment

of inertia, and a polygonal model define the individual

character’s body parts. Telescoping joints or rotational

joints with one, two, or three DOF connect the bodies.

We use a commercially available system, SD-Fast (Sym-

bolic Dynamics), to compute the equations of motion

based on these parameters. Integrating these equations

determines a character’s configuration at a given

moment in time.

Because both cyclists and legged robots are active sys-

tems with simulated motors or muscles that provide an

internal source of energy, the characters need control

systems for locomotion. The control systems for bicy-

cling and hopping take a desired velocity as input and

compute the joint torques that will control speed and

direction of travel while maintaining balance.

Characters in virtual environments must not only

locomote in a natural manner, they must also interact

with the user and other characters in an intelligent fash-

ion. This interaction is accomplished through a behav-

ioral controller that allows the characters to move as a

group, avoid obstacles, and follow paths on the terrain.

The behavioral controller computes a desired velocity

for the locomotion controller based on the positions of

the character, its neighbors, and the user. Figure 2 shows

the layout of these controllers.

A virtual environment that includes dynamically sim-

ulated characters must have the following four compo-

nents: a user interface, a graphical description of the

world, dynamically simulated characters with associat-

ed behaviors, and a systems architecture that allows

real-time simulation of multiple characters. We now pre-

sent each of these components in more detail for the two

virtual environments.

Border collie environment
In the Border collie environment, the user pedals

and steers around a playing field while attempting to

IEEE Computer Graphics and Applications 5

Behavior
controller

Locomotion
controller

User Neighbors

Dynamic simulation

Position

Body
position

and
velocity

Desired
velocity

Body position
and velocity

Joint
torques

Positions

2 The input

and output of

the behavior

and locomotion

controllers.



herd a group of 16 dynamically simulated, one-legged

robots into an open corral. The robots maintain a group

formation as they roam the playing field and reactive-

ly flee from the user. The computation of the 16 robots

is distributed across a cluster of workstations that com-

municate the position of each robot via distributed,

shared memory.

The Border collie environment occupies the flat, oval

infield of the polygonal velodrome model extracted from

Diamond Park.12 At one end of the infield is a 10-meter-

square corral with a 6-meter opening in one side (see

Figure 3). The environment, consisting of 11,000 poly-

gons, and the robots, consisting of 500 polygons, are ren-

dered using the IRIS Performer Graphics API at 30 fps.

The user navigates through the environment by rid-

ing a modified Tectrix recumbent bicycle. The user ped-

als slower or faster to control speed and leans left or right

to steer (see Figure 4). Sensor measurements of these

actions are combined with a simple model of bicycle

dynamics to compute the user’s position in the virtual

environment. This interface provides the user with fair-

ly natural controls for general navigation. However, the

herding task is difficult because the bicycle has a large

turning radius and cannot easily reverse direction.

The user wears an i-glasses head-mounted display

(HMD) that tracks the roll, pitch, and yaw of the head.

This information, along with the user’s location, deter-

mines the world view presented through the display.

Wearing an HMD lets the user ride in one direction while

looking in another. Although some studies have found

that users do not always take advantage of this feature,

we have found it necessary in this setting when the user

attempts a flanking maneuver around the side of the

robot group.

Hopping one-legged robot. The Border collie

environment is populated by a herd of one-legged

robots. Each robot is modeled by a physically realistic,

rigid-body simulation (see Figure 5). A telescoping joint

connects the upper and lower cylindrical legs, and a

three-DOF hip joint connects the upper leg to the ellip-

soidal body.

The control system for hopping takes a desired veloc-

ity as input and computes the foot position at touchdown

that will achieve this desired velocity by the next liftoff.14

Flight duration is controlled by extending the telescop-

ing leg during stance to make up for losses in the sys-

tem. Exerting a torque between the body and the leg

during stance controls the body attitude.

We believe the dynamically simulated motion of the

one-legged robots is intuitive to users because it mim-

ics the movements of real legged systems. For example,

to turn left quickly, a legged robot must plant its foot out

to the right in much the same way football players cut to

avoid an opponent. The user can anticipate the change

in velocity by watching the angle of the robot’s leg dur-

ing flight.

Behavioral controller. We modeled the behav-

ioral controller of the one-legged robots to mimic the

actions of sheep moving as a herd while avoiding a Bor-

der collie. Like grazing sheep, the robots maintain a tight
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group formation and wander through the environment

together when the user is not nearby. When the user

moves close to the group, the robots reactively avoid the

user just as sheep will move away from a Border collie.

The behavioral controller must generate a desired veloc-

ity that satisfies the grouping, wandering, and fleeing

goals of each robot. To maintain the sense of presence in

the virtual environment, the autonomous behaviors of

the robots must accomplish these three goals without

causing the robot to fall down or allowing the behaviors

to become repetitive.

To maintain a tight group formation, the behavioral

controller computes a velocity, vherd, that should move

each robot away from nearby neighbors and toward dis-

tant ones (see Figure 6). When every robot in a group

exhibits this behavior, the robots settle into a circular

pattern with roughly equal spacing.7

We generated a wander behavior to make the robots’

movement through the environment more interesting.

The behavioral control algorithm calculates the centroid

of the robot group and computes a vector between this

centroid and a random goal position on the terrain. The

rate at which the robots move toward the goal, vgoal, is

proportional to the distance to the goal. When the cen-

troid of the group reaches the vicinity of the goal, the

behavioral controller selects a new goal position. The

alert user can capitalize on a herd that wanders too close

to the corral.

The group of robots abandons its wandering behav-

ior and reactively flees from a user who comes within

15 meters of the group’s centroid. The behavioral con-

troller computes a desired position for the group’s cen-

troid just beyond this threshold on the extended line

between the user and the centroid. The controller then

creates a velocity, vuser, that moves the group towards

this desired position.As with the wander behavior, vuser

is proportional to the robot’s proximity to the user. We

combined these three behaviors by setting the desired

velocity for each robot to v = 0.5 (vherd + vuser) when the

user comes within 15 meters of the robot group, and 

v = 0.5 (vherd + vgoal) otherwise.

The interaction of these three goals causes the robots

to hop out of phase after just a few seconds of simula-

tion. When the user moves close to the herd, the robots’

response is also staggered in time because each robot

must have a foot in contact with the ground in order to

change its velocity (see Figure 7). The visual complexi-
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ty created by the variation in hopping and reacting to

the user makes the virtual environment more interest-

ing. The herd of robots’ behavior remains intuitive

because the individual robots move as legged systems

do in the real world.

System architecture. The diverse computational

requirements of the Border collie environment led us

to use multiple machines, each specifically suited to

perform a particular function of the overall system (see

Figure 8). Five machines are dedicated to computing

the motion of the simulated characters, one manages

the bicycle user interface, and one generates the ren-

dered images.

Simulating the one-legged robots consumes the major-

ity of the computational resources. A 250-MHz Sun Ultra-

Sparc can simulate three one-legged robots in real time.

In the context of these virtual environments, real time

means the time required to compute one second of sim-

ulated motion equals one second of wall-clock time. The

rendering process produces new images at a rate of about

30 fps, or every 0.033 seconds. To produce accurate robot

positions for each new frame, the simulation must exe-

cute until 0.033 seconds of simulated

time has passed. If a machine com-

putes the simulated passage of 0.033

seconds before an equivalent amount

of wall-clock time has passed, the

simulation must pause to prevent

rendering an image where the robot

positions are sampled from inconsis-

tent moments in time.

We use a system called Beehive to

provide synchronization protocols

for the cluster of networked Sun

UltraSparcs that execute the simu-

lations.15 Beehive provides a soft-

ware barrier to enforce global time

synchronization between the simu-

lations. The software barrier also

triggers a process that obtains the

body geometry transformations

from each simulation and transmits

a UDP datagram stream to the computer rendering the

user’s view of the graphical world.

We selected the frequency of this barrier to provide

the rendering process with accurate robot body trans-

formations 30 times per second. The amount of time that

a simulation process blocks due to the barrier depends on

the capabilities of each processor performing the simu-

lation computations. Because we use a homogeneous set

of processors during periods of low load, we expect all

robot simulations to proceed at similar rates. Therefore,

a simulation process does not spend much time waiting

for other processes to complete.

In addition to providing synchronization tools, Beehive

also provides virtual shared memory access across the

cluster of networked simulation servers. To conserve com-

munication bandwidth between the cluster machines

that compute the physical simulations, each robot simu-

lation accesses the positions of its neighbors and the user

only when the behavioral controller needs that informa-

tion. Because the new desired velocity is calculated dur-

ing flight, the position data is requested as the robot’s foot

leaves the ground. The virtual shared memory access pro-

vided by Beehive causes very little delay in the acquisi-

tion of neighboring robot position data.

The Tectrix recumbent bicycle we use in the Border

collie environment outputs the lean angle and pedal

rates to a 200-MHz, R4400 SGI Indy. The Indy process-

es and integrates this data with a simple model of bicy-

cle dynamics to compute the user’s position and body

orientation in the virtual environment. The Indy also

interfaces with an i-glasses HMD that includes a head

tracker to monitor head roll, pitch, and yaw. Every 0.033

seconds the Indy transmits the user’s current position

to the simulations on the UltraSparc cluster. It also sends

the user’s position and head orientation to the machine

rendering the scene.

The Border collie environment uses a dual-processor

194-MHz, R10000 SGI Onyx2 with InfiniteReality

graphics to perform the rendering. Three processes run

on this machine and communicate through shared

memory. The rendering process uses the IRIS Performer

Graphics API to create, illuminate, and render images
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of the environment. The positions of the one-legged

robots in the environment are obtained by a process that

monitors a network port for data packets sent from the

simulation cluster . The camera’s position is generated

by a process that receives data packets from the Indy

interfacing the user’s bicycle.

Olympic bicycle race environment
In the Olympic bicycle race environment, the user

rides with 16 simulated cyclists through the streets of

the 1996 Olympic road racecourse in Atlanta. In this

environment, an athlete can experience the course both

visually and physically by wearing an HMD and riding

a bicycle that tilts and applies an adjustable load to the

rear wheel. The behavioral controller creates a dynam-

ic formation of simulated cyclists that ride at varying

speeds through the course. Computing the simulated

motion for the 16 cyclists proceeds in real time on a mul-

tiprocessor that provides shared memory for commu-

nication between simulations.

The virtual environment accurately models the roads

and terrain of the racecourse. Using topographic maps

obtained from the Atlanta Water Works, we digitized and

modeled the racecourse, side streets, and surrounding

terrain of the 13-kilometer course, preserving dimen-

sions and height information. The counter-clockwise

course begins at the southeast corner and has a maxi-

mum incline of 13 percent and decline of 4 percent (see

Figure 9). The road surface is modeled with one nonuni-

form rational B-spline (NURBS) surface and the sur-

rounding terrain with a second. After the surfaces have

been triangulated, the environment has 26,000 trian-

gles (including a sparse layout of houses and trees), and

each cyclist consists of about 300 polygons.

The bicyclist simulation interfaces with the triangu-

lated road surface in two ways. To provide the simulat-

ed cyclist’s perceptual system with knowledge about the

road’s path, we manually created a set of points repre-

senting the centerline of the road and fit a Catmull-Rom

spline to the points. The behavioral controller uses this

spline to guide the cyclist down the road. The dynamic

simulation of the cyclist and the simpler simulation of

the avatar’s movement also require height information

for the road surface. We implemented a quadtree spatial

subdivision of the road surface to efficiently determine

the road’s height at a particular location.

We have experimented with the placement of addi-

tional polygonal objects to improve the user’s perception

of motion in the environment. Light posts, fire hydrants,

trees, and houses along the side of the course not only

provide the sensation of rapidly moving objects in the

user’s field of view, but also provide the visual cues of par-

allax. Simple texture maps on the road and grass surfaces

contribute to the sensation of motion (see Figure 10).

The user rides a racing bicycle that measures control

inputs and provides feedback (see Figure 11 next page).

The user can steer in a ±20-degree range, brake, and

change gears while pedaling through the environment.

The bicycle is instrumented to measure the speed of the

rear wheel and the turning angle of the front wheel.

These measurements are combined with the simple

model of bicycle dynamics used in the Border collie envi-

ronment to compute the user’s position in the virtual

environment. The bicycle is mounted on a motion plat-

form that pitches fore and aft by ±12 degrees to provide

the user with feedback about the road’s slope. The bicy-

cle’s rear wheel connects to a generator and flywheel to

allow limited freewheeling and to match the wheel load

to the terrain angle. The user wears an i-glasses HMD

that provides head tracking and lets the user selective-

ly focus on particular neighbors or look ahead to plan a

path through the next corner.

The bicyclist and riding controller. A 12-

segment, rigid-body model connected by rotary joints

with 17 controlled DOF models the simulated bicycle
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rider. Some joints, like the knee, are modeled as a single-

axis pin joint. Other joints, like the waist and shoulder,

are modeled by three-axis gimbal joints (see Figure 12).

A detailed polygonal model is used to compute the mass

and moment of inertia for each body part (see Table 1).

We obtained a simple polygonal version of the cyclist

from Diamond Park (see Figure 13) and used this model

as the graphical representation of the cyclist in the envi-

ronment to preserve interactive rendering rates.

The cyclist must maintain balance while attempting to

match the desired velocity specified by the behavioral

controller. To steer, the simulated human rider applies

forces to the handlebars with the hands. To provide

propulsion, the simulated cyclist applies forces to the

pedals through joint torques at the hips and knees.

Spring and damper systems connect the hands to the

handlebars, the feet to the pedals, and the crank to the

rear wheel. The connecting springs

are two-sided, and the cyclist can

pull up on the pedals as if the bicycle

were equipped with toe-clips. The

details of the bicycling control sys-

tem appear in Hodgins et al.16

The motion of the dynamically

simulated cyclist exhibits some of

the subtle details present in real

bicycling. For example, to complete

a right turn, the simulated cyclist

must first steer to the left slightly

and shift the center of mass to the

right side of the bicycle. Then the

cyclist steers to the right until the

desired turn is completed. Because

the rate at which the center of mass

shifts to the right is a function of the

system dynamics, the cyclist has a

limited turning rate.

Behavioral controller. The

behavioral controller for the Olympic

bicycle race environment lets each

cyclist ride around the racecourse

alone or in a group including other

simulated cyclists. Like the behavioral controller for the

one-legged robots, this controller combines three goals

to compute a desired velocity: remain on the road, ride

as a group, and ride with the user.

To prevent the cyclists from riding off the road, the

behavioral controller computes a desired direction of

travel for each bicycle and multiplies this direction by a

predetermined training speed to obtain a desired veloc-

ity, vroad. The goal position that lies a specified distance

beyond the cyclist’s current location determines the

direction of travel for each cyclist (see Figure 14). The

goal position is computed by first finding the point on

the centerline spline closest to the cyclist’s current posi-

tion, then by calculating a point a given distance further

along the spline. If the cyclist is not currently riding on

the centerline, then the goal position is moved out on a

line perpendicular to the tangent to the spline. This pre-

Animating Humans

10 September/October 1998

11 The user

rides a racing

bicycle mount-

ed on a plat-

form.

12 The con-

trolled DOF of

the bicycle and

human models.

The human

model has 11

joints; the DOF

at each joint are

shown, as are

the 4 DOF of

the bicycle

model. A pivot

joint connects

the rider’s pelvis

to the bicycle

seat. The polyg-

onal models

were purchased

from Viewpoint

Datalabs.



serves the cyclist’s relationship to the centerline. We

empirically determined that when the goal position lies

30 meters ahead on the road, the cyclists could complete

the entire 13-kilometer course. This heuristic for road

following places the cyclists near the center of the road

on the straight sections while smoothing their path

through tight corners, but it does not necessarily calcu-

late optimal paths through corners.

Cyclists routinely ride in groups because the middle

and rear riders expend 30 to 40 percent less energy than

the leading edge of the pack.17 The behavioral controller

achieves similar grouping behaviors by computing a

goal position relative to each cyclist that moves it clos-

er to distant neighbors and further from close neigh-

bors. A desired position, pi, is computed relative to each

of the n neighbors within a given visibility range. A sec-

ond desired position, puser, is computed relative to the

user’s position. The goal position is a weighted average

of these desired positions, represented by

where di is the distance between the cyclist and the ith

neighbor and duser is the distance to the user. The error

between the current position of the cyclist, p, and the

goal position is e = p − pgoal. To eliminate this error, a

new desired velocity is computed using a spring and

damper system: v = vroad + kde + kv , where is the

rate of change of the error in desired position. For the

experiments reported here, kd = 0.1 and kv = 0.01.

System architecture. Like the Border collie envi-

ronment, the Olympic bicycle race environment requires

significant distributed computational power to render

the environment and simulated characters, interface

with the bicycle hardware, and compute the motion of

the simulated characters. Each dynamically simulated

cyclist runs in real time as a separate process on an SGI

Power Challenge with 16 195-MHz R10000 processors.

The simulations communicate position information to

one another through shared memory. The shared mem-

ory and synchronization protocols are implemented in

hardware on the Power Challenge, but their functional-

ity is identical to the Beehive system used for the Border
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Table 1. Parameters of the rigid-body model of a human. The moments of inertia are computed about

each link’s center of mass.

Link Density (g/cm3) Mass (kg) Moment of Inertia(x,y,z kgm2)

Upper Body 1.00 34.24 1.390 1.298 0.337
Pelvis 1.03 16.61 0.23 0.18 0.16
Upper Leg 1.04 8.35 0.15 0.16 0.025
Lower Leg 1.08 4.16 0.055 0.056 0.007
Foot 1.07 1.34 0.002 0.008 0.007
Upper Arm 1.07 2.79 0.025 0.025 0.0050
Lower Arm 1.10 1.78 0.0218 0.0230 0.0023

Forces applied by 
rider on handlebars 
turn the fork and 
steer the bike

Wheels roll on 
ground without 
slipping

Forces applied by rider on pedals are 
applied to crank and then to rear wheel

14 The behavior controller for a cyclist produces a desired velocity based

on its position relative to a lookahead distance along the center of the

road, 1; its neighbors, 2; and the user, 3. The desired velocity is computed

from the weighted average of these three relative positions (represented

by the triangle).

13 The stylized polygonal model of the simulated cyclist.



collie environment. The synchronization ensures that all

the simulations compute at identical rates and triggers

the transmission of body geometry transformations to

the graphics engine. Another process receives the user

position from the graphics engine and places this data

in the shared memory region.

A 200-MHz, R4400 SGI Indy interfaces with the bicy-

cle hardware—a Motorola 68332—through a serial con-

nection. Sensors on the bike platform measure the rear

wheel’s rotation rate and the front wheel’s steering

angle. The Indy uses this data to drive a simple model

of the bicycle dynamics on the polygonal terrain to com-

pute the user’s position in the virtual world. The slope of

the terrain at the user’s current position determines the

pitch angle of the bicycle platform and the resistance on

the rear wheel. This information is sent to the Motoro-

la 68332, which controls the motors on the bike plat-

form that adjust the pitch angle and rear wheel rolling

resistance.

The Indy sends the head orientation obtained from

the i-glasses along with the rotation rate of the rear

wheel and the steering direction of the front wheel to

the graphics engine. The graphics engine integrates the

simple model of bicycle dynamics to calculate the exact

camera position and orientation at every new frame.

The graphics engine also renders the image and sends

the bike position to the shared memory region of the

machine computing the simulations.

Discussion
These two virtual environments represent a first step

toward populating interactive environments with

dynamically simulated characters that move and behave

realistically. While previous research has described how

dynamic simulations enhance the realism of animated

motion, researchers are just beginning to investigate

how to effectively use dynamically simulated characters

in virtual environments. Our preliminary results indi-

cate that dynamic simulations allow a variety of behav-

iors while realistically portraying a character’s physical

capabilities in an intuitive fashion.

We believe that the realistic nature of dynamic sim-

ulation makes the characters’ movement intuitive to

the user. The visual cues provided by the dynamic sim-

ulations help create a feeling of immersion in the syn-

thetic environments. For example, the simulated

cyclists usually slow when riding up hills because they

have to work harder. As the cyclists approach a turn,

they swing out in preparation for the lean into the turn.

The herd of one-legged robots exhibits similar behav-

ior. If the herd is hopping along in a constant direction

at a constant speed, the motion will be fairly static with

little leg motion. When the player approaches the herd

in an attempt to guide them into the corral, the motion

suddenly becomes much more dynamic as the robots

begin to change direction. The direction change

requires a robot to kick its leg out to the side during the

flight phase, much like the cyclist preparing for a turn

or even a human preparing to make a sudden change

of direction. 

The disadvantage of these realistic responses is that

in extreme situations, the character may lose its bal-

ance and fall down. Either the higher level behaviors

must be sufficiently conservative that failures do not

occur or falling down must be presented in a realistic

fashion as part of the virtual environment’s story line.

These physically correct reactions to the environment

and user provide a degree of realism not yet reached

with other animation methods for real-time motion

generation.

However, the visual cues provided by the simulations

are only as realistic as the level of physical modeling.

For the simulations described here, we included plau-

sible dimensions, mass, and moment of inertia values.

Our simulations could be improved however, as we do

not include friction or rough terrain in the ground con-

tact model, the reduced aerodynamic drag from riding

behind the leader of a pack, or the reaction to collisions

between characters.

Repeating behaviors are commonly regarded as one

of the quickest ways to destroy the sense of presence in

an immersive environment. This phenomenon rarely

occurs in the real world because actors adjust their

actions slightly in response to changes in goals and the

environment. This variety proves harder to achieve in

virtual environments depicting simplistic scenarios that

usually lack intricate details in the environment. 

We believe that because the interactions between

the user and the group of cyclists in the Olympic bicy-

cle race environment are complex, the behaviors of the

simulated cyclists will not quickly seem repetitive. In

part, this lack of repetition is easily achieved because

the characters respond to the user in a continuous fash-

ion rather than by selecting from a discrete set of

actions. If the user approaches the group of cyclists

from a 45-degree angle, their response will differ

slightly from their response to a 40-degree-angle

approach. 

As we continue to develop the Olympic bicycle race

environment, the behavioral controller will include

more discrete behaviors like initiating a breakaway,

rotating out of the front position in the pack, and climb-

ing while standing out of the saddle. With these dis-

crete changes in actions and goals, the behavioral

controller will no longer be able to average the goals of

the system and achieve reasonable performance. We

will then have to address such problems as the recog-

nizable repetition of discrete actions and rapid dither-

ing between behaviors. The developers of environments

with keyframed and motion capture driven characters

have already explored these issues, and we should be

able to build on their results. n
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