
The Max K-Armed Bandit:
A New Model of Exploration Applied to Search Heuristic Selection

Vincent A. Cicirello
Department of Computer Science

Drexel University
Philadelphia, PA 19104
cicirello@cs.drexel.edu

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

sfs@cs.cmu.edu

Abstract

The multiarmed bandit is often used as an analogy for the
tradeoff between exploration and exploitation in search prob-
lems. The classic problem involves allocating trials to the
arms of a multiarmed slot machine to maximize the expected
sum of rewards. We pose a new variation of the multiarmed
bandit—the Max K-Armed Bandit—in which trials must be
allocated among the arms to maximize the expected best sin-
gle sample reward of the series of trials. Motivation for the
Max K-Armed Bandit is the allocation of restarts among a
set of multistart stochastic search algorithms. We present an
analysis of this Max K-Armed Bandit showing under certain
assumptions that the optimal strategy allocates trials to the
observed best arm at a rate increasing double exponentially
relative to the other arms. This motivates an exploration strat-
egy that follows a Boltzmann distribution with an exponen-
tially decaying temperature parameter. We compare this ex-
ploration policy to policies that allocate trials to the observed
best arm at rates faster (and slower) than double exponen-
tially. The results confirm, for two scheduling domains, that
the double exponential increase in the rate of allocations to
the observed best heuristic outperforms the other approaches.

Introduction
The K-Armed Bandit often serves as an analogy for balanc-
ing exploration and exploitation in search domains (Berry
& Fristedt 1985). The problem is to allocate trials to the
arms of a k-armed bandit (i.e., slot machine with k arms,
each with a different pay-out distribution) with the goal
of maximizing expected total reward. Many have ana-
lyzed variations of the bandit problem (e.g., (Agrawal 1995;
Auer, Cesa-Bianchi, & Fischer 2002; Auer et al. 2002;
Berry & Fristedt 1985; Holland 1975)). Others have used
bandits as inspiration for, or justification of, exploration
strategies—e.g., for genetic algorithms (Holland 1975) and
reinforcement learning (Sutton & Barto 1998).

In this paper, a new variation of the multiarmed bandit
is posed—the Max K-Armed Bandit Problem. The prob-
lem, simply stated, is to allocate trials among the k arms
so as to maximize the expected best single sample reward.
Our motivation is the problem of allocating restarts among
multistart stochastic search algorithms to maximize over-
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all search results. Consider an NP-hard combinatorial opti-
mization problem, a stochastic search algorithm that can be
biased by a search heuristic, and a set of heuristics which
perform differentially on different problem instances. In
solving any given problem instance, one would like to dy-
namically determine and exploit the heuristic that yields the
best search performance on this instance. At any point dur-
ing the search, the goal of future restarts is to find a solution
that is better than the current best found. The original mul-
tiarmed bandit is concerned with maximizing the expected
sum of rewards. However, this does not match the goal in
our stochastic search example. In the stochastic search case,
we have our current reward (i.e., the best solution found so
far) and need to find some reward that is better yet.

Prior research has argued that extreme value theory offers
a good model for the distribution of solutions that would
be produced across iterations of a heuristic biased stochas-
tic sampling procedure when using the bias of a strong do-
main heuristic (Cicirello & Smith 2004). Starting from this
assumption, we show theoretically that the optimal explo-
ration policy for the Max K-armed Bandit allocates a dou-
ble exponentially increasing number of trials to the observed
best heuristic. We then empirically validate this exploration
policy in two complex scheduling domains: (1) weighted
tardiness sequencing; and (2) resource constrained project
scheduling with time windows.

TheK-Armed Bandit: Holland’s Analysis

The k-armed bandit is a major part of the theoretical under-
pinning of the genetic algorithm (GA). Holland (1975) uses
the k-armed bandit analogy to show that the GA achieves a
near-optimal tradeoff of exploration and exploitation.

For the two-armed bandit, the expected reward for arm
one is µ1 with variance σ2

1 (µ2 and σ2
2 for arm two). Further-

more, µ1 ≥ µ2, but it is not known which arm is which. The
problem is to maximize expected reward for a series of tri-
als. One must determine the optimal tradeoff of exploratory
actions (i.e., to discover the payoffs) and exploitation actions
(i.e., playing the apparent best). The k-armed bandit is the
obvious generalization. Let R(µ, σ) be a reward function
that samples a normal distribution with mean µ and stan-
dard deviation σ, and let ni be the number of samples given



the i-th arm. The objective is to allocate the ni to optimize:

max
k∑

i=1

niR(µi, σi). (1)

If the µi are known, then all N trials should be allocated to
the arm with the largest µi to maximize the expected value of
this objective. Without knowledge of the µi, it is necessary
to perform some exploration to solve the problem.

For the two-armed bandit, Holland showed the optimal
policy (to minimize expected loss from trials of the worst
arm) allocates n∗ trials to the worst arm, and N − n∗ to the
best arm where in the limit:1

N − n∗ ∼ Θ(exp(cn∗)), (2)

where c is a constant. The trials allocated the observed best
arm should increase exponentially relative to the allocation
to the observed worst arm. Holland generalized this to the
k-arm case, showing the worst-case expected loss for the
problem occurs when µ2 = µ3 = . . . = µk and σ2 = σ3 =
. . . = σk; and further showing that the best arm should be
allocated N − (k − 1)m∗ trials where N is the total number
of trials and where each of the other k−1 arms are allocated
m∗ trials. The optimal number of trials, in the limit, is:

N − (k − 1)m∗ ∼ Θ(exp(cm∗)). (3)

The number of trials allocated to the observed best arm in
the optimal allocation should increase exponentially with the
number of trials allocated to each of the other k − 1 arms.

The MaxK-Armed Bandit
We now pose a new variation of the multiarmed bandit called
the Max K-Armed Bandit. In the Max K-Armed Bandit
Problem, we are faced with a series of N trials. In any given
trial, we can choose any of the k arms. For each of the arms
there is an expected payoff according to some probability
distribution. The goal is to maximize the value of the best
single reward received over the N trials. This new objective
is to allocate N trials among the arms to optimize:

max
k

max
i=1

nimax
j=1

Rj(Di), (4)

where Rj(Di) is the reward of the j-th trial of arm i with
reward distribution Di.

In the following subsections, we develop a solution to the
Max K-Armed Bandit problem. Under certain assumptions
about the distribution of samples of an arm, we show that
to maximize the expected max single sample reward over
N trials, the number of samples taken from the observed
best arm should grow double exponentially in the number of
samples taken from the observed second best. We proceed
in three steps. First, we make some assumptions about the
payoff distributions associated with each arm. Then we con-
sider the special case of two arms. Finally, we generalize
this solution to K arms.

1See Holland (1975) for complete derivation.

Payoff Distribution Assumptions
To analyze the Max K-Armed Bandit, it is necessary to
specify the type of distribution that each of the arms fol-
low. In the classic version of the bandit problem, this is
not necessary. Since the classic problem concerns the max-
imization of the expected sum of rewards, it is sufficient to
make assumptions about the means and standard deviations
of the arms. In the Max K-Armed Bandit case, we require
an expression for the expected max of a series of N trials as
a function of N . This necessitates an assumption about the
form of the underlying distribution of trials. The extremal
types theorem tells us that the distribution of the max of a
series of independent and identically distributed trials (as the
length of the series grows large) belongs to one of three dis-
tribution families independent of the underlying distribution
of the trials: the Gumbel, the Fréchet, or the Weibull (Coles
2001). This seems to allow us to carry through with an anal-
ysis independent of the form of the distributions of the sam-
ples drawn from the arms of the bandit. However, an expres-
sion is needed in terms of the length of the series of trials,
requiring an assumption on the underlying distribution.

To make an appropriate assumption we consider the tar-
get application—allocating restarts among a set of multistart
stochastic search heuristics for combinatorial optimization.
Cicirello and Smith (2004) argue that a stochastic search
procedure that is biased by strong domain heuristics sam-
ples from the extreme of the solution quality distribution of
the underlying problem space. They showed that such an
algorithm generally finds “good” solutions for combinato-
rial optimization and that “good” solutions are statistically
rare in the overall solution space (i.e., extremely low prob-
ability of drawing a “good” solution at random). If we ran-
domly sample N solutions, then for large N , the best sam-
ple (or maximum element) must follow the extremal types
theorem—by definition. The assumption is that the behavior
of a stochastic search procedure that is biased by a strong do-
main heuristic is equivalent to taking the best solution from
a sufficiently large series of unbiased random samples. Fol-
lowing extreme value theory, we assume that individual so-
lutions given by the stochastic search are drawn from one
of three distribution families: Gumbel, Fréchet, or Weibull
(generalized as the Generalized Extreme Value (GEV) dis-
tribution).

Since an assumption of the most general GEV distribu-
tion prevents a closed form analysis, let us instead assume
that each of the arms samples from a type I extreme value
distribution (or the Gumbel distribution). This distribution
has a cumulative probability of:

P (Z ≤ z) = G(z) = exp
(
− exp

(
−

(
z − b

a

)))
, (5)

where b is the location parameter and a the scale parameter.
The probability density function of the Gumbel is:

P (Z = z)

= 1
a exp

(
−

(
z−b

a

))
exp

(
− exp

(
−

(
z−b

a

))) . (6)



The Max 2-Armed Bandit Case
Theorem 1 The Two-Armed Double Exponential Sampling
Theorem: To optimize the Max 2-Armed Bandit, where the
arm samples are drawn from Gumbel distributions, the ob-
served best arm should be sampled at a rate that increases
double exponentially relative to the observed second best.
Let there be two arms, M1 and M2, with the rewards of

Mi drawn from a Gumbel distribution Gi(x) with location
parameter bi and scale parameter ai. The mean reward of a
single sample of Mi is: µi = bi + 0.5772ai, where 0.5772
is Euler’s number, and the standard deviation is: σi = aiπ√

6
.

Proof Given that the expected largest sample of a series of
trials must be maximized, an expression is needed for the ex-
pected value of the maximum of a series of samples. Given
N samples {X1, . . . , XN} from a distribution, the probabil-
ity that the maximum of these samples equals x is:

P (max(Xi) = x) = N P (X = x)P (X ≤ x)N−1. (7)

With the assumption of samples drawn from a Gumbel dis-
tribution, we have:

P (max(Xi) = x) =

N
a exp(−x−b

a ) exp(− exp(−x−b
a ))

exp(−(N − 1) exp(−x−b
a ))

.

(8)
This simplifies to:

P (max(Xi) = x) = 1
a exp(−x−b−a ln N

a )

exp(− exp(−x−b−a ln N
a )). (9)

From this we see that the distribution of the max of N sam-
ples drawn from a Gumbel distribution with location param-
eter b and scale parameter a is also a Gumbel distribution
with location parameter, bmax = b + a ln N and scale pa-
rameter amax = a. Thus the expected max reward of N
samples from each of the two arms in the problem is:

bi + 0.5772ai + ai ln N. (10)

Consider that M1 is the better of the two arms in the prob-
lem. This necessitates a definition for “better”. Let:

b1 + 0.5772a1 + a1 ln N > b2 + 0.5772a2 + a2 ln N (11)

which implies that a1 ≥ a2. Otherwise, for great enough N
this inequality would fail to hold.

In the two-armed problem, where we do not know with
certainty which arm is M1 and which is M2, the expected
max reward if we had access to an omniscient oracle is
clearly b1 +0.5772a1 +a1 ln N —the expected max reward
of giving all N trials to the better arm. However, given that
we cannot know with certainty which arm is which, some
exploration is necessary. Consider that we draw n samples
from the observed second best arm, and N−n samples from
the observed best arm. Now consider the loss of reward as-
sociated with sampling from the second best arm. There are
two cases to consider:

1. The observed best is really the best. In this case, the loss
comes from giving n less samples to the best arm—with
an expected loss equal to: a1(ln N − ln (N − n)).

2. The observed best arm is really second best. The loss in
this case depends on whether the expected value of giving
N −n samples to the second best arm is greater than giv-
ing n samples to the best arm. That is, the expected loss
is: min{a1(ln N − ln n), (b1 − b2) + 0.5772(a1 − a2) +
a1 ln N−a2 ln (N − n)}. This form of loss is maximized
when the expected value of the max of n samples of the
best arm equals that of N −n samples of the second best.
This allows us to consider a simplification of the expected
loss in this case: a1(ln N − ln n).2

Let q be the probability that the observed best arm is really
second best. Therefore, (1−q) is the probability that the ob-
served best really is the best. The expected loss of sampling
n times from the observed second best and N−n times from
the observed best arm, as a function of n is therefore:

l(N) = q(a1(ln N−ln n))+(1−q)(a1(ln N−ln (N − n))).
(12)

This can be simplified to:

l(N) = q(a1(ln (N − n)− ln n))+a1(ln N − ln (N − n)).
(13)

To select a value for n that minimizes the expected loss,
we need to define q as a function of n. Let Mb be the arm
that is perceived as best (i.e., the arm perceived to have the
highest expected max single sample reward over a series of
N trials) and Mw be the arm that is perceived as second
best. The probability q can be stated as the probability that
the expected max value of N samples of Mw is greater than
the expected max value of N samples of Mb. If we note that
the parameters of a Gumbel distribution can be estimated
(see (NIST/SEMATECH 2003)) from the data by ã = s

√
6

π

and b̃ = X̄ − 0.5772ã, where X̄ and s are the sample mean
and sample standard deviation, then we can define:

q(n) = P

⎛
⎝ (b̃b + 0.5772ãb + ãb ln N)

−(b̃w + 0.5772ãw + ãw ln N)
< 0

⎞
⎠(14)

= P

(
(X̄b + sb

√
6

π ln N)
−(X̄w + sw

√
6

π ln N) < 0

)
(15)

= P

(
X̄b − X̄w < (sw − sb)

√
6

π
ln N

)
. (16)

The central limit theorem says that X̄b approaches a normal
distribution with mean µb and variance σ2

b

N−n . Similarly, X̄w

approaches a normal distribution with mean µw and vari-
ance σ2

w

n . The distribution of X̄b − X̄w is the convolution
of the distributions X̄b and −X̄w. The convolution of these
distributions is by definition a normal distribution with mean

2Alternatively, we could also consider the simplification (b1 −
b2)+0.5772(a1 − a2)+ a1 ln N − a2 ln (N − n), but this would
unnecessarily complicate the analysis.



µb − µw and variance σ2
b

N−n + σ2
w

n . Using an approximation
for the tail of a normal distribution, we can define q(n) as:

q(n) <∼ 1√
2π

exp(−x2/2)
x

(17)

where

x =
(µb − µw) +

√
6

π ln (N)( σb√
N−n

− σw√
n
)√

σ2
b

N−n + σ2
w

n

. (18)

Given the expressions for q(n) and x, note that q(n) de-
creases exponentially in n. Using the same simplification
made by Holland (1975), note that no matter the value for
σb, there is a large enough N such that for n close to its
optimal value, σ2

b

N−n � σ2
w

n . This leads to:

x
<∼

(µb − µw)
√

n − σw

√
6

π ln N

σw
(19)

To select the value of n that will minimize the loss l(n)
we begin by taking the derivative of l(n) with respect to n:

dl

dn
=

dq
dn (a1(ln (N − n) − ln n))

−q(n)( a1
N−n + a1

n ) + a1
N−n

, (20)

where
dq

dn

<∼ −q(n)
x2 + 1

x

dx

dn
, (21)

and
dx

dn

<∼ µb − µw

2σw
√

n
. (22)

The optimal value of n occurs when dl
dn = 0 so we can get a

bound on the optimal n by solving the following inequality:

0 <∼ a1

N − n
− q(n)

a1N

N − n

−q(n)
x2 + 1

x

dx

dn
(a1(ln (N − n) − ln n)). (23)

We can collect the logarithmic terms on the left to obtain

ln (N − n) − ln n
<∼ (1 − q(n)N)x

(N − n)q(n) dx
dn (x2 + 1)

(24)

Recalling that q(n) decreases exponentially in n, (1 −
q(n)N) rapidly approaches 1. Noting x

x2+1

<∼ 1
x , obtain:

ln (N − n) − ln n
<∼ 1

(N − n)q(n) dx
dnx

(25)

Substituting expressions for q(n) and dx
dn we get:

ln (N − n) − ln n
<∼

σw

√
8π

√
n

(N−n)(µb−µw) exp
(

(µb−µw−σw
√

6
π
√

n
ln (N))2 n

2σ2
w

)
(26)

Finally, exponentiate both sides of the inequality, to obtain:

N − n
<∼

exp

⎛
⎝ ln (n)+

σw

√
8π

√
n

(N−n)(µb−µw) exp
(

(µb−µw−σw
√

6
π
√

n
ln (N))2 n

2σ2
w

) ⎞
⎠

(27)
The question that remains is which term in the exponential

dominates the expression. We can take the fraction involv-
ing N − n up into the exponential and gain insight into the
answer to this question:

N − n
<∼ exp

⎛
⎜⎜⎝

ln (n)+

exp

⎛
⎝ (µb−µw−σw

√
6

π
√

n
ln (N))2 n

2σ2
w

+ ln
(

σw

√
8π

√
n

(N−n)(µb−µw)

)
⎞
⎠

⎞
⎟⎟⎠ .

(28)
We must now determine which part of this double exponen-
tial dominates as the total number of samples N grows large.
Consider the following limits:

lim
N→∞

(
µb − µw − σw

√
6

π
√

n
ln (N)

)2

n

2σ2
w

= ∞ (29)

lim
N→∞

ln

(
σw

√
8π

√
n

(N − n)(µb − µw)

)
= −∞ (30)

Note that the first expression is dominated by the (ln N)2
and that within the logarithm of the second expression, the
N in the denominator dominates. For large enough N , it is
sufficient to consider which of (ln N)2 and ln (1/N) domi-
nates. Consider the following:

limN→∞{(ln N)2 + ln (1/N)}

= limN→∞{(ln N)2 + ln 1 − ln N}

= limN→∞{ln N (ln N − 1)}

= ∞
(31)

Taking this into account and making a few other obvious
simplifications, we can arrive at:

N − n ∼ Θ(exp(exp(cn))) (32)

This shows that the number of trials N − n given to the
observed best arm should grow double exponentially in n to
maximize the expected max single sample reward.

Generalization to theK-Armed Case
Theorem 2 The Multiarmed Double Exponential Sampling
Theorem: To optimize the Max K-Armed Bandit (samples
drawn from Gumbel distributions), the observed best arm
should be sampled at a rate increasing double exponentially
relative to the number of samples given the other k−1 arms.

Proof To make this inductive leap from the result of the
two-arm case to the k-arm case, observe the following. The
worst case loss in the k-armed case occurs when the k − 1



worst arms are identical (as is the case in Holland’s analysis
of the original k-armed bandit). If these k − 1 arms are
identical then it doesn’t matter how we allocate trials among
them—the result is equally poor. But, if any of these k − 1
arms is better than any of the other k − 2 arms, then we can
improve our expected reward by allocating more trials to it.
Assume the worst case that the k − 1 arms are identical.
With m∗ trials given to each of these k − 1 worst arms, the
analysis of the k-armed case can be considered a special case
of the analysis of the two-armed problem. Specifically, we
have the observed best arm and a meta-arm comprised of
the aggregation of the other k − 1 arms. The meta-arm is
given n∗ = m∗(k − 1) trials uniformly distributed across
the k − 1 arms. Since the k − 1 arms are identical in the
worst case, the meta-arm behaves identically to the second
best arm in the two-arm case. Thus, the number of samples
N − m∗(k − 1) given the observed best arm should grow
double exponentially in n∗ = m∗(k − 1).

Exploration Strategy
Recall that our goal is to find a good exploration strategy for
allocating trials to different heuristics. To design an explo-
ration policy that follows the double exponential sampling
theorems, consider Boltzmann exploration (Sutton & Barto
1998). Let the temperature parameter T decay exponen-
tially, choosing heuristic hi with probability:

P (hi) =
exp((Ri)/T )∑H

j=1 exp((Rj)/T )
. (33)

The Ri is some indicator/estimator of the expected max of
a series of trials of heuristic hi. For example, Ri can be
an estimator for the expected max for some fixed length
series of trials given some distribution assumption. To de-
rive the double exponentially increasing allocation of trials
to the observed best arm, the temperature parameter must
follow an exponentially decreasing cooling schedule (e.g.,
Tj = exp(−j) where j is the trial number). That is, on
iteration j choose heuristic hi with probability:

P (hi|j) =
exp((Ri)/ exp(−j))∑H

k=1 exp((Rk)/ exp(−j))
. (34)

Next we present results from NP-hard scheduling domains
that contrast the performance of this exploration policy with
policies that allocate trials to the observed best heuristic at
rates greater (and lesser) than double exponentially.

Weighted Tardiness Scheduling
Problem Formalization: The Weighted Tardiness
Scheduling Problem is a sequencing problem. A set of
jobs J = {j1, . . . , jN} must be sequenced on a single
machine. Each of the N jobs j has a weight wj , duedate
dj , and process time pj . Preempting a job during pro-
cessing is not permitted. Only one job at a time can be
processed. The objective is to sequence the set of jobs
J on a machine to minimize the total weighted tardiness:
T =

∑
j∈J wjTj =

∑
j∈J wj max (cj − dj , 0), where

Tj is the tardiness of job j; and cj , dj is the completion

Table 1: Weighted tardiness: For each number of restarts
[N ], bold indicates the most best known solutions found.

Algorithm NB ARPD MRPD
D-EXP[400] 94.3 0.12 10.07
EXP[400] 85 0.14 11.28
FASTER[400] 78.7 0.19 13.51
M-DYNA[400] 62 1.66 76.18
D-EXP[800] 100.7 0.12 10.07
EXP[800] 89.3 0.14 11.28
FASTER[800] 83.6 0.17 13.51
M-DYNA[800] 68.3 1.29 74.28
D-EXP[1600] 107.3 0.11 8.47
EXP[1600] 95 0.12 9.75
FASTER[1600] 87.5 0.16 11.28
M-DYNA[1600] 73.3 1.16 71.06

time and duedate of job j. The completion time of job j
is equal to the sum over the process times of all jobs that
come before it in the sequence plus that of the job j itself.
Specifically, let π(j) be the position in the sequence of job
j. We can now define cj as: cj =

∑
i∈J,π(i)<=π(j) pi.

Value-Biased Stochastic Sampling (VBSS): VBSS is an
iterative stochastic heuristic search algorithm (Cicirello &
Smith 2005). A search heuristic is used to bias a ran-
dom decision at each decision point. We use VBSS here
to generate biased initial configurations for a local search
for the weighted tardiness problem known as Multistart Dy-
nasearch (Congram, Potts, & van de Velde 2002). The orig-
inal Multistart Dynasearch used unbiased initial solutions.

Dispatch Policies as Search Heuristic: Many dispatch
policies exist for this problem (Morton & Pentico 1993). A
few of the best are used here as candidate search heuristics:

• weighted shortest process time, WSPTi = wi

pi
;

• earliest duedate, EDDi = 1
di

;

• COVERTi(t) = wi

pi
(1 − max (0,di−pi−t)

kpi
), with current

time t and parameter k; and

• R&Mi(t) = wi

pi
exp(−1 ∗ max (0,di−pi−t)

kp̄ ), with average
process time p̄.

Experimental Setup: In this experiment, these heuristics
are combined across multiple restarts of the dynasearch al-
gorithm. On any given restart, VBSS is used, along with one
of these heuristics to construct an initial solution, which is
then locally optimized using dynasearch. The following ex-
ploration policies are considered: double exponentially in-
creasing rate of allocations to the observed best heuristic
(D-Exp); faster than double exponentially increasing allo-
cation rate (Faster); and exponentially increasing allocation
rate (Exp). We also compare to multistart dynasearch (M-
Dyna) as originally specified by Congram et al.



Results: The results presented here are for the 100 job
instances from the benchmark problem set from the OR-
Library (Beasley 1998). The set contains 125 instances. Re-
sults are shown in Table 1. NB is the number of best known
solutions found (no further improvement is made). ARPD
(and MRPD) are the average (and maximum) relative per-
centage deviation from the best known solutions. The results
shown are averages of 10 runs for all 125 problem instances.

M-DYNA is the worst of the four variations considered.
There is clearly benefit to biasing the initial configurations
of the M-DYNA local search, contrary to the untested hy-
pothesis of Congram et al. The trend for any number of iter-
ations considered is that the double exponentially increasing
rate of allocations finds the most best known solutions, with
smallest percentage deviation from the best knowns. The
next best in terms of these criteria is when the observed best
heuristic is given an exponentially increasing allocation of
trials, followed by the variation with a faster than double
exponentially increasing rate of allocations.

Resource Constrained Project Scheduling with
Time Windows (RCPSP/max)

Problem Formalization: The RCPSP/max problem is de-
fined as follows. Define P =< A,∆, R > as an in-
stance of RCPSP/max. Let A be the set of activities A =
{a0, a1, a2, . . . , an, an+1}. Activity a0 is a dummy activ-
ity representing the start of the project and an+1 is simi-
larly the project end. Each activity aj has a fixed duration
pj , a start-time Sj , and a completion-time Cj which satisfy
the constraint Sj + pj = Cj . Let ∆ be a set of temporal
constraints between activity pairs < ai, aj > of the form
Sj − Si ∈ [Tmin

i,j , Tmax
i,j ]. The ∆ are generalized precedence

relations between activities. The Tmin
i,j and Tmax

i,j are min-
imum and maximum time-lags between the start times of
pairs of activities. Let R be the set of renewable resources
R = {r1, r2, . . . rm}. Each resource rk has an integer ca-
pacity ck ≥ 1. Execution of an activity aj requires one or
more resources. For each resource rk, the activity aj re-
quires an integer capacity rcj,k for the duration of its ex-
ecution. An assignment of start-times to activities in A is
time-feasible if all temporal constraints are satisfied and is
resource-feasible if all resource constraints are satisfied. A
schedule is feasible if both sets of constraints are satisfied.
The problem is to find a feasible schedule with minimum
makespan M where M(S) = max{Ci}. That is, find a set
of assignments to S such that Ssol = arg minS M(S). The
maximum time-lag constraints are the source of difficulty—
e.g., finding feasible solutions alone is NP-Hard.

Experimental Setup: We begin with a backtracking CSP
heuristic search procedure for the problem (Franck, Neu-
mann, & Schwindt 2001). We modify this algorithm to use
VBSS to bias the choice made by the heuristic at each deci-
sion point. Five priority rules for the RCPSP/max problem
are used as candidate search heuristics:
• smallest “latest start time” first, LSTi = 1

1+LSi
;

• “minimum slack time” first, MSTi = 1
1+LSi−ESi

;

Table 2: Summary of the RCPSP/max results.
Algorithm ∆LB NO NF
D-EXP[100] 5.3 649.7 1050.7
EXP[100] 5.3 646.3 1050
FASTER[100] 5.5 617.5 1044
D-EXP[500] 4.8 665.7 1053
EXP[500] 4.8 658.2 1052.6
FASTER[500] 5.2 631 1045
D-EXP[2000] 4.6 675.7 1057
EXP[2000] 4.6 669.9 1057
FASTER[2000] 4.7 654 1051
(Smith & Pyle 2004) 6.8 679 1059
(Cesta, Oddi & Smith 2002) 8.0 670 1057

• “most total successors” first, MTSi = |Successorsi|,
where Successorsi is the set of not necessarily immedi-
ate successors of ai in the project network;

• “longest path following” first, LPFi = lpath(i, n + 1),
where lpath(i, n+1) is the length of the longest path from
ai to an+1; and

• “resource scheduling method”, RSMi =
1

1+max (0,max
g∈eligible set,g �=i

(ESi+pi−LSg)) .

LSi and ESi are the latest and earliest start times. A few
have been redefined from Neumann et al.’s definitions so that
the eligible activity with the highest heuristic value is cho-
sen. Eligible activities are those that can be time-feasibly
scheduled given constraints involving already scheduled ac-
tivities. We consider the alternative exploration policies:
double exponentially increasing rate of allocations to the ob-
served best heuristic (D-Exp); faster than double exponen-
tially increasing rate (Faster); and exponentially increasing
rate (Exp).

Results: Table 2 shows the results. We use the benchmark
problem instances of Schwindt (2003). ∆LB is the average
relative deviation from the known lower bounds. NO and
NF are the number of optimal solutions and feasible solu-
tions found. The results are comparable to the first prob-
lem domain. The exponential rate of allocations to the ob-
served best heuristic leads to over-exploration and the faster
than double exponential rate leads to over-exploitation—
both outperformed by the policy that allocates a double
exponentially increasing number of trials to the observed
best heuristic. These results are competitive with the cur-
rent best known heuristic approaches to this NP-Hard prob-
lem (e.g., (Cesta, Oddi & Smith 2002; Smith & Pyle 2004;
Cicirello & Smith 2004)).

Conclusions
In learning domains with a reward structure as in the Max
K-Armed Bandit, where the goal is to maximize the best
single sample reward received over time, we have seen that
the optimal strategy is to allocate a double exponentially in-
creasing number of trials to the observed best action. This



result depends on the assumption that each of the arms fol-
lows a Gumbel distribution. This seems restrictive. How-
ever, the extremal types theorem tells us that the distribution
of the max of a series of trials belongs to one of three distri-
bution families (Gumbel, Fréchet, or Weibull) independent
of the underlying distribution of trials. We assumed that the
underlying samples were drawn from a Gumbel, but could
more generally assume that the distribution of the max of a
series of samples from each arm is a Gumbel. The most gen-
eral assumption that the max of a series of trials from each
arm follows a GEV distribution would not have allowed for
a closed form analysis, necessitating an approximation.

We showed how the result of the Double Exponential
Sampling Theorem can be applied to the problem of allocat-
ing iterations of a heuristic guided stochastic sampling al-
gorithm to alternative search heuristics. This approach was
validated in two NP-hard scheduling domains, showing that
a faster than double exponential rate of allocations to the ob-
served best heuristic results in over exploitation of the model
of heuristic performance; while a slower rate results in over
exploration. The double exponential increase in the rate of
allocation to the observed best heuristic provides the balance
between exploration and exploitation that leads to effective
problem solving in these domains.
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