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Abstract

This paper presents a method for evaluating multiple fea-
ture spaces while tracking, and for adjusting the set of fea-
tures used to improve tracking performance. Our hypothe-
sis is that the features that best discriminate between object
and background are also best for tracking the object. We
develop an on-line feature selection mechanism based on
the two-class variance ratio measure, applied to log likeli-
hood distributions computed with respect to a given feature
from samples of object and background pixels. This fea-
ture selection mechanism is embedded in a tracking system
that adaptively selects the top-ranked discriminative fea-
tures for tracking. Examples are presented to illustrate how
the method adapts to changing appearances of both tracked
object and scene background.

1. Introduction

Two decades of vision research have yielded an arsenal
of powerful algorithms for object tracking. Moving ob-
jects can be effectively tracked in real-time from stationary
cameras using frame differencing or adaptive background
subtraction combined with simple data association tech-
niques [11]. This approach can be generalized to situa-
tions where the video data can be easily stabilized, includ-
ing purely rotating and zooming cameras, and aerial views
where scene structure is approximately planar [5]. Modern
appearance-based tracking methods such as the mean-shift
algorithm use viewpoint-insensitive appearance models to
track objects through non-rigid pose changes without any
prior knowledge of scene structure or camera motion [4].
Kalman filter extensions achieve more robust tracking of
maneuvering objects through the introduction of statistical
models of object and camera motion [2]. Particle filtering
extensions enable tracking through occlusion and clutter by
reasoning over a state-space of multiple hypotheses [6].

Our experience with a variety of tracking methods can
be summarized simply: tracking success or failure depends
primarily on how distinguishable an object is from its sur-
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roundings. If the object is very distinctive, we can use a
simple tracker to follow it. If the object has low-contrast or
is camouflaged, we will obtain robust tracking only by im-
posing a great deal of prior knowledge about scene structure
or expected motion, and thus tracking success is bought at
the price of reduced generality.

The degree to which a tracker can discriminate object
and background is directly related to the feature space(s)
used. Surprisingly, most tracking applications are con-
ducted using a fixed set of features, determined apriori.
Sometimes, preliminary experiments are run to determine
which fixed feature space to use – a good example is work
on head tracking using skin color, where many papers eval-
uate different color spaces to find one in which pixel values
for skin cluster most tightly, e.g. [14]. However, these ap-
proaches ignore the fact that it is the ability to distinguish
between object and background that is most important, and
the background can not always be specified in advance. Fur-
thermore, both foreground and background appearance will
change as the target object moves from place to place, so
tracking features also need to adapt. Figure 1 illustrates this
with low contrast imagery of a car traveling through patches
of sunlight and shadow. The best feature for tracking the car
through sunlight performs poorly in shadow, and vice versa.

A key issue addressed in this work is on-line, adaptive
selection of an appropriate feature space for tracking. Our
insight is that the feature space that best distinguishes be-
tween object and background is the best feature space to
use for tracking, and that this choice of feature space will
need to be continuously re-evaluated over time to adapt
to changing appearances of the tracked object and scene
background. Target tracking is cast as a local discrimina-
tion problem with two classes: foreground and background.
This point of view opens up a wide range of pattern recog-
nition feature selection techniques that can be adapted for
use in tracking. An interesting characteristic of target track-
ing is that foreground and background appearances are con-
stantly changing, albeit gradually. Naturally, when class ap-
pearance varies, the most discriminating set of features also
varies [9]. The issue of on-line feature selection has rarely
been addressed in the literature, especially under the hard
constraint of speed required for target tracking. The nearest



Figure 1:Features used for tracking an object must be adapted as
the appearance of the object and background changes. The source
imagery (left column) is low contrast aerial video of a car on a
road. The car travels between sunny patches (top row) and shadow
(bottom). The best feature for tracking the car in sunlight (R-G)
performs poorly in shadow. Similarly, the best feature for tracking
through shadow (2G-B) does not perform as well in sunlight.

relevant work is [12], which dynamically switches between
five color spaces to improve face tracking performance.

Section 2 presents a brief look at off-line discrimina-
tive feature selection in the field of pattern classification.
Section 3 adapts these ideas to the task of target tracking.
Since the goal is to perform on-line feature selection while
tracking, efficiency must be favored over optimality. Exam-
ples are presented in Section 4 to illustrate how incorporat-
ing feature selection with tracking facilitates adaptation to
changing object and background appearance.

2. Feature Selection
Feature selection is a technique for dimensionality reduc-
tion whereby a set of m features is chosen from a pool of
n candidates, where usuallym<< n [1]. This technique
can be used to rule out irrelevant or redundant features to
improve classification performance.

The two main components in feature selection are the
selection criterion function, which is a quantitative mea-
sure used to compare one feature subset against another,
and the search strategy, which is a systematic procedure
to enumerate candidate feature subsets and to decide when
to stop. Criterion functions can be categorized by whether
the evaluation process is data intrinsic (filters) or classifier-
dependent (wrappers). For discrimination problems, the cri-
terion involves evaluation of the discriminating power of the
selected feature subset. There are many ways to evaluate
the discriminative power of each feature. For example, aug-
mented variance ratio (AVR) has been shown to be effective
for feature ranking as a preprocessing step for feature sub-
set selection [7, 8, 9]. AVR is the ratio of the between class
variance of the feature to the within class variance of the
feature. Other measures for discriminative power of a fea-

ture include information gain and mutual information.

The goal in feature subset selection is to find m features
that best complement each other for the classification task
at hand. Since we usually do not know what the best subset
size m should be, the search space for feature subsets is 2n,
wheren is the total number of features. Existing heuristic
search methods for feature selection provide a set of com-
promises between speed and optimality. For example, Se-
quential Forward Selection [1] has a linear computational
complexity in n, but its greedy strategy can result in subop-
timal feature sets. In biomedical imaging, a combination of
feature ranking and feature subset selection has been shown
to be effective for off-line selection of discriminative sub-
sets from thousands of feature candidates [8]. To achieve
on-line selection, we are forced to consider simplified se-
lection criteria, non-exhaustive search spaces and heuristic
search strategies. In this work, we simplify by finding the
best m features individually, fully realizing that the best m
individual features may not form the best feature subset of
size m [13].

3. Feature Selection for Tracking

Our goal in this section is to develop an efficient method
that continually evaluates and updates the set of features
used for tracking. Our hypothesis is that the most promis-
ing features for tracking are the same features that best dis-
criminate between object and background classes. Given an
appearance model learned from previous views of the ob-
ject, the distribution of feature values for object and back-
ground samples is computed. Candidate features are then
rank-ordered by measuring separability of the distributions
of object and background classes. The most discriminative
features are used to weight pixels in a new video frame with
the likelihood that they correspond to either object or back-
ground. Discriminative features produce likelihood maps
where object pixels have high values, and background pix-
els have low values. We use the mean-shift algorithm as
a non-parametric method to find the nearest local mode of
this likelihood surface, thereby estimating the 2D location
of the object in the image.

It is important to note that the features we use for track-
ing need only belocally discriminative, in that the object
only needs to be clearly separable from its immediate sur-
roundings. This is a much less restrictive assumption than
is necessary for a tracker that uses a fixed set of features,
since that set must by necessity be discriminative across a
wide-range of imaging conditions. Since we are swapping
features in and out on the fly while tracking, we are able to
focus on finding features that are finely-tuned to provide
good foreground/background discrimination, even if they
are only locally, and temporarily, valid.



3.1 Feature Spaces

In principle, a wide range of features could be used for
tracking, including color, texture, shape and motion. Each
potential feature space typically has dozens of tunable pa-
rameters, and therefore the full set of potential features that
could be used for tracking is enormous. In this work, we
represent target appearance using histograms of color filter
bank responses applied to R, G, B pixel values within lo-
cal image windows. This representation is chosen since it is
relatively insensitive to variations in target appearance due
to viewpoint, occlusion and non-rigidity. Although we only
consider color features in this paper, the approach can be
extended to incorporate other cues such as texture.

The set of candidate features is composed of linear
combinations of camera R,G,B pixel values. Specifically,
for our experiments, we have chosen the following set of
feature-space candidates

F1 � fw1R+w2G+w3B j w
�
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that is, linear combinations composed of integer coeffi-
cients between -2 and 2. The total number of such can-
didates would be 53, but by pruning redundant coeffi-
cients where(w0
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3) = k(w1;w2;w3), and by disallow-
ing (w1;w2;w3) = (0;0;0), we are left with a pool of 49
features. This set of candidate features is chosen because:
1) the features are efficient to compute (only integer arith-
metic is involved); 2) the features approximately uniformly
sample the set of 1D subspaces of 3D RGB space; and 3)
some common features from the literature are covered in the
candidate space, such as raw R, G and B values, intensity
R+G+B, approximate chrominance features such as R-B,
and so-calledexcesscolor features such as 2G-R-B.

All features are normalized into the range 0 to 255, and
further discretized into histograms of length 2b, whereb is
the number of bits of resolution. We typically discretize
to 5 or 6 bits, yielding feature histograms with 32 or 64
buckets. This discretization is performed for efficiency, and
for defeating the “curse of dimensionality” when trying to
estimate feature densities from small numbers of samples.

3.2 Evaluating Feature Discriminability

If both object and background were uni-colored, then a
plausible argument could be made that variation in apparent
color of pixels would lead to Gaussian distributions in color
space. In this case, Linear Discriminant Analysys (LDA)
could be used to find the subspace projection yielding the
least overlap (i.e. maximum separability) between object
and background. However, we must be able to handle tar-
gets and backgrounds that have multi-modal distributions of
colors. These violate LDA’s Gaussian assumption, and thus
invalidate its analytic solution.

Our approach is to empirically evaluate all candidate fea-
tures to determine which ones yield good class separability.
For a given feature, we measure separability between the
object and background classes by 1) estimating the distri-
butions of object and background pixels with respect to the
feature; 2) computing the log likelihood ratio of these dis-
tributions; and 3) applying avariance ratiomeasure to the
distribution of likelihood values from object vs background.
Figure 2 illustrates this process.

Figure 2: Empirical evaluation of a candidate feature, demon-
strated on an IR image of a truck. Histograms of (possibly multi-
modal) feature values for object and background pixels are used to
compute a log likelihood function in which object pixels have uni-
modally positive values and background pixels have unimodally
negative values. When mapped back into image space, the result
is a 2D “likelihood” image that can be used to track the object. The
variance ratio is computed from histograms of these likelihood val-
ues for object and background pixels to determine separability of
the two classes, which correlates well with suitability of the likeli-
hood image for tracking.

We use a “center-surround” approach to sampling pix-
els from the object and the background. That is, a com-
pact set of pixels (e.g. rectangle or ellipse) covering the ob-
ject is chosen to represent the object pixels, while a larger
surrounding ring of pixels is chosen to represent the back-
ground. This is a conservative strategy that leads to dis-
criminative features that separate object from background
regardless of which direction the object maneuvers in the
image. Of course, we could sample background appearance
in other ways. For example, we could bias selection of pix-
els from the area of the image that we expect the object to
traverse in the future, given its recent trajectory.

Given a featuref , let Hob j(i) be a histogram of that fea-
ture’s values for pixels on the object, andHbg(i) be a his-
togram for pixels from the background sample, where index
i ranges from 1 to 2b, the number of histogram buckets. We
form an empirical discrete probability densityp(i) for the
object, and densityq(i) for the background, by normalizing
each histogram by the number of elements in it.



The log likelihood of a feature valuei is given by

L(i) = log
maxfp(i);δg
maxfq(i);δg

(2)

whereδ is a small value (we set it to 0.001) that prevents
dividing by zero or taking the log of zero. The nonlin-
ear log likelihood ratio maps potentially multimodal ob-
ject/background distributions into positive values for colors
distinctive to the object, and negative for colors associated
with the background. Colors that are shared by both object
and background tend towards zero. A new image composed
of these log likelihood values becomes the “likelihood” im-
age used for tracking ( Figure 2).

Finally, we compute the variance ratio ofL(i) in order to
quantify the separability of object and background classes
under featuref . Given a discrete probability density func-
tion a(i), we use the equality var(x) =Ex2�(Ex)2 to define
the variance ofL(i) with respect toa as

var(L;a) = E[L2
(i)]� (E[L(i)])2 (3)

= ∑
i

a(i)L2
(i)� [∑

i

a(i)L(i)]2 : (4)

The variance ratio of the log likelihood function can now be
defined as

VR(L; p;q)�
var(L;(p+q)=2)

[var(L; p)+var(L;q)]
(5)

which is the total variance ofL over both object and back-
ground pixels, divided by the sum of the within class vari-
ances ofL for object and background treated separately.

The intuition behind the variance ratio is that we would
like log likelihood values of pixels on both the object and
background to be tightly clustered (low within class vari-
ance), while the two clusters should ideally be spread apart
as much as possible (high total variance). The denomina-
tor enforces that the within class variances should be small
for both object and background classes, while the numera-
tor rewards cases where values associated with object and
background are widely separated. Note the similarity to the
Fisher discriminant used in the computation of LDA, where
the squared difference between the mean values of the two
classes is used as an alternative measure of total variance.

3.3 Ranked Likelihood Images

If a feature’s two-class log likelihood function from the pre-
vious step is used to label pixels in a new video frame,
the result is a likelihood image where, ideally, object pix-
els contain positive values and background pixels contain
negative values. Figure 3 shows a sample object, and the
set of likelihood images produced by all 49 candidate fea-
tures, after rank-ordering the features based on the two-class
variance ratio measure. The likelihood image for the most

discriminative feature is at the upper left, and the image for
least discriminative feature is at the lower right. We observe
a very high correlation between variance-ratio ranking and
suitability of the likelihood image for localizing the object
in the next frame.

(A)

(B)

Figure 3:(A) A sample image with concentric boxes delineating
object and background samples. (B) Likelihood images produced
by all 49 candidate feature spaces, rank-ordered by the two-class
variance ratio measure. The likelihood image for the most dis-
criminative feature (which is also best for tracking) is at the upper
left. The image for least discriminative feature (worst for tracking)
is at the lower right.

Figure 4 shows other sample images with labeled ob-
ject and background pixels, along with log likelihood im-
ages associated with the features having highest, median,
and lowest variance ratio values, corresponding to the best,
median and worst features, respectively, in terms of ob-
ject/background separability. Again, we see good agree-
ment between these rankings and our intuitive preference
regarding which likelihood images to use for tracking.

3.4 Tracking

The above feature ranking mechanism is embedded in a
tracking system as depicted in Figure 5. Object pixels
and background pixels are sampled from the current frame,
given the current location of the tracked object. Potential
tracking features are ranked using the variance ratio of log
likelihood values to determine how well each feature distin-
guishes object from background in the current frame. The
top N most discriminative individual features are used to
compute likelihood images for the next frame (N = 5 for



Figure 4: Sample video frames with ranked likelihood images.
Left column: frame with labeled object (green box) and back-
ground pixels (red box) pixels. Second-fourth columns: likelihood
images corresponding to the highest ranked, median, and lowest
ranked features, respectively. We can see that rank ordering fea-
tures by two-class variance ratio correlates well with intuition re-
garding which features would be best to use for tracking the object.

the experiments shown in the next section). Due to the
continuous nature of video, the distribution of object and
background features in the next frame should remain sim-
ilar to the current frame, and thus the most discriminative
features should still be valid. A local mean-shift process is
initialized in each of theN new likelihood images. These
processes perform gradient ascent to find the nearest local
mode in their respective likelihood images. These mean-
shift processes converge toN estimates of the 2D location
of the object in the frame, which are combined to yield a
new estimate of object location.

The algorithm iterates through each subsequent frame of
the video, extracting new samples of object and background
pixels, and choosing new sets of discriminative features. In
this way, both the features used for tracking and the appear-
ance models of object and background classes evolve to-
gether over time. Adaptively updating appearance models
in this manner raises the specter ofmodel drift, a classic
problem in adaptive tracking. Model drift builds up grad-
ually over time as misclassified background pixels start to
“pollute” the foreground model, leading to further misclas-
sification and eventual tracking failure. To avoid this prob-
lem, we enforce our empirical object density function at the
current frame to be a combination of the current observed
density and the original training density from the first frame,
which is assumed to be uncontaminated. This allows the
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Figure 5:Overview of tracking system with on-line, adaptive fea-
ture selection. Samples of object and background pixels in the
current frame guide evaluation of candidate features, leading to a
rank ordering of features based on discriminative ability. The top
N best features are applied to the next frame to compute likelihood
images. A mean-shift process is applied to each likelihood image
to compute a 2D location estimate. These estimates are pooled to
determine the best location of the object in the new frame, and the
procedure iterates.

object appearance model to expand to adapt to current con-
ditions, while keeping the overall density anchored to the
original training appearance of the object. This heuristic ap-
proach assumes that the object appearance will not change
drastically over the tracking sequence.

4. Experiments
In this section we present two challenging track-
ing examples that illustrate the benefits of com-
bining on-line feature selection with object track-
ing. For mpeg videos of these examples, please see
http://www.cs.cmu.edu/�rcollins/Pub/iccv03.html.

The first video is low-contrast aerial footage of a car driv-
ing through patches of sunlight and shadow. Watching the
video frame-by-frame, it is challenging even for a human
observer to delineate the position of the car when it passes
through shadow regions. Despite the difficulties, the tracker
presented here smoothly tracks the car through the chang-
ing illumination conditions, and through partial occlusion
caused by trees lining the road. Figure 6 presents a trace
showing which 5 features out of 49 were chosen as most dis-
criminative for each frame of the tracked sequence. We see
that many of the same features are selected through most of
the video (horizontal bars in the picture represent the same
features being chosen again and again), and many features
were never selected (empty rows). At a coarse level of de-
scription, the feature history can be broken into five blocks
of frames, where roughly the same set of features were cho-
sen consistently within each block, and the discontinuity
between blocks is marked by a switch to a different set of
features. Figure 6 also shows representative frames from
within each of these five coarsely segmented time blocks.
For the first, middle and last block, the car is predominantly



driving through sunny road or dappled patches of shadow.
The second block delineates a subsequence where the car
plunges into an area of deep, extended shadow. The fourth
block denotes a subsequence where the car travels over a
small bridge that has color properties similar to the car.

Figure 7A illustrates failure of a standard mean-shift
tracker [4] on this section of the video. Standard mean-shift
tracking is based only on an appearance model of the ob-
ject. When the car passes over a small bridge, the color of
the top of the bridge rail is nearly identical to the color of the
specular highlight on top of the car. The mean-shift tracker
gets sidetracked by this similar color, leading to tracking
failure. Figure 7B shows the results of our adaptive tracker.
Because this tracker maintains a model of both object AND
background color distributions, it detects that a color in the
background is similar to a color in the model, and automat-
ically down-weights those pixels. The tracker is therefore
not attracted to the bridge railing, and tracking proceeds.

(A)

(B)

Figure 7: (A) The traditional mean-shift tracker is attracted to
background pixels that have the same color as part of the tracked
car, leading to tracking failure. (B) By modeling both object AND
background color distributions, our tracking approach automati-
cally down-weights shared colors, thus avoiding temptation.

A second example video is depicted in Figure 8. The
object being tracked is a flag, blowing non-rigidly in the
wind. The camera viewpoint continually changes, causing
the scene background to vary. The flag is sometimes seen
as a bright object against dark trees, and sometimes seen
as a darker object backlit by the bright sky. Nonetheless,
the tracker successfully follows the flag through the entire
minute-long sequence. Figure 8 presents a trace showing
which 5 features out of 49 were chosen as most discrimina-
tive for each frame of the tracked sequence. Again we see
that many of the same features are selected through most
of the video. However, we also note that these are differ-
ent features than the ones chosen in the earlier car tracking
example. There is a lot of variation in background clutter
and illumination conditions throughout this sequence, and

coarsely segmenting the feature selection trace into time
blocks, as we did in the earlier example, is difficult. Instead,
we show a few sample frames from the tracked sequence,
with an indication of where they occur.

5. Summary
Although object tracking based on color histogram appear-
ance models can achieve real-time tracking performance,
tracking success or failure depends primarily on how distin-
guishable the object is from its surroundings. Surprisingly,
most tracking applications are conducted using a fixed fea-
ture space, determined apriori. These approaches ignore the
fact that it is the ability to distinguish between object and
background that is most important, and that the appearance
of both the object and the background will change as the
target object moves from place to place.

This paper presents an effective method for continuously
evaluating multiple feature spaces while tracking, and for
adjusting the set of features used to improve tracking per-
formance. We develop an on-line feature ranking mech-
anism based on the two-class variance ratio measure, ap-
plied to log likelihood distributions computed with respect
to a given feature from samples of object and background
pixels. This feature ranking mechanism is embedded in a
tracking system that adaptively selects the top-ranked fea-
tures for tracking. The result is a system in which the fea-
tures used for tracking and the appearance models of object
and background co-evolve over time. The experimental re-
sults demonstrate successful tracking performance even on
challenging video sequences.

Although the variance ratio is a computationally efficient
mechanism for selecting features, it does not take into ac-
count the spatial distribution of values in the likelihood im-
age. A good likelihood image for tracking should contain a
blob of high likelihood values (centered on the object), sur-
rounded by a ring of low likelihood values, to ensure that
the tracker does not get misled. Our future work will focus
on methods that ensure this spatial consistency, while still
being computationally efficient.
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