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Abstract— This paper develops a method of composing
simple control policies, applicable over a limited region in
a dynamical system’s free space, such that the resulting
composition completely solves the navigation and control
problem for the given system operating in a constrained en-
vironment. The resulting control policy deployment induces
a global control pelicy that brings the system to the goal,
provided that there is a single connected component of the
free space containing both the start and goal configurations.
In this paper, control policies for both kinematic and simple
dynamical systems are developed. This work assumes that
the initial velocities are somewhat aligned with the desired
velocity vector field. We conclude by offering an outline
of an approach for accommodating arbitrary dynamical
constraints and initial conditions,

I. INTRODUCTION

The goal of the research discussed in this paper is
to develop feedback control strategies that allow for
automatic deployment of control policies in constrained
environments, such that the resulting control system in-
stantiates a natural, provably correct behavior for systems
operating near their dynamic capabilities. Conventional
robot architectures have separated the planning and control
problem to a degree that provably cerrect planning algo-
rithms offer no guarantees of dynamical performance. The
typical approach is to operate far below the capabilities of
the system in order to approximate kinematic behavior.
By incorporating the constraints into low-level control
policies, and planning in the space of available control
policies, we offer a methodology that is provably complete
in both kinematic and dynamical environments.

After introducing an overview of related work that
inspire our approach, we discuss the decomposition and
planning problem inherent in our work. This serves to mo-
tivate the type and scope of our tow-level control policies,
while offering proof of the completeness of the control
policy composition. For clarity, we restrict the descriptions
in this paper to IR?, although the work directly extends
to higher dimensions, as explained in the companion
document [1]. Next we develop the low-level control
policies, and provide proofs of the applicability to a simple
dynamical system. We then outline the development of
hybrid switching control policies required to overcome
dynamical constraints, such as acceleration limits, and
increase the domain of attraction for the low-level control
policies. We conclude by ontlining the next steps in our
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research plan, which is to develop automated systems of
control policy deployment for real mobile robots subject
to non-holonomic constraints,

Related Work., The problem of planning a path
from start to goal has been extensively studied [2]. Un-
fortunately, just having a safe path does not guarantee
that the robot can move safely. Constraints, in the form
of kinematic and dynamical limitations on achievable
velocities, may render the desired path impossible to
track. Some heuristic methods, for example the curvature-
velocity method [3], have been developed to encode dy-
namical limitations into the search space.

An early method to integrate planning and control was
based on potential fields [4]. Unfortunately, most potential
field constructions suffer from the well documented local
minima problem [5], [6]. Connolly et al. [7] developed
a potential field without local minima based on a nu-
meric solution to Laplace’s heat equation. Rimon and
Koditschek [6] developed a local minima free potential
field method for control by mapping a class of obstacles
to a model space and generating a minimum free potential
function over the model space; this potential function was
termed a navigation function.

The approach we propose is based on decomposing
the free space into cells, and solving the navigation and
control problem for specific cells, basing control only on
local information, The overall control policy is formed
by composing the local control policies in a way that
guarantees the overall performance. We take inspiration
from the work of Burridge, Rizzi, and Koditschek [8], and
the use of sequential composition to control a juggling
robot. In their application, complex behaviors over a
large domain were obtained by composing control policies
designed to function over limited domains. Their work
required hand-tuning and development of the specific
control policy domains, and required the user to specify
the deployment scheme. This paper also builds on prior
work of the second author using sequential composition
as a programming tool to specify robot motion programs
for planar robots [9], [10].

The methods outlined in this paper make use of hy-
brid switching control policies; the control policies are
switched as the system moves from cell to cell. For
systems subject to dynamic constraints, switched control
policies are also used within a cell to maximize the domain
of savable states. Our control policies are defined such that



the stability of the switched policies is guaranteed — this
obviates the need for detailed analysis of the switching
stability such as that of [11], [12]. The possibility of
infinitely fast switching is precluded because the switching
strategy presented here induces a partial order over the
collection of control policies. ’

II. OVERVIEW

In this section we present an overview of a new ap-
proach to decomposing the problem of navigating a robot
so that the planning and controls problem is solved simul-
taneously by inducing a global control policy that brings
any initial configuration to the goal, provided that there 15 a
single connected component of free-space containing both
the start and goal configuration. This approach allows us
to leverage the robustness afforded by feedback controls,
while generating a globally convergent control policy.

A. Decomposition, Planning, and Control

Our approach to solving the robot navigation and con-
trol problems is to define a palette of control policies, and
a switching strategy among the individual control policies,
such that the resulting composition simultaneously solves
both problems. We decompose the free space into a
collection of cells, {P}, defined as disjoint open sets. The
vnicn of the closures of the cells covers the free space,
either exactly (FS = UP) or to an approximation at some
resolution(FS =~ UP) [2]. The collection of cells is re-
ferred to as a cellular decomposition. From the adjacency
graph of the cells, with the root node corresponding to the
cell containing the goal, we determine a partial ordering of
the cells using a graph search algorithm, such as Dijkstra’s
algorithm {2}.

With each cell, P, we associate an individual control
policy, which we term a component control policy. The
component control policies are designed such that they
will cause any configuration within the cell, P, to move
along a trajectory into a specified adjacent target cell,
P, specified by the partial order. During the evolution
of the system trajectory, the configuration will not exit
P other than by crossing the common boundary with P;.
When the configuration enters the cell containing the goal
configuration, a simple converging control policy (such as
that presenied in [9]) is used in place of the component
control policy. Using the terminology of [8], we say that
the component control policy associated with P prepares
the component control policy associated with the target
cell P,. Figure 1 shows an example of this technique.

The common boundary between a cell, P, and the '

adjacent target cell, P, is termed the outlet zone of P. The
boundary of a cell, excluding the outlet zone, is termed
the inlet zone. Note, the outlet zone of P is part of the
inlet zone of 72,. If the goal configuration is contained in a
cell, then the outlet zone is the empty set. The outlet zone
far each cell is specified by the shared boundary with the
adjacent cell next in the partial order, as determined by
the adjacency graph.
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Fig. 1. A connected chain of cells determines a path from start to goal.
Flow from previous cell prepares the control policy in the next cell. In
this example, the free space was decomposed into convex polygons.

The specification of all of the outlet zones, and the
resulting composition of the component control policies
via the partial order, forms & hybrid control policy over the
entire freg space, which we term the global control policy.
We refer to the specification of the control policies over the
set of cells as a control policy deployment. The specified
control policy deployment scheme is complete. In other
words, given component control policies that function as
specified in this section, the system can navigate a path
from start to goal if and only if a chain of connected cells
exists,

The control policy deployment outlined above depends
on developing component control policies that generate
the desired response for an arbitrary ceil. Our approach is
to develop a generic control policy that is valid for any cell
in the set. In Section III, we discuss the development of
such a control policy obtained by mapping the cell P to a
simple model space, and generating a potential field over
that model space. The cell is free of obstacles; therefore
we can design a potential field over the model space that
is free of local minima. The potential function is then
pulled back onto the cell via a continuous mapping, .
The gradient vector field of the pullback of the potential
function induces a position dependent vector field over
the cell P. The vector field is suitable for control of
kinematic systems. We generalize the kinematic control
policy to yield a position dependent velocity reference
control policy for dynamical systems.

B. Example Decomposition and Mapping

For our initial development, we chose a convex polyg-
onal decomposition to approximate the free space of a
system to some arbitrary resolution, as shown in Figure 1.
The component control policy is designed to take the
configuration through a designated outlet face into the
adjoining polygon. There are a number of algorithms
for decomposing spaces into convex polygons. For the
demonstration in this paper, we assume the free space is
represented as a general polygon and use an algorithm
from Keil [13), allowing us to demonstrate automated
deployment of our control policies.



Fig. 2. Mapping from polygon to unit disk. The contour plot on the
left shows level sets of the pullback 44 o i on the polygon; the contour
plot on the right shows the comresponding level sets of 4 on the unit
disk.

In order to generate a vector field with continuous
derivatives, as needed by our dynamic control policy, we
require a (2 diffeomorphism from an arbitrary polygon to
our model space. Unfortunately, the polygon vertices pre-
clude the possibility of constructing a C? diffeomorphism.
The mapping can only approximate the polygon at the
corners while maintaining C? continuity. Our construction
approximates the vertices in a natural way that averages
the adjacent normals, thereby preserving the vector field
properties presented in this paper. For details the reader is
referred to [1].

We chose a unit disk for our mode! space, and define
w: P — D, such that @ is a C? diffeomorphism from the
interior of the polygon P to the interior of the unit disk,

D= {(xa,yd) [r=4/zi+y3< 1} c R%.

w uses a radial retraction technique to map the cell
boundaries to the boundary of the unit disk, using C? fillet
curves' within a specified neighborhood of each vertex.
This mapping is depicted in Figure 2.

III. COMPONENT CONTROLLERS

The control policy deployment outlined in Section II-
A depends on developing component control policies
that generate the desired response for each cell in the
decomposition. In this section, we present a candidate
component control policy for an arbimary cell based on
a potential field. Contsol Policies for both kinematic and
dynamic systems are developed.

'1In computer aided design (CAD), a fillet curve describes an arc
joining two lines.
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A. Harmonic Potential Functions

Our approach to generating a potential field, taking
inspiration from [6), is to generate a potential function
44 : D = R, where D is our simple model space. The
potential function in the arbitrary cell P, given as the
pullback of the model space potential, is

T=Yaop.

To generate a potential function free of local minima,
we solve Laplace’s equation
Fya | Py _
A
over the unit disk. Laplace’s equation, which is the classic
partial differential heat equation, can be solved in closed
form given the potential specification on the disk bound-
ary, where the radius » = 1. Let V() specify the potential
along the boundary, where

V@:{?

with § € (—m, 7}, ag € (—m,—%), and & € (F,m).
The «; terms are the angles of the mapped exit vertices in
the disk. Specification of the boundary potential {1} > 0)
provides a parametric freedom that can be used to con-
trol the potential field magnitude and resulting gradient
magnitude. The closed form solution is given by

Yd (1'16) = * 021—010 +
I_/nb_( t.a.n"l( rsin{a; —0) )

I-rcos{a1—¥}

rsin{ag—6) )

1-rcas{og—8) L

0

+

V2’Yd =

ge [ao,al]

otherwise ’

—tan~! (

where r = \/mg + y% and ¢ = atan2 (ys,2,4) is the polar

coordinate representation of a point (x4, ¥4)-

The potential function y; given by the solution of the
heat equation is free of local minima or other critical
points, and resembles a navigation function [6], [7]. The
navigation function-like properties, including the absence
of local minima, are preserved when 4 is pulled-back
onto the cell P via the diffeomorphism  [6}, [1]. Figure 2
shows an example of the pullback of a such a potential
function.

We use the negative gradient of the pulled-back poten-
tial function to generate a vector field X : P — TP,
given as

X(q) = -Dgy" = = (Da¢" D, %3 ) lutay» (1)

where @ € P and qq9 = ¢(q) € D. By construction,
the gradient vector field induced by the pullback of the
heat equation solution is orthogonal to the boundary of
the cell, This is trivial to show, given that the potential
along the boundary of the cell is constant by virtue of
the pull-back. This orthogonality feature allows us to
construct control policies that have continuity across the
cell boundaries, and facilitates some of our later proofs.

2The vector field at the vestices of a polygonal cell of our example
is undefined. In the neighborhood of the vertices, the mapping ¢
approximates the vector field in a natural way such that the desired
behavior is preserved,



Fig. 3. Solution for kinematic system. The dark line shows ihe path
taken from the start configuration, marked with an “o”, to the goal
configuration, marked with an “x”. The dark region denotes the boundary
of the free space, and dotted lines show the decomposition into convex
polygons,

B. Kinematic Path Plan

For kingmatic systems, the vector field X(q) can be
used to specify the velocity of the system. The integral
curves of X(q) trace a path from start to goal provided a
connected set of cells exist between the start and goal.

Lemma 3.1: For a kinematic system of the form g =
u, where q,u € JR?, the integral curves of the vector
field u = X(q} = —D,y7 for the pulled-back potential,
determine a path from any point on the inlet zone, or
interior of the cell, to a point on the exit zone such that
the trajectory is completely contained in the cell until it
crosses the exit zone.

The proof is trivial by construction.

Combined with the automated control policy deploy-
ment scheme described in Section 1l-A, the component
control policy u = X(q) = —Dyy7 yields a complete
path planning method for the kinematic system via the
induced overali control policy. Because the vector field
is orthogonal to the boundaries, the velocity orientation
is continucus. By normalizing the vector field, we can
generate a continuobs {except at the vertices) velecity pro-
file from start to goal without changing the completeness
properties of the algorithm.

Figure 3 shows an example deployment for a kinematic
system using the convex polygon decomposition scheme
from Section II-B. The free space is shown as a maze-like
polygon, with a start and goal specified.

C. Dynamic Control Policy

‘While the control policy deployment scheme and com-
ponent control policy design provides a novel solution
to the classical mobile robot navigation problem, it does
not gearantee that a real robot, subject to dynamical
constraints, could follow the prescribed path.

Given a second order system of the form

@

4=u,

we wish to design a control law that converges to an
integral curve of the vector field X{q) = —Dyy7, without
departing the defined cell P. We begin by developing the
control policy assuming the system allows arbitrary, but
still finite, accelerations. Later, we consider acceleration
and velocity constraints, ’

Using the negative gradient field as a position dependent
velocity reference leads to a natural velocity reference
control policy of the form

u=K (X(q) -4 +X(q), (3)
where K > 0 is the “velocity regulation™ gain [9]. The
K (X(q) — q) term acts to decrease the error between the
current and the desired velocity. The feed-forward term,
X(q) = DgX 4, accounts for the change in the vector field
as we move in the g direction, and allows the system to
exactly track the integral curves of X{q) once the error
has converged to zero.

Lemma 3.2: In the absence of constraints, including
those of the cell boundary, the integral curves of the vector
field X(q) are attractive to the trajectories of the closed
loop system defined by (2) under the influence of (3).

Proof: For details, see [1]. The proof depends
on a Lyapunov-like function using the velocity error
(X{q) —q), and follows that given in [9]. n

The orientation error, i.e. the angle between the desired

velocity, X(q), and the current velocity, 4, is given by

a’' X

VaTqXTxX'’

# = cos™!

where X = X{q).

Lemma 3.3: In the absence of acceleration constraints,
and for initial velocities such that @7X > 0, there exists
a lower bound on K such that the orientation error, ¥,
monotonically decreases.

Proof: First, consider the isclated case where §q = 0;
we define 9 |g=0= 0. Beginning from rest, the acceler-
ation specified by K (X(q) — q) will move the sysiem
differentially in the direction of the desired velocity, and

- the orientation error wiil be zero. As we show below, the
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orientation error will remain zero for all time.

To show that the orientation error ¥ monotonically
decreases, consider the set

U:={(qq) [¢=0},

and define a Lyapunov-like function of the form

sin?@=1-cos? 9
qTq XTX — QTX qTX
QTqXTX

Nu

@

Evaluating the time derivative of (4) along the trajecto-



ries of the closed loop system, and simplifying yields

, 2(4"X)" [/ ry oty oTexT
= XX [(X Xq +49°gX
T =T 2T wT
_a4aX'X r 44X X, 7\
qTx . TX )X
STeawT
~K (‘1———23,}; Xxrx - xquTx)} )

When q is aligned with X(q), 7, = 0, and we conclude
the set I is invariant. In other words, if the orientation
error is zero, it remains zero.

Away from U, the leading term of (5) is positive and
bounded, because we assume that initially g7X > 0.
Assuming the system has finite initial velocity and that
|1 X{q)|| is finite, if follows that the velocity error is finite;
then by Lemma 3.2, the error magnitude decreases, and
we conclude that ||qf| remains finite for all tme. The first
parenthetical term in brackets for (5) has an indeterminate
sign, but is finite since all the terms are bounded. The
last parenthetical term in (5) is positive. Therefore, for
sufficiently large K, 7j, can be made negative definite,
This implies that §TX remains positive, and therefore 7,
is always negative for sufficiently large K. Since 7, < 0,
we conclude that If is attractive and invariant, and that
monotonically decreases under the influence of (3). =

Intuitively, making K sufficiently large ensures that the
control policy is correcting more quickly than the vector
field is changing. The sufficiently large K is determined in
the worst case based on the vector field derivative, which
is largest near local concavities in the cell boundary.

Lemma 3.4: In the absence of acceleration constraints,
with sufficiently large K and initial velocities such that
X > 0, the trajectories of the closed loop system
defined by (2) under the influence of (3), converge to the
integral curves of the vector field X(q) in such a way that
the trajectory never exits the cell except by the exit zone,
and in fact exits the cell via the exit zone.

Proof: For q¥X > 0, we know the orientation error
is initially less than §. By Lemma 3.3, for sufficiently
large K, the orientation error is monotonically decreasing.

Assume the trajectory exits the cell in the inlet zone. At
the point of departure, ¢ X < 0 given the inward pointing
vector field orthogonal to the cell boundary. This implies
that 4 > %, requiring that the orientation error increased
along its trajectory. This contradicts Lemma 3.3.

Since the vector field X{q) is nowhere zero over the
cell, the system cannot come to rest and remain stationary,
because the system experiences an acceleration along the
vector field. Therefore, we conclude that the trajectory
must leave the cell via the exit zone under the influence
of (3) for the given conditions. |

Figure 4 shows a simulation of the dynamic system
given in (2) under the influence of (3). A variety of
initial conditions are shown, each converging to the goal
configuration using the hybrid control strategy induced by
the underlying decomposition.
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Fig. 4. Simulaton of the dynamical system using the hybrid control
strategy introduced in this paper. Light colored lines represent integral
curves of X(q), while the dark colored lines represent trajectories of the
system for various initial conditions. The velocity regulation gain used
in this example was K = 20.

The utility of Lemmas 3.3 and 3.4 is limited by two
factors. First, a large value for K can lead to an overly
aggressive policy over the cell that may prove troublesome
for implementation. Secondly, and most importantly, all
real world systems have acceleration limits, which may
very well be violated by the feed-forward term of (3),
regardless of the value of K and the velocity error.

D. Constrained Dynamics

To extend our ideas to real world systems, we now
consider the following dynamic constraints,

lall £ Viax (6)
i =flafl < Umex M

The velocity limit is taken to be a safety limit, and it
is assumed that ||X(q)|| € Vmex for all g € P. However,
if the change in the vector field X(q) is aligned with the
current velocity, then the feed-forward term of (3) may
act to increase the velocity magnitude (speed), causing a
violation of the maximum speed.

The acceleration limit on the other hand, represents
a physical limitation of the dynamic system. Since the
acceleration cannot be exceeded, the inability to produce
the desired acceleration will invalidate the lemmas given
above. To accommodate both the velocity and acceleration
constraints, we are currently developing modified control
policies and hybrid switching strategies.

Our first proposed method for addressing the accelera-
tion limits is by encoding a speed reduction in areas where
the feed-forward term is excessive. By decreasing speed in
areas where the vector field has high derivative changing,
we reduce the impact of the feed-forward term, which
depends on both the current velocity and vector field. For
purposes of this paper, our only freedom for affecting the
speed is in the specification of the boundary potential
value, V3. Unfortunately, this impacts the entire cell, so
we are seeking methods based on the local magnitude of



the Do X term. This will allow us to naturally encode such
common-sense notions as “slow down when approaching
a sharp corner,” based on local information (encoded in
the decomposition) without explicitly modeling the corner.

The second approach we are pursuing, which is in-
tended to address both acceleration and velocity con-
straints, is the development of hybrid switching con-
trol policies to form our component control policy. Our
approach, again taking inspiration from the sequential
composition methods of [8], [9], {10], is to define a set of
control policies that are maximal over the state space of
the cell P, and whose composition converges to (3) before
the system configuration exits the cell. The hybrid control
policies are constructed such that they induce a partial
order within a given cell, and preclude the possibility of
infinitely fast switching. The hybrid contro! policies, used
in situations where the dynamic [imitations invalidate our
basic control policy given in {3), are designed to apply
maximum acceleration to move the system towards the
domain of (3). :

The lowest control policy in the partial order, which we
term the Save control policy, is designed to prevent viola-
tions of the cell boundaries if the velocity is too high given
the constraints of the system, We term the set of all states
for which the Save control pelicy prevents a violation as
the savable set [9]. The savable set includes the domains of
the other hybrid control policies. The biggest challenge is
10 make sure that the system exits one cell with & velocity
within the savable set of the next cell. The scaling method
proposed to handle acceleration constraints will also be
used to guarantee that cells connect appropriately, which
will then allow us to backchain the velocity constraints
for the savable set. For more information, see [1].

IV. CONCLUSION

The work presented in this paper represents the initial
steps in a program of research designed to bring about
antomatic methods of deploying robust low-level control
policies in constrained environments. Our goal is to en-
able global behaviors through composition of low-level
controls in a manner that guarantees performance. This
paper presents methods to accomplish this goal for fully
actuated systems in IR?; extensions to higher dimensions
are given in [1].

After finalizing the constrained dynamical controls,
the next step in our research plan is to extend this
methodology 1o systems with traditional non-holonomic
constraints. This wiil allow us to decompose a larger more
complicated control problem into a series of well defined
and more tractable control problems. Our long term goal is
to develop methods of encoding behavior design, and facil-
itating automated deployment of these component contro!
policies to enable high-level goals to be accomplished,
while leveraging the robustness and performance of low-
level controls to accomplish the specified tasks.
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