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Abstract— Position estimation for planetary rovers has
been typically limited to odometry based on proprioceptive
measurements such as the integration of distance traveled
and measurement of heading change. Here we present and
compare two methods of online visual odometry suited for
planetary rovers. Both methods use omnidirectional imagery
to estimate motion of the rover. One method is based on
robust estimation of optical flow and subsequent integration
of the flow. The second method is a full structure-from-motion
solution. To make the comparison meaningful we use the same
set of raw corresponding visual features for each method. The
dataset is an sequence of 2000 images taken during a field
experiment in the Atacama desert, for which high resolution
GPS ground truth is available.

1. INTRODUCTION

Since GPS is not available on Mars, estimating rover
motion over long distances by integrating odometry mea-
surements inevitably produces estimates that drift due to
odometry measurement noise and wheel slippage. Recent
experiments have shown that in planetary analog environ-
ments such as the Atacama Desert in Chile, odometric error
is approximately 5 percent of distance traveled. Such error
can increase further in loose soil because wheels can slip
considerably. We would like a method that compensates
for such error.

Much has been written in the biological literature about
estimation of motion using sequences of visual images
and several research efforts have attempted to use these
concepts for robotics (e.g. [1]). This type of work seeks
inspiration from a number of different ways in which
insects use cues derived from optical flow for navigational
purposes, such as safe landing, obstacle avoidance and dead
reckoning. We have similar motivations but seek analytical
methods with high accuracy.

Motion estimation from imagery taken from onboard
cameras has the potential to greatly increase the accu-
racy of rover motion estimation because images and the
rover’s motion can be used together to establish the three-
dimensional positions of environmental features relative to
the rover, and because the rover’s position can in turn be
estimated with respect to these external landmarks over the
subsequent motion. While visual odometry has its own drift
due to discretization and mistracking of visual features,
the advantage is that it is not correlated with the errors
associated with wheel and gyro based odometry.

Fig. 1
HYPERION IS A SOLAR POWER ROBOT DEVELOPED AT CARNEGIE
MELLON UNIVERSITY INTENDED FOR AUTONOMOUS NAVIGATION IN
PLANETARY ANALOG ENVIRONMENTS.

Relative to conventional cameras, omnidirectional
(panospheric) cameras trade resolution for an increased
field of view. In our experience this tradeoff is benefi-
cial for motion estimation, and as others have shown,
estimating camera motion from omnidirectional images
does not suffer from some ambiguities that conventional
image motion estimation suffers from [2]. This is primarily
because in an environment with sufficient optical texture,
motion in any direction produces good optical flow. This
is in contrast to conventional cameras that require that
cameras be pointed orthogonal to the direction of motion.
In addition, as the camera moves through the environment,
environmental features whose three-dimensional positions
are established are retained longer in the wide field of
view of an omnidirectional camera than in a conventional
camera’s field of view, providing a stronger reference for
motion estimation over long intervals.

Our approach uses a single camera rather than stereo
cameras for motion estimation. An advantage of this
method is that the range of external points whose three-
dimensional positions can be established is larger than the



range of external points whose three-dimensional positions
can be established by stereo cameras since the baseline over
which points can be estimated in the former method can be
much larger. A strategy that we have not investigated, but
that has been examined by some other researchers (e.g.,
[3]) integrates both stereo pairs and feature tracking over
time, and this is a promising approach for the future.

This paper compares two methods of online (not batch)
visual odometry. The first method is based on robust optical
flow from salient visual features tracked between pairs of
images. The terrain around the robot is approximated to be
a plane and a displacement is computed for each frame in
the image using an optimization method that also computes
camera intrinsics and extrinsics at every step. Motion esti-
mation is done by integrating the three-DOF displacement
found at each step. The second method, implemented as an
iterated extended Kalman filter estimates both the motion
of the camera as well as the three dimensional location of
visual features in the environment. This method makes no
assumption on the planarity of visual features and tracks
these features over many successive images. In this case
the six-DOF pose of the camera as well as the three-
DOF position of the feature points are extracted. We report
comparisons of visual odometry generated by these two
methods on a sequence of 2000 images taken during a
desert traverse. To make the comparison meaningful we
use the same set of raw corresponding visual features for
each method.

II. EXPERIMENTAL PLATFORM
A. Hyperion

Carnegie Mellon’s Hyperion, shown in Figure 1, is a
solar powered rover testbed for the development of science
and autonomy techniques suitable for large-scale explo-
rations of life in planetary analogs such as the Atacama
Desert in Chile. Hyperion’s measurement and exploration
technique combines long traverses, sampling measurements
on a regional scale, and detailed measurements of individ-
ual targets. Because Hyperion seeks to emulate the long
communication delays between Earth and Mars, it must be
able to perform much of this exploration autonomously,
including the estimation of the rover’s position without
GPS. Having been demonstrated to autonomously navigate
over extended periods of time in the Arctic Circle during
the summer of 2001, Hyperion was recently used in field
tests in Chile’s Atacama Desert on April 5-28, 2003.

B. Omnidirectional camera

Recent omnidirectional camera designs combine a con-
ventional camera with a convex mirror that greatly expands
the camera’s field of view, typically to 360 degrees in az-
imuth and 90-140 degrees in elevation. On five days during
Hyperion’s field test, the rover carried an omnidirectional
camera developed at Carnegie Mellon and logged high-
resolution color images from the camera for visualization
and for motion estimation experiments. This camera is
shown in Figure 3.

Fig. 2
AN EXAMPLE OMNIDIRECTIONAL IMAGE FROM OUR SEQUENCE,
TAKEN BY HYPERION IN THE ATACAMA DESERT.

Fig. 3
THE OMNIDIRECTIONAL CAMERA USED IN OUR EXPERIMENTS. THE
MIRROR USED HAS A PROFILE THAT PRODUCES EQUI-ANGULAR
RESOLUTION. THAT IS, EACH PIXEL IN THE RADIAL DIRECTION HAS
EXACTLY THE SAME VERTICAL FIELD OF VIEW. THIS CAMERA WAS
DESIGNED AND FABRICATED AT CARNEGIE MELLON UNIVERSITY.

An example image taken from the omnidirectional cam-
era while mounted on Hyperion is shown in 2. The dark
circle in the center of the image is the center of the mirror,
while the rover solar panel is visible in the bottom central
part of the image. The ragged border around the outside
of the image is an ad-hoc iris constructed in the field to
prevent the sun from being captured in and saturating the
images.

The camera design is described by [4] and is summarized
in Figure 5. The mirror has the property that the angle of
the outgoing ray from vertical is proportional to the angle
of the ray from the camera to the mirror, see Figure 5. The
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Fig. 4
TYPICAL FEATURE FLOW BETWEEN CONSECUTIVE FRAMES.

scale factor o is the elevation gain and is approximately
10.

IIT. FEATURE TRACKING

In this work we have investigated two approaches to
feature tracking. The first is based on independently ex-
tracting salient features in image pairs and using correlation
to establish correspondence. The search problem can be
greatly reduced by using first-order image-plane feature
motion prediction and constraints on possible inter-frame
motion. This strategy involves no history or long term
feature tracking. An example of this approach is [5] which
uses the Harris corner extractor to identify salient feature
points followed by zero-mean normalized cross correlation
to establish correspondence.

An alternate strategy is to extract features in one image,
and then use some variant of correlation to find the
feature’s position in the second image. Using this approach,
the feature’s location can be identified not only in the
second image, but in every subsequent image where it is
visible, and this advantage can be exploited to improve
the estimates of both the point’s position and the rover’s
motion by algorithms such as the online shape-from-motion
algorithm described in section V.

One method for performing the best correlated feature
location in the second and subsequent images is Lucas-
Kanade [6], which uses Gauss-Newton minimization to
minimize the sum of squared intensity errors between
the intensity mask of the feature being tracked and the
intensities visible in the current image, with respect to
the location of the feature in the new image. Coupled
with bilinear interpolation for computing intensities at non-
integer location in the current image, Lucas-Kanade is
capable of tracking features to subpixel resolution, and one-
tenth of a pixel is an accuracy that is commonly cited.

One method for extracting features suitable for track-
ing with Lucas-Kanade chooses features in the original
image that provide the best conditioning for the system
that Lucas-Kanade’s Gauss-Newton minimization solves on
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Fig. 5
PANORAMIC CAMERA NOTATION.

each iteration. We have used this method in our experiment,
but in practice any sufficiently textured region of the image
can be tracked using Lucas-Kanade.

In this paper we have adopted the second of these
paradigms, and used Lucas-Kanade to track features
through the image sequence as long as they are visible.
Although only pairwise correspondences are required by
the robust optical flow approach described in Section IV,
correspondences through multiple images are required for
the online shape-from-motion approach that we describe in
Section V. So, adopting this approach allows us to perform
an meaningful comparison between the two methods using
the same tracking data. A typical inter-frame feature flow
pattern is shown in Figure 4.

IV. ROBUST OPTICAL FLOW METHOD
A. Algorithm

For each visual feature, (u,v), we can compute a ray in
space as shown in Figure 5. From similar triangles we can
write tan® = u/ f. We will approximate the origin to be at
the center of the mirror so an arbitrary ray can be written
in parametric form as

x a
y [ =A] b
Z 1

where a = tan{atan"'u/f}cosp and b =

tan{otan~' v/ f}sinB. We will further assume that
the ground is an arbitrary plane Ax+ By + Cz =1 which
the ray intersects at the point on the line, A, where

a
AM[A B Cl|b|=1
1



Thus an image-plane point (u,v) is projected onto the
ground plane at (x,y). If the robot moves by (Ax, Ay, A6)
that point becomes (x,y) which can be mapped back to
the image plane as (u’,v’) from which we can compute the
image-plane displacement or optical flow

(dAM7 dAV) = ’.P(M,V, {MOJVOJfJ(x}J {AxaAyaAe}) (1)

which is a function of the feature coordinate, the camera
intrinsic parameters (principle point (1o, vo), focal length f,
and elevation gain o) and the vehicle motion. We assume
that camera height, A, is known. Our observation is the
displacement at a number of image coordinates, and our
cost function is based on the median of the error norm
between the estimated and observed displacement

e = med\/(dui —du;)? + (dv; — dv;)?

We optimize over the intrinsic, (o, 4, f,uo,v0), and motion
parameters, (Ax,Ay,A8), to minimize e; and find the best fit
to the observed data. We use the median statistic rather than
the summation since it provides robustness to outliers albeit
at greater computational expense. Our feature matching
step also yields a confidence measure which could be used
to weight the corresponding error but this is not currently
implemented.

Optimization is currently achieved using Matlab’s
fmincon() function. Imposing constraints on the mini-
mization was found to greatly improve the reliability of
achieving a solution. Explicit gradients are not used, though
(1) could be differentiated symbolically.

B. Results

Results are shown in Figure 6. The x-axis (forward) ve-
locity of Hyperion is mostly positive, with some reversing
early in the path and a stop around t=1400s. The parameter
estimates are somewhat noisy but the median over the path,
given below, agrees closely with those determined using a
laboratory calibration method. The calibration procedure
identifies separate focal lengths in x- and y-directions, but
these are similar to within a few percent and represented
here by a single focal length parameter.

| Parameter | Value | True | Units |

ug 2474 | 247 pix
Vo 199.1 | 199 pix
o 10.6

f 1000.0 | 999 | pix

The estimated angular rotation can be integrated to de-
termine the heading angle of the vehicle. The relationship
between the observed robot frame velocity and world-
frame velocity from optical flow is given by
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which, given 0, allows us to solve for world-frame velocity
which can then be integrated. Figure 7 compares the path

due to visual odometry with GPS ground truth. The general
form of the path is a qualitatively good match, but with

some event that introduces a significant heading error near
the point (100, —100) that is not yet fully understood.
Zooming in on the region at the start of the path where
there is turning and reversing we note that the agreement
is less good.

Interestingly we notice that the pose recovered by this
method is very dependent on the feature tracker used.
Using the Harris corner detector [5], which generates a
greater number of corresponding features, we find that
the accuracy is improved in the short term through the
reversing and turning phase but is worse over the longer
path.

V. STRUCTURE FROM MOTION METHOD

A. Algorithm

Our method for online shape-from-motion using omni-
directional cameras is an iterated extended Kalman filter
(IEKF), and is a major refinement of the online shape-from-
motion method that we described in [7]. In this section we
give a concise overview of this method, without describing
Kalman filtering in detail. See [8] for details on the Kalman
filter in general, or [9] and [10] for detailed information
on Kalman filtering for conventional shape-from-motion.

A Kalman filter maintains a Gaussian state estimate dis-
tribution, and refines this distribution over time as relevant
new observations arrive by applying a propagation step and
a measurement step. In our application, the observations
are the projection data for the current image, and the
state estimate consists of a six degree of freedom camera
position and a three-dimensional position for each point.
So, the total size of the state is 6 + 3p, where p is the
number of tracked points visible in the current image.

The propagation step of a Kalman filter uses a model
to estimate the change in the state distribution since the
previous observations, without reference to the new ob-
servations. For instance, an airplane’s estimated position
might be updated based on the position, velocity, and
acceleration estimates at the last time step, and on the
length of time between updates. In our current formulation
we assume that three-dimensional points in the scene are
static, but make no explicit assumptions about the motion
of the camera. Therefore, our propagation step leaves the
point and camera estimates unmodified, but adds a large
uncertainty o to each of the camera parameter estimates.
With this simple model, an implicit assumption is made
that the camera motion between observations is small, but
this assumption is made weaker as o is increased.

The measurement step of a Kalman filter uses the new
observations and a measurement model that relates them
to the state to find a new state estimate distribution that
is most consistent with both the new observations and
the state distribution produced by the propagation step.
For our application, the measurement model assumes that
the tracked feature positions visible in the new image are
the re-projections of the three-dimensional point positions
projected onto the camera position, plus Gaussian noise.
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Fig. 6
RESULTS OF SIMULTANEOUS FIT TO MOTION (TOP) AND CAMERA
INTRINSICS (BOTTOM). dx, dy, AND dO ARE THE ESTIMATED
INCREMENTAL MOTION BETWEEN FRAMES. (i, Vo) ARE THE
COORDINATES OF THE PRINCIPLE POINT, 0O THE MIRROR’S ELEVATION
GAIN AND f THE FOCAL LENGTH.

The re-projection of point j is:
xj =TI(R(p)"X; +1) @)

Here, p and ¢ are the camera-to-world rotation Euler angles
and translation of the camera, R(p) is the rotation matrix
described by p, and X; is the three-dimensional world
coordinate system position of point j, so that R(p)TX; +7
is the camera coordinate system location of point j. Il
is the omnidirectional projection model that computes the
image location of the camera coordinate system point.
This measurement equation is nonlinear in the estimated
parameters, which motivates our use of the iterated ex-
tended Kalman filter rather than the standard Kalman filter,
which assumes that observations are a linear function of
the estimated parameters corrupted by Gaussian noise. We
typically assume that the Gaussian errors in the observed
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Fig. 7
COMPARISON OF PATH FROM INTEGRATED VELOCITY (SOLID) WITH
GROUND TRUTH FROM GPS (DASHED). TOP 1S ALL 2000 FRAMES,
BOTTOM IS THE REGION AROUND THE STARTING POINT.

feature locations are isotropic with variance (2.0 pixels)?
in both image x and y directions.

As described, the filter is susceptible to gross errors in
the two-dimensional tracking. To improve performance in
the face of mis-tracking, we discard the point with highest
residual after the measurement step if the residual is over
some threshold. The measurement step is then re-executed
from the propagation step estimate, and this process is
repeated until no points have a residual greater than the
threshold. We have found this to be an effective method for
identifying points that are mis-tracked, become occluded,
or are on independently moving objects in the scene. We
typically choose this threshold to be some fraction or small
multiple of the expected observation variances, and in
our experience choosing a threshold of less than a pixel
generally produces the highest accuracy in the estimated
motion. However, this requires a highly accurate camera
calibration, and we revisit this point in our experimental
results.

An initial state estimate distribution must be available
before online operation can begin. We initialize both the
mean and covariance that specify the distribution using a
batch algorithm, which simultaneously estimates the six de-
gree of freedom camera positions corresponding to the first



gps and estimated (x, y) translations
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Fig. 8
THE GPS ESTIMATES OF THE (X, Y) TRANSLATION AND THE
ESTIMATES FROM ONLINE SHAPE-FROM-MOTION ARE SHOWN AS THE
SOLID AND DOTTED LINES, RESPECTIVELY.

several images in the sequence and the three-dimensional
positions of the tracked features visible in those im-
age. This estimation is performed by using Levenberg-
Marquardt to minimize the re-projection errors for the first
several images with respect to the camera positions and
point positions, and is described in detail in [7]. We add
points that become visible after online operation has begun
to the state estimate distribution by adapting the method for
incorporating new observations in simultaneous mapping
and localization with active range sensors, described by
[11], to the case of image data.

B. Results

As mentioned in previous sections, a potential advantage
of online shape-from-motion is that it can exploit features
tracked over a large portion of the image stream. In the
first 300 images of the omnidirectional image stream from
Hyperion, 565 points were tracked, with an average of
92.37 points per image and an average of 49.04 images
per point.

The ground truth (i.e., GPS) and estimated (x,y) trans-
lations that result from applying the online shape-from-
motion to the first 300 images are shown together in Figure
8, as the solid and dotted lines, respectively. Because shape-
from-motion only recovers shape and motion up to an
unknown scale factor, we have applied the scaled rigid
transformation to the recovered estimate that best aligns it
with the ground truth values. In these estimates, the average
and maximum three-dimensional translation errors over the
300 estimated positions are 22.9 and 72.7 cm, respectively;
this average error is less than 1% of the approximately
29.2 m traveled during the traverse. The errors, which are
largest at the ends of the sequence, are due primarily to the
unknown transformation between the camera and mirror.
After image 300 this error increases until the filter fails.

We are still investigating the details of this behavior.

VI. CONCLUSION

In this paper we have compared two approaches to
visual odometry from a omnidirectional image sequence.
The robust optical flow method is able to estimate camera
intrinsic parameters as well as an estimate of vehicle ve-
locity. The shape-from-motion technique produces higher
precision estimation of vehicle motion but it comes at
the expense of a larger computation expense. Our current
experiments also indicate that it is important to have
accurate calibration between the camera and the curved
mirror for this technique.

We plan to extend this work to include fisheye lenses,
and to incorporate inertial sensor data so as to improve the
robustness and reliability of the recovered position.
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