
Least Squares Congealing for Unsupervised Alignment of Images

Mark Cox and Sridha Sridharan
Queensland University of Technology

Brisbane, QLD 4001, Australia
{md.cox,s.sridharan}@qut.edu.au

Simon Lucey and Jeffrey Cohn
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{slucey,jeffcohn}@cs.cmu.edu

Abstract

In this paper, we present an approach we refer to as
“least squares congealing” which provides a solution to
the problem of aligning an ensemble of images in an un-
supervised manner. Our approach circumvents many
of the limitations existing in the canonical “congeal-
ing” algorithm. Specifically, we present an algorithm
that:- (i) is able to simultaneously, rather than sequen-
tially, estimate warp parameter updates, (ii) exhibits
fast convergence and (iii) requires no pre-defined step
size. We present alignment results which show an im-
provement in performance for the removal of unwanted
spatial variation when compared with the related work
of Learned-Miller on two datasets, the MNIST hand
written digit database and the MultiPIE face database.

1. Introduction

The task we address in this paper is the automatic
alignment of an ensemble of misaligned images in an
unsupervised manner. Most recently, this task has
been referred to as “congealing” based on the semi-
nal work of Learned-Miller [7] 1. The only assumption
we make in congealing is that the parametric nature
of the misalignment is known a priori (e.g. transla-
tion, similarity, affine, etc.) and that the images in the
ensemble have similar appearance when aligned (e.g.,
faces, cars, digits, etc.).

It is clear that the capability to congeal an ensemble
of misaligned images stemming from the same object
class (see Figure 1) has numerous applications in object
recognition, detection and tracking. An example of its

1Although the original congealing approach could equally be
applied to spatial and intensity misalignments, the work con-
ducted in this paper shall concentrate solely on the spatial as-
pects of this work.

Figure 1. The removal of spatial variations introduced by
scale, rotation or translation is an important component of
many computer vision systems. Here, four images of faces
have their spatial variations removed using the unsuper-
vised process of congealing. The effects of the operation
can be seen in the level of detail now present in the average
image.

inclusion in a larger system for the purpose of recogniz-
ing objects can be found in [6]. There are a number of
issues, however, that are stifling the effective employ-
ment of congealing within the wider computer vision
and machine learning community.

Specifically, Learned-Miller’s approach to congeal-
ing employs a sum of entropies cost function to min-
imize the parametric warp differences between an en-
semble of images. This entropy cost function, how-
ever, is based on discrete pixel histograms and as a re-
sult exhibits poor characteristics when employing com-
mon non-linear optimization approaches. To counter
this, he had to employ an ad-hoc optimization strat-
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egy based on a sequential warp parameter update with
fixed step sizes. This optimization approach, although
receiving excellent performance in [7], is extremely sen-
sitive to the order in which this sequential optimization
is conducted and the step size used (see Section 2.2).
In its current form the application of the congealing
method to different parametric warps and different ob-
ject classes is non-trivial. A more in depth overview of
these issues is given in Section 2.

The work presented in this paper attempts to alle-
viate many of these problems. We make the following
contributions:

• Propose the employment of a sum of squared dif-
ferences (SSD) cost function for the congealing opera-
tion. The employment of this cost function allows for
the effective application of a Gauss-Newton gradient
descent approach that is: (i) able to simultaneously
estimate the warp parameter update, (ii) exhibit fast
convergence and (iii) require no pre-defined step size
(Section 3).

• Demonstrate that when Gauss-Newton optimiza-
tion is employed with the SSD cost function our ap-
proach is similar to the Lucas & Kanade method to
image alignment. However, our proposed approach ex-
tends the Lucas & Kanade approach to deal with the
alignment of an ensemble of images rather than a single
image (Section 3).

• Finally, we demonstrate superior automatic align-
ment performance, with respect to Learned-Miller’s ap-
proach, on the MNIST hand written digit database
(Section 4.1) and the MultiPIE face database [8] (Sec-
tion 4.2).

1.1. Related Work

Apart from the work of Learned-Miller, which is of
central focus in this paper, there exists a large body of
work on the automatic alignment of an image ensem-
ble. Much of this previous work, however, has centered
around extending principal component analysis (PCA)
to handle the effects of spatial variations. Notably,
Frey and Jojic [4] proposed a method for obtaining
a set of automatically aligned basis images using the
EM algorithm. The approach employed discrete hid-
den variables to model unwanted spatial variation. A
major drawback to this approach, however, was the
need to define a discrete set of allowable spatial warps.
Additionally, the size of this set directly affected com-
putation time.

Extensions on Frey and Jojic’s approach have been
proposed by Schweitzer [10] and De la Torre [3]. In
these extensions both authors frame the problem of es-
timating a set of automatically aligned basis images
as a bi-linear optimization problem. An advantage of

both these approaches is that the spatial warp variation
is now modeled continuously rather than discretely.
De la Torre improves the situation further by employ-
ing additional techniques like genetic algorithms and
coarse-to-fine gradient descent techniques to solve the
bilinear model. However, the iterative algorithm used
to solve these approaches requires estimates of the ba-
sis images. In the work of Schweitzer, the estimates
are calculated from the initial set of unaligned images.
This results in an algorithm which is susceptible to
local minima as the level of spatial warp variation gov-
erns the quality of the initial estimates of the basis
images [10]. For the work of De la Torre, the basis
images are initialized from starting frames of video se-
quences where the motion between frames is assumed
to be small. This limits the algorithm to dealing with
sequences of video rather than an arbitrary ensemble
of images and as a result, does not have to deal with
the same amount of appearance variation.

2. Congealing

Congealing can be defined as the minimization of a
misalignment function E which is calculated over a set
of N images,

argmin
Φ

E(Φ) (1)

where Φ = {p1,p2, . . . ,pN−1} is the set of N −1 warp
parameter vectors corresponding to N−1 images in the
ensemble and W(x;p) is the parametric warp function
for the pixel coordinates x in each image. Only N − 1
image warp parameter vectors need to be found in this
optimization as we are trying to automatically align
images in the ensemble with each other, so one image
needs to remain static. The choice of which image re-
mains static is arbitrary.

Irrespective of the choice E(), minimizing Equation
1 is a highly non-linear and computationally costly op-
eration. Recently, Learned-Miller [7] provided a sim-
plification to this optimization problem. The strategy
involved iteratively aligning a single held out image
Ii from the rest of the ensemble, or as he referred to
it, stack. The set of parameters Φ were then obtained
by sequentially aligning and then updating each image
in the stack until E() converges. An outline of this
process can be seen in Figure 2.

The vector function I(p) =
[I(W(x1;p)), . . . , I(W(xM ;p))]T refers to the warped
image vector of M intensity pixels. The image I(0)
in Equation 3 refers to the image obtained when
applying the identity warp p = [0, 0, ..., 0]T (i.e.,
no warp displacement). For convenience we shall
denote I(0) as I. The image Ii refers to the ith image
in the stack.



repeat

for i = 1 to N − 1 do
pi ← argmin

p
Ei(p)) (2)

Ii(0) ← Ii(pi) (3)
end for

until E() has converged

Figure 2. The iterative congealing algorithm.

Equation 2 employs a new misalignment function
which is dependent on only a single warp parameter
vector rather than the N − 1 warp parameter vectors
in Equation 1. As a result, this new misalignment func-
tion can be solved in a far more efficient manner de-
pending on the type of measure employed in the mis-
alignment function.

2.1. Learned-Miller Congealing

The measure of misalignment Ei() used by Learned-
Miller in Equation 2 is constructed as a sum-of-
entropies function and is shown in Equation 4

Ei(p) = −
∑

x

∑

k∈K

px(k) log(px(k)) (4)

where K is the set of intensity values that a single
pixel is allowed to take and px(k) is the probability
of the pixel intensity at an image coordinate x. This
probability is calculated using a histogram of the set,

[I1(x), . . . , Ii(W(x;p)), . . . , IN (x)]T (5)

which consists of the pixel intensities at the same co-
ordinate x of each image with the ith image warped
using the parameter vector p. The rational for using
such an approach is that the total entropy for an en-
semble of aligned images is less than the total entropy
in an ensemble of misaligned images.

Learned-Miller solves for pi in Equation 2 by in-
crementing or decrementing single elements of pi by
a user defined amount. If the change does not cause
an improvement, the value is reset to its initial value
and the next element is searched. The amount each
element is adjusted by is represented by the step size
vector ∆ = {δ1, δ2, . . . , δP } and must be defined be-
forehand.

2.2. Learned-Miller Optimization

The motivation in [7] to use sequential improvement
of a single parameter by evaluation instead of a more
sophisticated solution, which simultaneously obtains
the parameter vector values directly from the measure
of misalignment, stems from the problem that the en-
tropy surface is not a smooth function of the affine

warp parameters [7].2 Whilst the sequential algorithm
obviously works, the approach incurs non-ideal charac-
teristics. This is best illustrated by the way [7] handles
rotation.

Rotation is typically dependent on four of the six
parameters in the canonical parametric vector repre-
sentation of an affine warp. Obviously, this cannot be
accounted for when sequentially improving single pa-
rameters. Learned-Miller solved this drawback by in-
corporating an additional redundant parameter which
maps to the four fundamental parameters. Whilst this
solution is simple for the intuitive affine warp, the
number of redundant parameters that may be required
for more complicated types of functions like piecewise
affine warps could be substantial. In addition, whilst a
mathematical definition of the unwanted variation may
be specified, common occurrences of variations which
are combinations of parameters may be unknown or
difficult to determine.

Another aspect that is not ideal in this optimiza-
tion strategy is the need to specify a step size vec-
tor ∆. Intuitively, if large values are used it will miss
subtle variations and the reverse argument applies for
small values. This problem could be solved by per-
forming multiple passes of the algorithm in a coarse to
fine manner, but for the case where larger numbers of
parameters for warp W are required, iteratively discov-
ering the best values for the step size vector for each
pass is suboptimal.

A deeper problem also occurs when attempting to
determine the order in which the parameters are to be
sequentially improved. To investigate this problem, an
experiment was conducted in which the first 300 sam-
ples of handwritten digits from LeCun’s and Corte’s
MNIST database [8] was congealed using 7 different
parameter orders.3 For each different parameter or-
der, the resultant entropy at convergence and the num-
ber of iterations to attain convergence was collected.
This data is shown in Figures 3(a) and 3(b) and shows
that the parameter order does effect the performance
of Learned-Miller’s approach.

Parameter Drift: Empirical observations of the algo-
rithm by Learned-Miller reveal that the algorithm suf-
fers from an average parameter drift during the align-
ment process. To combat this, he proposed an amend-
ment to the algorithm which removes the average pa-
rameter drift by simply removing the average change in

2A simultaneous solution was used successfully employed by
Learned-Miller to remove variations in brightness in magnetic
resonance images of the human brain.

3The variations were formed by simply cycle shifting the start
ordering of translation: x then y, rotation, scale: x then y and
then shear: x then y.
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(b) Number of iterations until convergence

Figure 3. The use of a sequential improvement of parameters optimization strategy for minimizing the measure of misalign-
ment introduces some non-ideal characteristics to the congealing operation. One of which is shown here where we show the
effect of varying the parameter order in which parameters are improved on (a) the final converged measure of misalignment
and (b) the number of iterations to reach the converged value.

the parameters for each image. This approach requires
the parameter values and importantly the redundant
parameters to be additive, which places additional re-
strictions on the formulation of the parametric function
W().

3. Least Squares Congealing

This section outlines an alternative method for
aligning images which obtains all elements of parame-
ter vector p simultaneously rather than employing the
sequential method presented in Section 2. Our ap-
proach is made possible by using an alternate mea-
sure of misalignment Ei(p) which results in an error
surface suitable for gradient based optimization tech-
niques. Our approach is motivated by the classic Lucas
& Kanade algorithm [9] for iteratively aligning a single
image with respect to another using gradient-descent
optimization. In our proposed approach we employ a
SSD function for misalignment,

Ei(p) =
N

∑

j=1
j #=i

[Ij − Ii(p)]2 (6)

As it stands, Equation 6 is still a highly non-linear
function and still difficult to minimize. We can lin-
earize this equation by taking the first order Taylor
series approximation around Ii(p) where p is now our
initial guess of the true alignment and ∆p is what we
are now trying to explicitly estimate,

argmin
∆p

N
∑

j=1
j #=i

[

Ij − Ii(p) −
∂Ii(p)

∂p

T

∆p

]2

(7)

where ∂Ii(p)
∂p

are the steepest descent images formed

using ∂Ii(p)
∂p

= ∂W
∂p

∇Ii(p). The solution to Equation 7

is given by,

∆p = H−1
a

∂Ii(p)

∂p

[

( 1

N − 1

N
∑

j=1
j #=i

Ij
)

− Ii(p)

]

(8)

where,

Ha =
∂Ii(p)

∂p

∂Ii(p)

∂p

T

(9)

we refer to Ha as the pseudo-Hessian. An iterative
solution to Equation 6 can now be found by iteratively
solving for ∆p and updating the initial guess p ← p+
∆p until convergence. This type of optimization is
typically referred to as Gauss-Newton optimization [2].

What becomes immediately obvious, from inspect-
ing Equation 8, is that the incremental update ∆p is
not estimated from the stack of images, but is merely
estimated from the “average” image of all Ijs in the
stack. In earlier work, Schweitzer [10] comments on
this problem by mentioning that the principal compo-
nents of unaligned images are dominated by variations
in scale, rotation and translation rather than appear-
ance, resulting in blurry basis images. Thus, if the
basis images are blurry, then the average image is sure
to be blurry. By using the average image to control the
direction of ∆p, with all the fine detail of the object
lost, the algorithm is again at the mercy of the initial
conditions.

In our approach we propose a novel way to circum-
vent this limitation where we invert the problem being
solved in Equation 7,

argmin
∆p

N
∑

j=1
j #=i

[

Ij(p) +
∂Ij(p)

∂p

T

∆p− Ii

]2

(10)



so that we can solve for ∆p by,

∆p = H−1
b

[

N
∑

j=1
j #=i

∂Ij(p)

∂p

(

Ij(p) − Ii
)

]

(11)

and the new pseudo-Hessian is defined as,

Hb =
N

∑

j=1
j #=i

∂Ij(p)

∂p

∂Ij(p)

∂p

T

(12)

By inverting the problem we are now attempting to es-
timate the ∆p that best aligns the stack to the left out
image, rather than the other way around. A major ad-
vantage of our proposed solution lies in its ability to use
more of the details of each image in the stack for align-
ment, rather than just relying on the average image
of the stack. Inspecting Equation 11 we can see that
the update is now being estimated from the steepest
descent images stemming from the entire stack rather
than a single steepest descent image as in Equation 8.
Similarly, the pseudo-Hessian being employed in Equa-
tion 12 is based on all the steepest descent images in
the stack rather than a single steepest descent image
as in Equation 9.

Congealing Using the Average Image: To show
the suboptimal effects of using the average image for
controlling the congealing process, we setup a sim-
ple experiment involving 30 random images of cropped
faces from the MultiPIE dataset. We further exagger-
ated the spatial variations present in the images by
randomly perturbing these images in order to remove
all detail of the face from the average image (left most
image of Figure 4). The randomly perturbed images
were then congealed using the method requiring the
average image as per Equation 8, and the inverted least
squares congealing formulation shown in Equation 11.
After each method had performed 10 iterations of con-
gealing, the average image of the final iteration was
obtained. The average images for both algorithms can
be seen in Figure 4 where the middle and right images
correspond to congealing using the average image for
alignment and the inverted least squares algorithm re-
spectively. As can be seen, the output of the inverted
least squares congealing algorithm is clearly of a face
with some detail of the mouth, eye, nose and chin; and
as predicted, using the average image for alignment
struggles to align the images.

To summarize, the important differentiating fea-
tures between the least squares congealing algorithm
and the Learned-Miller algorithm are: (i) the algo-
rithm uses a different measure of misalignment which
has been successfully used for aligning two images and

(a) (b) (c)

Figure 4. Using the average image for alignment results
in an algorithm which is entirely dependent on the initial
conditions of the average image. The proposed algorithm
avoids the use of the average image resulting in increased
performance for severely misaligned images. This can be
seen from the average images of: (a) original data, (b) out-
put of the congealing algorithm where the average image
is used for controlling the alignment and (c) output of the
inverted least squares congealing algorithm.

is suitable for gradient descent based techniques [9],
[1] (ii) the parameters p are obtained simultaneously
and directly from the measure of misalignment through
Gauss-Newton gradient-descent and (iii) no step size
set ∆ is required.

3.1. Robust Least Squares Congealing

Robust error functions have been used to great effect
in limiting the effects of outliers within gradient descent
image alignment [1]. For added robustness we have in-
corporated this framework into our least-squares con-
gealing framework. A reformulation of Equation 6 can
be seen with the robust error function #(),

Ei(p) =
N

∑

j=1
j #=i

∑

x

#
(

[Ij(W(x;p)) − Ii(x)]2 ; φ
)

(13)

Unfortunately, in the process of introducing the ro-
bust error function, an additional parameter φ and an
additional function #() are required. Determining the
function and the parameters are obviously data specific
and for this situation where alignment is carried out it-
eratively on each image, it is likely that the parameters
to #() are specific to the held out image and possibly
to the current iteration as well, rather than fixed for
all iterations. However, for the sake of simplicity, we
assume that the parameter φ is fixed for all iterations.

An exponential distribution (Equation 14) was cho-
sen for #() as it approximately models the decaying
number of observations for increasing error that the
distribution of (Ij(x) − Ii(x))2 exhibits. By varying
the φ parameter it is possible to control the emphasis
placed on the small errors relative to the larger errors.

#(x; φ) = φe−φx (14)



Using the same procedure as presented earlier, with
an additional Taylor expansion of the robust error func-
tion #(), the incremental update equation is shown in
Equation 15.

∆p = H−1
#

[

N
∑

j=1
j #=i

∂Ij(p)

∂p
Rj

(

Ij(p) − Ii
)

]

(15)

H# =
N

∑

j=1
j #=i

∂Ij(p)

∂p
Rj

∂Ij(p)

∂p

T

(16)

The matrix Rj refers to a square diagonal matrix
of dimension M ×M with each value corresponding to
the evaluation of the squared pixel error using the first
derivative of #().

Parameter Drift: Like congealing, our method also
suffers from an average parameter drift. Rather than
requiring the parameters to be additive as done in [7],
a different approach specific to images was created.

The method works by initializing three points to the
top left, top right and bottom right hand corners of
each image and tracking their movement through the
iterative congealing process. After a single application
of congealing has been applied to all images, the pa-
rameters to a single warp is calculated such that when
it is applied to the tracked points, it results in the av-
erage of the points being their initialized positions.

4. Performance Evaluation

4.1. Congealing Handwritten Digits

In order to compare the two congealing algorithms
we setup an experiment in which we attempted to re-
move the spatial variation present in samples of hand-
written digits from the MNIST Dataset [8] using con-
gealing. A total of 50 random samples of each digit
were selected from the database of which the average
image of those samples can be seen in the first row of
Figure 5. The smudged look present in these images
indicates that there is considerable spatial variation be-
tween samples.

The 50 samples were then congealed using the
Learned-Miller4 and the proposed least squares con-
gealing algorithm. The average image of their output
can be seen in the middle and bottom rows of Figure 5
respectively. The sharpness of the average digits of the
least squares congealing output shown in Figure 5 com-
pared to the original average digit indicates that the

4The Author’s own implementation of the Learned-Miller al-
gorithm

Figure 5. The smudged look of the average image of a set
of images is a good indicator of the presence of spatial vari-
ations across images. Congealing offers an unsupervised
method of removing this unwanted variation. Here, the av-
erage image of 50 sample images for a number of handwrit-
ten digits is shown: before unsupervised alignment using
congealing (top), after congealing using the Learned-Miller
algorithm (middle), and after congealing using the proposed
algorithm - least squares congealing (bottom).

proposed algorithm is an effective method for perform-
ing auto-alignment on the handwritten digit samples.
The fact that the least squares algorithm does not re-
quire step sizes (i.e. ∆) produces an even cleaner align-
ment than the Learned-Miller algorithm, as the small
spatial variations which cause the blurriness about the
edges of the Learned-Miller output have been removed.

In order to produce the above results, both methods
performed a maximum of 25 iterations of congealing.
For the Learned-Miller algorithm, the values which
form the step size vector ∆ were obtained empirically
through a number of trials and selecting the configu-
ration which produced the best looking results. The
maximum number of incremental update calculations
for the calculation of p in the least squares algorithm
was clamped to 25. In the event that p had not con-
verged by 25 iterations, the image was left unchanged.
This condition avoids the case where the image is so
severely transformed that the resulting image becomes
unidentifiable.

Of interest in the above comparison, is the differ-
ence in the number of iterations required for conver-
gence. To determine this, the sum-of-entropies measure
of misalignment used in the Learned-Miller method was
applied to the output of each iteration of both least
squares algorithms. Figure 6 shows the output of this
measure after each iteration for the digits three and
seven. What is immediately apparent is that the con-
verged point for the least squares congealing algorithm
is attained very quickly due to the simultaneous dis-
covery of all parameters.
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Figure 6. Both the Learned-Miller and least squares con-
gealing algorithms are iterative methods of removing un-
wanted spatial variations from images. This figure illus-
trates the number of iterations required for both algorithms
to converge to a point where the algorithm can no longer
remove any more spatial variation present in 50 images of
the handwritten digits ’3’ and ’7’.

4.2. Congealing Gray-Scale Cropped Faces

Motivated by the outcome on the MNIST data set,
the authors pursued a formal evaluation on a more dif-
ficult task: the alignment of faces from the MultiPIE
data set [5]. The manually annotated landmarks avail-
able with the MultiPIE data set provide a good source
of ground truth data that can be used to easily align
the images, and they can also be tracked from their
initial position throughout the congealing process.

The unaligned reference set of landmarks refers to
the original manually annotated landmarks. There are
a total of 68 landmarks for each face where each land-
mark corresponds to an important structural position
of the face. The unaligned reference set should ide-
ally be the upper limit of any congealing algorithm.
A ground truth aligned set of landmarks was created
from the unaligned reference landmarks by aligning all
of the landmarks to a single held out image using the
similarity transform (scale, translation and rotation).

The position of the landmarks for the output of both
congealing algorithms was calculated by applying the
resultant affine warp pi for each image to the initial
set of landmarks for the image. In order to compute a
metric of performance for each of the algorithms, the
distance between the tracked landmark from congeal-
ing and its position in the aligned set was used. Prior
to calculating this value, a similarity transform was
calculated between the average landmark positions of
each algorithm and the aligned set. This transform was
then applied to all images in the congealed landmark
set to remove any global differences in scale, rotation
or translation.

A subset of 30 images were selected where each im-
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Figure 7. The cumulative distribution of the RMS point
error calculated from the difference between a set of 68
annotated landmarks for each face aligned manually and
the locations of the same landmarks after congealing.

age was captured under uniform lighting conditions
and displaying a neutral facial expression. The im-
ages of the face were first cropped to a point where
the entire average face was contained in the cropped
area with some margin for outliers. Once cropped, the
images were interpolated to a size of 28× 28 pixels.

The results shown in Figure 7 illustrate the cumu-
lative distribution of the distances between the land-
marks in the aligned set and the position of the land-
marks after congealing. The result of an ideal al-
gorithm in Figure 7 is to obtain 100% of the land-
marks within the smallest distance as possible. The
figure shows that an improvement in performance over
the Learned-Miller algorithm by using the robust least
squares congealing algorithm. Figure 8 shows a portion
of the output of the robust least squares congealing op-
eration presented in Figure 7.

Another variable to consider with congealing is what
effect does the image size have on performance. In
this experiment, the images are rescaled square im-
ages of varying side lengths. Results from this experi-
ment indicate similar levels of performance between the
Learned-Miller algorithm and the robust least squares
algorithm, with each algorithm exhibiting stable be-
havior around an average RMS point error of 2.25 for
images with a side length of 30, 40, 50, 60, and 70
pixels.

5. Discussion and Conclusion

This paper presents an extension to the canonical
“congealing” algorithm of Learned-Miller. Our ap-
proach, which we refer to as “least squares congealing”
has a number of advantages over conventional congeal-
ing. Specifically, it: (i) is able to simultaneously, rather
than sequentially, estimate warp parameter updates,
(ii) exhibits fast convergence and (iii) requires no pre-
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defined step size. A further advantage of our approach
is that it now makes the experimentation of congeal-
ing on different types of objects and warps trivial as
much of the guess work concerning: (i) the order of
sequential parameter optimization, (ii) the parametric
form of the warp, (iii) the step size to choose; has been
eliminated. From an implementation perspective, our
proposed algorithm has an additional benefit as it is a
straight forward extension of the traditional Lucas &
Kanade approach to image alignment.

One drawback to our current approach is that the
least squares congealing method is reasonably compu-
tationally intensive. Future work shall try and greatly
expand our work to develop congealing algorithms that
can efficiently align image ensembles containing thou-
sands if not millions of images. Other work shall also
attempt to see if congealing can be applied to aligning
video sequences of an object in an unsupervised man-
ner and also improve conventional methods for object
tracking.
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