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Abstract— Meetings are a very important part of everyday Aﬂ Aﬂ i Aﬂ
life for professionals working in universities, companiesor ? 2 B 1 1 !
L I — .

governmental institutions. We have designed a physical awe-
ness system called CAMEO (Camera Assisted Meeting Event
Observer), a hardware/software system to record and monito
people’s activities in meetings. CAMEO captures a high
resolution omnidirectional view of the meeting by stitchirg
images coming from almost concentric cameras. Besides
recording capability, CAMEO automatically detects people
and learns a person-specific facial appearance model (PS-
FAM) for each of the participants. The PSFAMs allow more
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robust/reliable tracking and identification. In this paper, we I
describe the video-capturing device, photometric/geomet Leami
autocalibration process, and the multiple people tracking (c?;;r;?s%
system. The effectiveness and robustness of the proposed Repositery)

system is demonstrated over several real-time experiments !

and a large data set of videos. Fig. 1. CAMEO a) Hardware b) Software
Index Terms— Omnidirectional-video capturing, Multiple

people tracking, Subspace methods, Meeting understanding

Person-specific models.

is to build a personalized computational resource that will
I. INTRODUCTION be able to handle routine tasks/events, anticipate peddéct

Meetings are an integral part of business life. A mid-levelUSE" N€eds and appropriately prepare for them, including

manager or professional spends approximatsfi of his e handling of unexpected events.
or her time in meetings. On the other hand, meetings are Instead of instrumenting meeting rooms, CAMEQ is in-
not always as productive as expected. Among professionalgnded to be used more as a speaker phone for a conference
who meet on a regular basig6% miss all or a part of call. Thatis, a CAMEO device will be brought into a meet-
a meeting,73% have brought other work to a meeting, iNg and simply placed in the center of the room without
39% have dozed during a meeting, and many of thosdequiring special manual calibration. As such, CAMEO is
attending a meeting need to clarify miscommunicationglesigned to be used in environments where those who are
[12]. Having systems that help to review/share meeting®articipating in the meetings agree to and welcome the use
can help to correct these undesirable situations. In facPf such an electronic assistant. Apart from omnidirectiona
many companies now use devices to transcribe events (suddio-video recording capabilities, CAMEO will be able
as who spoke and what was discussed) into a digital forrf0 answer (real time) who is in the meeting, where each of
that can be searched and analyzed. This is a preliminafj)€ participants is, and when some events occur. This is a
step towards implementing collaborative technology in theirst step towards understanding human activity in meetings
meeting room. [18]. Figure 1 shows the hardware and a block diagram of
In this paper we develop CAMEO (Camera Assistantthe software capabilities of CAMEO.
Meeting Event Observer) a hardware/software system that The hardware is composed of 4 daisy-chained web-
is able to record and process audio-visual information asameras and an omnidirectional microphone. There are just
a first step towards understanding human interactions itwo cables, one firewire for the cameras and one for the
meetings. CAMEO is part of a larger effort to develop anmicrophone, connected to a shuttle PC or a laptop. There
enduring personalized cognitive assistant that is capablre two main benefits of the hardware design, a 360 degrees
of helping humans handle the many daily business andf field of view and a portable device, so that there is
personal tasks that they engage in. The goal of the larggro need for instrumented rooms to record meetings. The
project CALO (Cognitive Agent that Learns and Organizes)software component is divided into two parts: one that
operates in real time and the other off-line. In the real time
* This work has been partiall_y supported by National Busir@sster processing, CAMEO will take the images coming from the
of the Department of the Interior under a subcontract from Bier- . .
national and U.S. Department of Defense contract N417564R4, four cameras and construct an approximate mosaic. Once
NIMH Grant RO1 MH51435. the mosaic is constructed, CAMEO will be able track and



recognize multiple people in the omnidirectional videoeTh 30 cm). A small focal length yields large depth of field,
tracker and recognition systems are effective and robusind as all objects are in focus from a distance of a few
because they are based on a set of learned person-specdantimeters to infinity, autofocus is not required. However
appearance models. The off-line part records the audio arttiese lenses introduce big radial and tangential distoitio
the video stream coming from the 4 cameras, and in latethe images. The first step toward stitching the images is to
processing builds a more accurate mosaic [3]. compute an estimate of the intrinsic camera parameters,
computed with a standard calibration toolbokt#p
Il. AN OMNIDIRECTIONAL VIEW OF THE MEETING / Jwww.vision.caltech.edu/bouguetj/calibk_doc/). The
Meeting understanding has been an active research topitrinsic parameters include effective focal length Ty
during the last few years and several groups have proposgfe image center or principal point,, v, and the ones to
intelligent rooms [10], [13], concentric cameras devicHs [ correct the radial/tangential distortidn, k-, k3, k4*. The
[4], [22] and various instruments [16] to record humanprojection model taking into account the distortion model
activity in meetings. In order to have a global view of has the following expression [7]:
the meeting, CAMEO will capture 860° degrees of field X v s ) )
of view with an omnidirectional camera. Many techniques In=7% Yn=7 T =T+
have been researched for constructing panoramic imagesu, = (1 + k17% + kor®)x, + 2ksznyn + ka(r? 4 222)
from real-world scenes. Mirrored pyramids and parabolic vp = (14 k1r? + kor)yn + 2ks@nym + ka(r? + 2y2)
mirrors [17] could be used to capture the images di-
rectly; however, in order to capture high resolution images
expensive equipment is needed and potential defocusinghere X,Y, Z are the 3D coordinates and,, y,, are the
problems may result in low quality video. In our case,pixels position in the image.
we are interested in minimizing the amount of cables Despite the fact that the cameras are mounted as close
and designing an inexpensive portable device. Similar teogether as is practical, they do not share a common center
previous work on panoramic images for meeting recordin@f projection and the translational component introduces
[1], [4], [22], CAMEO will integrate images coming from parallax effects (complicating the matching process). To
almost concentric images into a single mosaic. minimize this effect and because of easy construction,
There exist several techniques to stitch images comingylindrical panoramas are commonly used [1], [22], [23].
from several cameras [14], [1], [4], [23], [15]. However, Each image is corrected and warped into cylindrical coor-
most of them assume that the camer’a is _panning, or thalinates ¢ = atan(3),v = \/ﬁ). In order to speed
only rotation exist betyveen cameras optlc.al centers. Ir]Jp the process, we construct a look up table (LUT) to
the case that the motion between the optical centers Qigrrect for the distortion and the cylindrical mapping ngsi
the cameras is just rotational, it is easy to show thayery efficient Intel Performance Primitives (IPP) function
a homography can relate the geometry of the imagegnce the images coming from the cameras are corrected
[6]. However, in our case the cameras do not share gnq warped into cylindrical coordinates, constructing the
common center of projection, and parallax effects ocCup,ggaic is a translational estimation problem (assuming al-
due to the translational component between the opticghqs; concentric cameras). In the on-line version, we ignore
centers of the cameras. Having translational motion bege ransiational component between the optical centers of
tween cameras, the geometric transformation that relatgfie cameras and search for the translation that produces
two images becomes depth dependent (the parallax effegfe pest match between adjacent cameras. A constrained
becomes more evident at shorter distances). One possiblg malized template matching is computed to search for
solution will involve computing depth for each point [14]; {he gptimal translational. Although gradient descent type
however, this approach will be very expensive for real timegyathods are possible [23], parallax effects and large ahang
applications. With the topology of the camera, if the olgect i, \jewpoint make them too sensitive to local minima.
are approximately 2 m far away from the camera, thejn,)ly a weighted (more weight to the image which is
parallax effects can be ignored. In this section we eXpla"bloser) blending procedure is used to merge both images.
the software/hardware details for constructing the Camergigyre 2.a shows four original images and how they are
device able to produce high resolution video sequences Qe ged into the mosaic 2.b. More details of the mosaic
stitching images coming from almost concentric cameras,onstruction can be checked at [29], [3].
Preliminary work has been presented at [19].

Tp = fgcup'f'xo Yp = fyvp+yo

B. Geometric and photometric autocalibration

A. Real-time mosaicin .
) 9 ) ) When CAMEO starts, it loads all the camera parameters,
CAMEQ is composed of 4 inexpensive web-camerag yTs and begins the geometric/photometric calibration

that have been daisy-chained, and just one firewire cablg ,cess. Because the mosaic is constructed from different
to transmit the signal and power, similar to [1], [4]. In
order to reduce the number of cameras, wide angle lenses'Bold capital letters denote a matri®, bold lower-case letters a

with 1.7mm of focal length and approximatelyloo of column vector. d; represents thg column of the matrixD. d;; denotes
the scalar in the row and column; of the matrixD All non-bold letters

field of view are used-_ This guarantees a slight overlagj yepresent variables of scalar nature denotes Hadamard (point wise)
between the field of view of two cameras (further thanproduct.



linear projection operator that takes into account the in-
ternal camera parameters (radial distortion, focal length
principal point). Optimizing eq. 1 involves a non-linear
optimization and may be difficult to solve due to multiple
local minima. Rather than applying gradient descent type of
methods starting from different initial points, we use a two
step approach. There are two sources of non-linearity in eq.
Fig. 2. a) Original images. b) Mosaic image 1, one due to the angles and the other due to the quotient
(easily solved by multiplying). We sample the angle space
for 6 € [0..27] and~ € [0..27], and for each value df, v
cameras, all of them should be mutually color-calibrated tove solve the following linear system of equations:
ensure that they look alike. At the start, one camera is take ‘
as the reference camera and the chromatic characteristi 10 o]’ X‘mw)msm_’G’"'ff(e)_rﬂx”i“("’))
are recorded and propagated to the other cameras (no au ’; -1 0 e
matic settings are used). Because of different lighting an( +. .
CCD properties, we compute an affine transformation usiny 0 -1 g¥ Xpesin(8)cos(y) + Yarcos(8) — 4l { Xprsinly))
overlapping regions. That is, given a set of matching points
between 2 images, we compute the affine transformation . o .
(A,b) which minimize the error among matched points T indicates the pseudo-inverse which is _computed just
min, p 3, |[x; — Axs — b||. Finally, we use the camera ONCe. In order to make the search efficient, we start
drivers to access and change the hue and saturation valug&Mpling everyl0%, and when we have the minimum we
of each camera according to this in order to correct thénake another local search, but witR resolution. Figure
color, which is hardware efficient. 3.b shows the error energy function for several values of
A useful feature of CAMEO is to know the relative po- # and-~; in this case we have two valid solutions with the
sition of a person/pattern w.r.t. one of the cameras, becau§@Me energy value (due to planar ambiguity). We choose
it allows us to calibrate between several CAMEO’s, tothe parameters that give positive depth.
estimate the depth of a person and to know the position w.r¢  software specifications
other devices. By knowing the internal camera parameters, In order to ensure software stability. we divide the
and assuming a planar calibration pattern, it is relatively : : ) Y
simple to estimate the relative orientation w.r.t the c&merSOﬁWQre in 4 main module_s.
(e.g [24]). In order to simplify the scenario, we will assume V|dep ach|S|t_|on. Acquires raw data frorm cameras
that the planar pattern has just two rotational degrees ot>'ng M'CrQSOﬂ Dlrec'g Show. This module supports differ-
freedom, one anglé which describes the in-plane rotation ent resolqtlons and .d'fferef“ frame ratgs.
and~ for the tilt. The pattern is composed of 3 colors (see Mosaic _generatlon_ Bwlc_is_a mosaic from 4 camera
fig. 3.a) and CAMEO automatically detects (in high reso-StreamS' This module is o'pt|m|zed using IPP I_nteI I|brary,
lution images) which camera sees the pattern and extrac d has two sub-modules: a. Correction of radial/tanglentia

the coordinates of the corners using normalized templatt Iftorltlc'[)innang Cli//llmdrilcal nﬂgfpt:ng/tl_::; ?ncd ?Tl]llne;ar I?h
matching at different scales. Without loss of generality,e pofation. b. Mosaic calibration/iuning. -omputes the

we assume that the left corner of the pattern is the Worlctjranslational error between overlapping areas of adjacent
coordinate system and the axes are aligned with the patteﬁ‘?meras' It keeps track of the overlapping error and re-

(the pattern is in the plane Z=0). Under these assumption omputes the translation if needed.

we are interested in recovering the rotational angles an%é Efcl:)i:glélgni)leEiTvit(r? ﬁ%?ggoievf/?r:givtgmgg u; (ge-
translational components vy, t,, ty, t., by minimizing: 9

ries, which provides a set of features very convenient such
E = Z@Nﬂ((xé y;)T _ P(RQ(O)RI ()X, + T))2 as: aud_io and vio_le_o_ synchror_lization, real tir_ne compression
N i Xicos(8)cos(y)— Yisin(8)4ta 2 streaming, possmlllty of adding metad_a_ta in the stream.

=i (@, — X, sin(y)+t- ) - Processing moduleUses the remaining CPU process-

4y — Xisin(@)cos(y)+Yicos(O)+ty )2 (1) ing time to detect, track and recognize faces. To make this

" Xisin(y)+te possible, we first need to determine the amount of CPU

whereX; = (X;, Y;, Z;)T, T = (t, ty t.)T and (x; y;) time remaining for processing each image. Then, we assign

are the pixel coordinates of the pattern for the psiahd  quotes of this time to each sub-module to ensure real time

(X;, Y;, Z;) are the 3D coordinates in the global referenceprocessing. If the system runs out of time, it then jumps to

Xwcos(@cos(y) — Yiwsinld) — 25 (Xwsin(y))
Xy sin{@)costy) + Yrcas(8) — v (Xasin(r))

cos(y) 0 —sin(y) the next task or module. Most of the routines use OpenCV
frame (the patternR,(y) = 0 1 0 ,  functions, highly optimized for INTEL processors.
sin(y) 0 cos(v) The bandwidth of the Fire-Wire bus is up to 400 Mbps,
cos(f) —sin(f) 0 and to reduce the amount of data transmitted CAMEO
Ry (0) = sin(f) cos(d) 0 |, andP is a non- acquires the images using YUV format. However, there

0 0 1 are some limitations due to the Fire-Wire bandwidth, and



1 L AL &

Fig. 4. a) Set of templates. b) First eigenbasis

are automatically detected using Scheiderman face detec-
tion algorithm [20], [21]. Figure 4.a shows some of the
athered images6{ x 64 pixels). One possible way of
onstructing a PSFAM will consist of selecting several
rototypes (different scales and profiles). Once a set of
gprototypes for each person are selected, tracking is asthiev
by performing template matching with each of them and

a trade-off exists between resolution and frame rate. Tabl
[I-C shows the bandwidth and CPU times required for eacrb
configuration to build the mosaic. Finally, each meetin

Cameras| Resolution | Frame rate| Bandwidth | CPU time

7 320x240 30 221 Mbps 50% selecting the position with minimum error. However, as the
4 320x240 15 111 Mbps 25% number of templates increases, it becomes impractical to
. gigiigg 72 ;%“ﬂ,lbbp;s P find the best match w.r.t each of the templates, and in our
4 640x480 3.75 138 Mbps 25% scenario, a more efficient and robust matching approach is
TABLE | necessary. To exploit the spatial redundancy existingen th
MEASURED WITH PENTIUM-M CPU AT 1.7 GHZ AND 1 GBYTE OF templates, to filter noisy data and to average clutter from
RAM. the background, a subspalB2 for subjecti is computed

by means of the Singular Value Decomposition (SVD)

[5]. In order to get a better estimate of the subspace,
takes about 1.5G/hour to store (high quality video), mosthe images have to be perfectly geometrically aligned
of which is the video signal. Also, the compression isW.I.t. the subspace. Parameterized component analysis [2]

proportional to the number of people/movement. is used to achieve geometric (translation, rotation, 3cale
invariant learning. After the data has been registered. w.r.
[ll. M ULTIPLE PEOPLE TRACKING the subspace which preservés% of the energy, it is

Real time robust localization and tracking of faces fromclustered in approximately20 prototypes in order to avoid
the omnidirectional video is a key aspect of CAMEO the principal components being biased towards specific
towards understanding human activity. Knowing people'dacial expressions/poses that are more common. Usually,
position is helpful to extract high level information in @d the number of profile-gathered faces is lower than the
to infer activity. However, tracking multiple people is a frontal ones; this can bias the construction of a subspace. T
Cha”enging prob|em due to signiﬁcant occlusion caused b@VOId this situation, we first cluster each of the profile face
interaction among people, deep changes in pose, and rapifo 30 prototypes and the frontal faces irfio prototypes.
motions. Moreover, in the CAMEO scenario, low quality With these prototypes we construct the PSFAM. In figure
video, low contrast, and varying illumination conditions 4-(b) the set of eigentemplates at one scale is displayed
complicate the tracking process. In this section we will de-2fter applying parameterized component analysis. Usually

scribe the use of person-specific facial appearance modéiree eigentemplates are constructed at 3 different scales
(PSFAM) for tracking multiple people. by subsampling the training data. Also, CAMEO can learn

the PSFAM on-line. More details are given in [3].

A. Learning person-specific facial appearance models L .
i i ) B. Efficient subspace tracking
Since most of the people remain seated during the

meeting, we have focused our efforts on developing head ©Nce the person-specific subspdgeis estimated, the
trackers that are able to track the head from profile td’roblém becomes how to track the face, that is, finding the

profile. Rather than use generic models, CAMEO will Scale, position and appearance coefficients in the image tha
automatically learn PSFAM, which will allow a more best match the model. Given a subsp#and an image

robust and faster tracker. Given a new video, CAMEOL CAMEO has to find the positiofu, v) in the imagel
will automatically detect the people and identify them (seeSUch that the distance from the subspace is minimum; at a
next section). If the person is recognized, CAMEO will 9'VEN scale, this implies minimizing:
use his/her person-specific facial appearance model to trac E(u,v,¢) = min ||[I(X + u,y +v) — Bc||? 2)
his/her head, otherwise it will learn the model on-line. u,v,C

In the off-line version to learn PSFAM, a person sitswhere x,y are the spatial coordinates of a rectangle of
in front of one of CAMEO cameras and performs differ- the same size of the subspace images, and are the
ent facial expressions under several pose/scale/illuinima position of the head to search for. An obvious approach
changes; approximately 1 minute of video is recordedis to compute the reconstruction error for each position
Given this video sequence, the frontal and profile facegu, v); however, this approach is not efficient either in space
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Fig. 6. Some images illustrating the depth estimation. éupper black
box the depth(Z) and the (Y) coordinates can be observed.

two subspaces are different. Following [8], we consider one
of the subspaces "fixed” and we find the best-matching set
of orthogonal axes in the second subspace. It can be shown
[8], that this is equivalent to compute the distance between

Fig. 5. A subspace is constructed with theprogram chairs of ICRA-  two subspaceB! € R?**1 and B2 ¢ RdxF2, d(B',B?)
2005. One of the program chairs picture is included next éoShgrada . 1 2\ _ _ k k 200\ _
Familia in Barcelona. After computing the distance from sspace, it as:0 < d(B B ) - tr(S) N Zi:l ijl cos (97'3) -
can be seen that the minimum is where the face is located. > A < k, whereS = (BY)TB?(B?)TB!. Other possible

measures such as the principal angle between subspaces

_ o ~ [5] can be computed; however, principal angles can be
or time. A key observation in order to develop efficientyery sensitive to outliers and we found that the measure
methods is to observe that the error at a particular positiogroposed at [8] is much more robust and reliable.
(u;v) can be computed aE(C,u,Qv) :T”I(X +u,y + Knowing the relative position of one person w.r.t. one of
v) — B§||2 = [T + w,y + v)|l; — c¢'c [11], where  he CAMEO cameras is an important feature for meeting
¢ = BYI(x + u,y + v). Computing the coefficients  ngerstanding. Once the face is tracked or detected, we
is equivalent to correlate the image with each b_aS|s ofvill assume an average size of the head of the person
the subspace and stack all the values for each pixel. Fqi.,, wide and17em high) and that it is a plane perfectly
big regions, this correlation is performed very efficiently oriented towards the camera (all rotational angles 0). This
in the frequency domain with the Fast Fourier Transformgimjifies the equation 1, and the translational components

H T
(FFT) (iLe.ci = by I = IFFT(FFT (b)) 0 FFT(I)) and  are straight forward to compute. Figure 6 shows some
for small regions we use the highly optimized OpenCV ggyits of the depth estimation.

function for correlation. Finally the local energy term,
[|[T(X +u,y + v)||3, is computed very efficiently using the
integral image [9]. In order to deal with local illumination
changes, we normalizEx + u,y + v), dividing by the In the first experiment we have tested CAMEQ's ability
square root of the energy, hence the total error can b® infer distances from a video sequence. The video can be
expressed ag(c,u,v) = |[I(X + u,y +v) — Bc||} = downloaded from www.salleURL.edu/~ftorre/distance.avi
1—cPc/||[I(x+u,y+v)||2. Figure 5 shows an illustration From the video, we can observe that CAMEO is able to
of the subspace correlation method. estimate the depth with an error less thih.

It is possible that during the off-line or on-line learning, In the second experiment, we have recorded a meeting
some pose or facial expression is not captured by thecenario with4 people. The video can be downloaded
model. If the error in the tracking exceeds some thresholdrom www.salleURL.edu/~ftorre/tracking.asf , and we can
the face detector [20], [21] is run and a new face isobserve how CAMEO is able to track multiple heads using
gathered. The new facel) is added to the subspace by PSFAM. In figure 7 one frame of this meeting is shown.
re-computing the set of basis using incremental SWD [ In the first frames, CAMEO automatically identifies the
See [3] for a more detailed explanation. people and assigns his/her person-specific model that has
been previously learned in similar environmental condi-
tions. Observe that CAMEO is able to track people’s faces

When people cross or occlude each other it may happetlespite the fast head motion, partial occlusion and crgssin
that both trackers get lost or confused. Having PSFAMbetween people. Occasionally the head tracker is lost due
simplifies the data association problem greatly. Once twao very fast motion, motion blur or frames with different
closer trackers are lost, CAMEO waits until it finds two training conditions. When this situation occurs the face
faces again by means of the face detection [20], [21Hetector is executed again (red square) and the new face
and tracks them using normalized correlation. In order tos updated to the basis (just the ladt The PSFAMs
assign which face belongs to which person, we use as ases between 5-7 basis and runs at 15 fps. Several times
measure of closeness the directions in the subspace. Otteere exist blurring effects in the overlapping area betwee
possibility is to measure some weighted cosines betweethe cameras due to the parallax effects; however, due to
pairs of eigenvectors corresponding to subspdgesB?; the automatic adjustment this effect will disappear in few
however these angles may be quite large even though tHeames.

IV. EXPERIMENTS

C. Solving for correspondence and depth



(3]

[4]
Fig. 7. Tracking multiple faces.
[5]
V. CONCLUSIONS ANDFUTURE WORK (6]

In this paper we have introduced CAMEO, a hard- [7]
ware/software component to record and extract useful
visual information for meeting understanding. Several-nov [gj
elties for tracking and mosaic generation have been intro-
duced. The tracking/recognition algorithms work in real
. : . . [
time and provide robust, reliable and fast tracking due to
the use of learned person-specific facial appearance model¥0]
These facial appearance models can be learned on-line or
off-line. However, several aspects remain to be researchegh
and extended:

« In order to improve the mosaic generation, betterj;,
distortion models should be used (e.g. non parametric
ones [22]) so as to have a more flexible and accuratg-!
model for radial/tangential distortion.

« To gather higher resolution data of some meetindg14]
events (such as what people are writing on the black-
board or gathering higher resolution face images), g5
panf/tilt/zoom camera should be added.

. Capturing high-quality audio in a meeting room is [1€]
challenging problem due to a variety of noises, re-
verberation, etc which should be removed. In future[17]
versions, we will record directly from a microphone.

Besides the meeting scenario CAMEO could be used
to targets applications such as classroom lectures, distan(19]
learning, video conferencing, and more research should be
done in this aspect. Also, we are working on the audio-
visual summarization aspects of the meeting. For instancé0l
we are interested in automatically detecting changes i&l]
facial expression for all the attendees, detect when ev-
erybody tries to speak/laugh, or who wrote in the black{22]
board. Moreover, more research will be conducted towards
temporal segmentation of the meeting into simple eventg3]
(monologue, discussion, start/end, presentation, etc.).
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