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Abstract

Subspace methods such as PCA, LDA, ICA have
become a standard tool to perform visual learn-
ing and recognition. In this paper we propose
Representational Oriented Component Analysis
(ROCA), an extension of OCA, to perform face
recognition when just one sample per training class
is available. Several novelties are introduced in or-
der to improve generalization and efficiency:

• Combining several OCA classifiers based on dif-
ferent image representations of the unique train-
ing sample is shown to greatly improve the recog-
nition performance.

• To improve generalization and to account for
small misregistration effect, a learned subspace
is added to constrain the OCA solution,

• A stable/efficient generalized eigenvector algo-
rithm that solves the small size sample problem
and avoids overfitting.

Preliminary experiments in the FRGC Ver 1.0
dataset (http://www.bee-biometrics.org/) show
that ROCA outperforms existing linear techniques
(PCA,OCA) and some commercial systems.

1 Introduction

Subspace methods (SM) such as Principal Component
Analysis (PCA), Independent Component Analysis
(ICA), Linear Discriminant Analysis (LDA), Canon-
ical Correlation Analysis (CCA), Oriented Component
Analysis (OCA), etc have been extensively used for
classification, dimensionality reduction and data mod-
eling. The modeling power of SM is especially useful
when available data increase in features/samples, since
there is a need for dimensionality reduction while pre-

Figure 1: For each of the unique image per person in
the gallery set several representations are constructed.
For each representation of class i an OCA classifier,
which maximizes the response to shifted versions of
the training image while minimizes it for the rest of the
classes, is built. Later, OCA classifiers are combined
to match each of the probe images.

serving relevant attributes of the data 1. SM have been
very successful in computer vision to solve problems
such as structure from motion, detection/recognition,
information retrieval and face tracking. In particular,
among several classification methods (e.g. SVM, de-
cision trees), SM remain a powerful preliminary tool
for dimensionality reduction to preserve discriminative
features that can avoid the ”curse of dimensionality”
and filter undesirable noise. For these reasons, SM

1Also many times it is helpful to find a new coordinate system
(e.g. Fourier transform in the context of correlation filters [10])
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have been extensively used in the context of face recog-
nition. See [19, 22] for a review.

This paper introduces ROCA, a new classification
scheme that performs face recognition by combining
several OCA classifiers that are built on different rep-
resentations of a unique training sample. Each of the
representations provides useful discriminatory infor-
mation, which if fused properly greatly improves the
recognition performance. One of the major problems
for each individual OCA classifier is the lack of gener-
alization and overfitting issues due to the small train-
ing size (1 sample). To avoid such phenomena, several
strategies are proposed. Firstly, using a weighted fac-
torization of the covariance matrices allows more stable
OCA classifiers. Secondly, a subspace that accounts for
small misregistrations is proposed, it avoids specializ-
ing OCA to noisy directions. Finally, a generalized
eigensolver that is able to deal with high dimensional
data and to avoid the small sample size problem is
also suggested. Preliminary experiments in the Face
Recognition Grand Challenge (FRGC) Ver 1.0 dataset
(http://www.bee-biometrics.org/) show that ROCA
outperforms existing linear techniques (PCA,OCA)
and some commercial systems. For instance, in ex-
periment 4, ROCA achieves 75.5% recognition rate,
whereas traditional techniques such as PCA (33%),
Nearest Neighbour (27%), traditional OCA (23%) and
a commercial system (41%) perform poorly. Figure 1
illustrates the main points of the paper.

2 Oriented Component Analysis

Matched filter theory [16, 18] and Oriented Component
Analysis (OCA) [4] are similar linear statistical tech-
niques whose main aim is to maximize the response of
a wanted signal while minimizing it with respect to an
unwanted signal (e.g. noise). For instance, the clas-
sical matched filter [18] seeks to maximize the square

signal to noise ratio ( S
N (m))2 = (mT f)2

mT Σnm , where2 m
is the matched filter to be designed, Σn is an estimate
of the noise covariance, and f is the mean of the signal
to be detected. Observe that if the noise is decorre-
lated and has unit variance, i.e. (Σn = I), the best
match is the signal itself (or the complex conjugate, if
it is imaginary). Similarly, if a second order statisti-
cal descriptor of the signal of interest is provided Σx,
OCA maximizes the signal to signal ratio between two

2Bold capital letters denote a matrix D, bold lower-case let-
ters a column vector d. dj represents the j column of the matrix
D. All non-bold letters will represent variables of scalar nature.
diag is an operator which transforms a vector to a diagonal ma-
trix. 1k ∈ �k×1 is a vector of ones. Ik ∈ �k×k is the identity
matrix and ei is the i column. tr(A) =

�
i aii is the trace of

the matrix A. ||A||F = tr(AT A) = tr(AAT ) designates the
Frobenious norm of a matrix.

Figure 2: a) Gallery b) Probe

random vectors x,n

max
B

|BTΣxB|
|BTΣnB| (1)

where Σx and Σn are covariance or correlation ma-
trices. The optimal B will preserve the directions of
maximum variation of x, which do not have high pro-
jection in the n directions. A closed form solution of
eq. 1 is given by the following generalized eigenvalue
problem, ΣxB = ΣnBΛ. The generalized eigenvalue
problem is equivalent to a joint diagonalization, that
is, finding a common basis B that simultaneous diag-
onalizes both matrices Σx and Σn (i.e. BTΣnB = I
and BTΣxB = Λ).

2.1 OCA for face recognition
The classical recognition system can be divided into
two main blocks: feature extraction and classification
(usually trained separately). The goal of feature ex-
traction is to reduce the complexity of the original sig-
nal, subspace methods (ICA,PCA, etc) have commonly
performed this task [17]; however, the classification
may suffer if the most discriminative features are not
extracted. In this section, we explore the use of OCA
as a dimensionality reduction step and as a classifier
for face recognition. Although not previously used in
the context of computer vision, OCA has been applied
to the speaker verification task [11]. Similar in spirit
to OCA, Moghaddam et al. [13] have posed the face
recognition problem (a c-ary classification problem) as
a binary pattern classification with two classes.

Let D ∈ �d×n be a data matrix, such that each
column di is a vectorized image. Let G ∈ �n×c be a
dummy indicator matrix such that

∑
j gij = 1, gij ∈

{0, 1} and gij is 1 if di belongs to class j. c denotes the
number of classes and n the number of images in the
gallery set. For each class i, OCA will design a basis
Bi, which will maximize eq.1. Where Σi

x = Dgig
T
i DT

will contain the autocorrelation matrix of the sample
in class i and Σi

n = 1
n−1D(GGT − gig

T
i )DT the extra

class variation.
In our recognition challenge, we have just one sample

per training class (gallery images) and several images
per class in the testing set (probe). Fig 2.a shows some
examples of the gallery images and Fig. 2.b some of the
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probe set. Because just one sample di per each training
class is given, Σi

x = didT
i has rank 1, whereas Σi

n has
rank n−1. In this particular case, OCA for class i will

maximize: ((bi
)T di)

2

(bi
)T Σi

nb
i . Making derivatives w.r.t. bi, it

can be shown that the optimal OCA basis for class i
will be given by bi = (Σi

n)−1di. In the testing phase,
we will assign a new test image dt to the class that

maximizes the Raleigh quotient ( ((bi
)T dt)

2

(bi
)T Σi

nb
i ).

3 Representational OCA

When working with visual data, it is often the case that
the training sample size is small compared to the num-
ber of pixels (”dimensionality”). Our scenario is an
extreme case, since just one sample per training class
is available. A classifier like OCA, which is built on
such a small sample set, is likely to be biased/unstable,
to have a large probability of misclassification, and it
is unlikely that it can capture the huge variability due
to expression, appearance and illumination changes.
There exist several techniques to stabilize weak clas-
sifiers (poor performance), such as noise injection [1]
or combinationing several classifiers (bagging, boost-
ing, etc) [20]. However, these techniques are not spe-
cially useful in our scenario because just one sample
per training class is available.

A key observation is the fact that the choice of repre-
sentation is crucial for the success of a recognition sys-
tem. For instance, Fig. 3 shows an example of how the
same classifier performs very differently, depending on
the representation. In the FRGC dataset many factors
such as expression, illumination, geometric transforma-
tions and out-of-focus images are combined together.
In this case, it is certainly difficult to choose the opti-
mal representation that maximizes recognition because
there is no explicit model of changes between probe and
gallery images. In this section we develop the theory
for Representational OCA, which combines OCA clas-
sifiers built on different representations to improve the
recognition performance.

Given the unique gallery image per class, different
representations are built by applying several linear and
non-linear filters. In order to mitigate the effects of illu-
mination changes, two algorithms were implemented.
The first one uses a factorization method that sepa-
rates albedo from illuminant and has reported very
good performance for face recognition [6]. The sec-
ond method uses constrast-limited adaptive histogram
equalization (CLAHE) [23]. This method enhances the
contrast of the image by equalizing small regions (we
divide the image into 16 patches). Fig. 4 shows exam-
ples of the illumination normalized images.

Several linear and non-linear filters are applied to

Figure 3: Recognition using OCA classifiers for differ-
ent representations ( Gradient, illumination normaliza-
tion , local histogram equalization, Gabor, Laplacian).

Figure 4: a) Original images b) Albedo estimation [6]
c) CLAHE [23].

both of the illumination normalized images. The lin-
ear filters are prewitt, sobel, laplacian, Gaussian, box
filter, Gabor at 5 scales and 4 orientations, and ori-
ented filter pairs [12] at 3 scales and 6 orientations.
The non-linear filters are morphological operators such
as erode, dilate, opening and close, anisotropic diffu-
sion and phase congruency [9]. Figure 5 shows sev-
eral representations of the same image for the CLAHE
normalized image. We can observe that many repre-
sentations are redundant, but they introduce different
types of robustness against different types of noises and
appearance changes. For each illumination-normalized
image, 75 different (but redundant) representations are
constructed, so that in total, 150 representations are
used to perform face recognition. In Fig. 6 the recog-
nition performance for each of the 150 representations
in experiment 4 is shown.

After normalizing each image with respect to the
mean and variance, an OCA classifier is constructed
for each representation and each person in the gallery.
It is important to notice that all the classifiers discard
some information; however, the information retained
for one usually complements another. The algorithm
to combine all the representations is as follows:

• For each representation and each person in the
gallery build an OCA classifier using eq. 3 (see be-
low).
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Figure 5: Representations for one training sample.

• For all samples in the testing set, compute the pro-
jection into all the classifiers.

• Normalize rows and columns of the response matrix
(number of testing samples × number of classes).
For each classifier compute the maximum response
in the testing set and normalize with it all the re-
sponses. The maximum response of any classifier
for any of the testing samples should be 1. Later
compute the maximum response by rows, that is the
maximum for each filter should be 1.

• Order the normalized responses of all the testing
samples for each filter. Weight the contribution of
the classifier as the inverse of the response of the sec-
ond biggest score. Total all the classifiers weighted
this way and select the maximum.

Observe that the classification error for each clas-
sifier in the training set is always 0% for any repre-
sentation (just 1 sample). However, in order to take
into account the discriminability of the classifier, more
weight is given to the classifiers that the response to
the second biggest score is lower. The straight line
(66%) in Fig. 6 indicates the performance of combin-
ing all the classifiers (experiment 4). It has improved
13% over the best weak classifier. There are other pos-
sible ways of combining classifiers [8], but this one has
reported better results in our experiments.

4 Improving Generalization
This section introduces three modifications of the orig-
inal OCA in order to improve generalization.
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Figure 6: Weak classifiers and its combination.

4.1 Understanding over-fitting
In section 2, it has been shown that the optimal OCA
basis for class i will be given by bi = (Σi

n)−1di. How-
ever, in general d >> n, that is, the number of pix-
els will be much less than the number of samples. In
such cases, the matrix Σi

n that should be full rank and
strictly positive definite will not be, and undesired di-
rections will be amplified by inverting the matrix (the
eigenvectors whose eigenvalues are close to zero are ex-
tremely unstable). Observe that in order to be full rank
we need at least d − 1 independent samples, and even
in this case it will be a poor estimate of the covariance.

In this scenario, working with huge covariance ma-
trices presents two major problems: the first is compu-
tational tractability (storage, efficiency and rank defi-
ciency), and the second has to do with generalization.
The most important problem is the lack of generaliza-
tion when we have few samples. As noticed by Hugues
[7], increasing the dimensionality would have to en-
hance performance for recognition (more information
is added), but due to lack of training data this will
rarely occur. In these cases, OCA over-fits the data
and does not generalize well to new samples.

In order to be able to achieve better generalization
and not suffer from storage/computational require-
ments, we approximate the covariance matrices as the
sum of outer products plus a scaled identity matrix
Σn ≈ UnΛnUT

n + σ2
nId. Un ∈ �d×k, Λn ∈ �k×k is a

diagonal matrix. In order to estimate the parameters
σ2

n, Un, Λn, a fitting approach is followed by mini-
mizing Ec(Un,Λn, σ2

n) = ||Σn − UnΛnUT
n − σ2

nId||F .
The optimal parameters are given by: σ2

n = tr(Σn −
UnΛ̂nUT

n )/d − k, Λi = Λ̂n − σ2
nId, where Λ̂n are the

eigenvalues of the covariance matrix Σn and Un the
eigenvectors. See [3] for a detailed derivation. It is
worthwhile to point out an important aspect of the pre-
vious factorization. The original covariance matrix has
d(d + 1)/2 free parameters, and after the factorization
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the number of parameters is reduced to k(2d−k+1)/2
(assuming orthonormality of Un), so much less data is
needed to estimate these parameters and hence it is not
so prone to over-fitting. The same expression could be
derived from probabilistic assumptions [14, 21].

Once the covariance has been factorized, it is
much easier to understand the behavior of OCA
and over-fitting effects. Applying the matrix inver-
sion lemma ((A−1 + VC−1VT )−1 = A − (AV(C +
VT AV)−1)VT A) to (UΛUT + σ2Id) results in:
(UΛUT + σ2Id)−1 = 1

σ2 (Id − 1
σ2 U(Λ−1 + Id

σ2 )−1UT ).
Using the previous equality, it is easy to show that the
OCA filter is proportional to:

bi ∝ (Id − Un




λ1−σ2
n

λ1
0 0

0 λ2−σ2
n

λ2
0

· · ·
0 0 λk−σ2

n

λk




UT
n )di (2)

where recall that λi are the eigenvalues of Σn. Sev-
eral interesting things are worth pointing out from eq.
2. If σ = 0, OCA chooses as a projection/filter for
class i, bi, the training sample di projected into the
null space of Σn, that is (Id − UnUT

n ). In the testing
phase, the filter/projection bi will match the part of
the signal di which is not in the space generated by
Un. Observe that this type of discriminative model
although highly selective can be extremely sensitive to
noise. By having few samples in the training set, we
take the risk of learning noise features as discrimina-
tive ones. If σ2

n >> λi (which never will be by con-
struction), bi ≈ di, which makes sense because the
noise will not have a particular orientation. Usually,
λi > σ2

n, the bigger σ2
n the less importance the last

eigenvectors will have in rejecting directions (Σn).
In table 4.1, we compare the recognition perfor-

mance for experiment 1 (Figure 2) using the full Σn

and the factorized one. The Opinverse approach com-

Energy 70% 80 % 85% 90% 100%
Opinverse 0.65 0.75 0.79 0.81 0.84

OCA 0.91 0.90 0.91 0.91 0.91
Table 1: Recognition performance.

putes OCA by inverting (Σn)−1. Because Σn is not full
rank Opinverse just inverts UnΛnUT

n with Un preserv-
ing % of the energy. In the case of preserving all the
directions (100%), this will be equivalent to performing
the Pseudo-inverse of Σn (eliminating the directions
with 0 eigenvalues). OCA uses the same approach but
takes σ2

n into account, and as it can be observed, it
makes a difference.

4.2 Weighting Subspaces
The basis Un in Eq.2 are constructed by weighting all
the training samples except di equally. However, it
would be beneficial to weight more the samples that
are closer to the training sample, i, and to weight less
the ones that are far away. In this section, we explore
the construction of weighted subspaces for Un.

A weighted subspace calculates the eigenvectors of a
weighted covariance matrix DWsDT ∈ �d×d, where
Ws ∈ �n×n is a diagonal matrix containing the
weights for each sample. Computing the eigenvectors
of DWsDT B = BΛ is not efficient in either space or
time. Using the fact that the solution of B can be ex-
pressed as B = Dα, it can be shown that the matrix
WsDT D ∈ �n×n will have the same eigenvalues as
DWsDT and the eigenvectors are related by D.

Energy 70% 80 % 85% 90% 100%
OCAw 0.92 0.92 0.93 0.94 0.93

Table 2: OCA by weighted subspaces.

Table 2 shows the recognition results in experiment
1 (see table 4.1) by using weighted subspaces. In order
to decide which samples to weight more, the Euclidian
distance between the samples is computed in the PCA
space. Once the distance between di and the rest of
the samples in the gallery is computed, we order the
samples, and the ones that are closer to di are weighted
more. Each 20 samples we decrease the weighting fac-
tor by 0.05 (starting from 1).

4.3 Modeling intra-person variation.
OCA can be very sensitive to the lack of training data,
especially when many classes are available. In these
situations, OCA selects noisy directions because most
of the generative aspect of the sample can be repre-
sented by a linear combination of some of the images
that not belong to the class. In order to make OCA less
sensitive to variations in the training set and to be able
to model small misregistrations, a learned subspace is
incorporated to constrain the solution.

Two main subspaces are constructed in order to bet-
ter constrain the directions of the intra-person varia-
tion. The first subspace Bg will model changes in the
intra-personal variation owing to such factors as ap-
pearance changes, illumination, expression, out-of fo-
cus, etc. This subspace will be learned from a different
training set than the gallery images. A data matrix Dg

will be constructed by stacking the difference between
all the samples in the same class, and Bg is obtained
by SVD Dg.

As registration is one of the most important steps
towards improve recognition performance, the second
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subspace, Bm, will compensate for small misregistra-
tions. In order to achieve that, we will construct Bm

by SVD shifted versions of the sample di. Once these
subspaces are computed, the aim will be to find B such
that it maximizes:

|BT (didT
i + λ1Bm(Bm)T + λ2Bg(Bg)T )B|

|BTΣi
nB| (3)

where recall Σi
n = 1

n−1D
√

W(GGT − gig
T
i )

√
WDT

represents the extra class variation. λ1 and λ2 will
weight the importance of each subspace.

Solution of eq.(3) involves solving the following d×d
generalized eigenvalue problem

(
didT

i +λ1Bm(Bm)T +
λ2Bg(Bg)T

)
B = Σi

nBΛ. In the next section we will
propose a stable and efficient (in space and time) gen-
eralized eigensolver to deal with this large scale gener-
alized eigenvalue problem.

5 Solving Generalized Eigenvalue
Problems for High Dimensional

Data

This section gives the details of an efficient and
stable subspace iteration algorithm to solve eq.
3. The proposed method achieves filters/basis that
have better generalization properties. Let D1 =
[di

√
λ1Dm

√
λ2Dg] ∈ �d×n1 , where Dm ∈ �d×48 is

a matrix such that each column contains a vectorized
shifted version of di (by at most 3 pixels in x and y)
and Dg ∈ �d×n3 incorporates training images with the
intra-class difference of a different training set (not the
gallery). Finally, let D2 = 1√

n−1
D
√

W(G − gi1
T
c ) ∈

�d×n2 , a matrix retaining all the gallery images but
i. A = D1DT

1 ∈ �d×d, C = D2DT
2 ∈ �d×d and

the maximum rank of the eigensystem is max(n1, n2)
(d >> n1, d >> n2). Recall that A and C are d × d
positive definite symmetric matrices (by construction),
that are very large and have no general pattern of ze-
ros or specific structure. In this case, traditional ef-
ficient methods based on factorization of either ma-
trix (e.g. QZ, QR, etc [5]) would become impracti-
cal. Other methods that employ iterative schemes for
minimizing the Raleigh quotient xT Ax

xT Cx [15] to obtain
the biggest/smallest eigenvalue, rely on deflation pro-
cedures in order to obtain several eigenvectors. Such a
deflation process often breaks down numerically (espe-
cially when increasing number of eigenvectors).

In the subspace iteration method [2], an initial ran-
dom vector Vk ∈ �d×q is first generated. Then for

k = 1, · · · , the following iterations are performed:

CV̂k+1 = AVk V̂k+1 = V̂k+1/max(V̂k+1) (4)

S = V̂T
k+1AV̂k+1 T = V̂T

k+1CV̂k+1

SW = CW∆
Vk+1 = V̂k+1W

The first step of the algorithm solves a linear system of
equations to find V̂k+1. Later, in order to impose the
constraints that VT

k+1CVk+1 = Λ and VT
k+1AVk+1 =

Id, a normalization is done by solving the following
q × q generalized eigenvalue problem, SW = CW∆.
It can be shown [2] that as k increases Vk+1 will con-
verge to the eigenvectors of CV = AVΛ and ∆ to
the eigenvalues Λ, where ∆ = diag(δ1, · · · δq). The

convergence is achieved when |δk+1
i −δk

i |
δk+1

i

< ε ∀i.
At each iteration the computationally expensive part

is to solve the linear systems of equations CV̂k+1 =
AVk. In our particular application the matrices C and
A are rank deficient and hence C is not invertible. In
order to achieve numerically stable results, avoid over-
fitting and improve efficiency, the matrices A and C
are factorized. That is, A = D1DT

1 ≈ U1Λ1UT
1 +σ2

1Id

and C = D2DT
2 ≈ U2Λ2UT

2 + σ2
2Id. Once such fac-

torizations are obtained (see [3]), we apply the matrix
inversion lemma (2) and V̂k+1 will be:

1
σ2

2

(Id − 1
σ2

2

U2(Λ−1
2 +

Id

σ2
2

)−1UT
2 )(U1Λ1(UT

1 Vk) + σ2
1Vk)

The reminder of the steps are equivalent to the sub-
space iteration algorithm. The computational cost
(once the factorization is done) is greatly improved.

It is worthwhile to point out that there exist other
ways to solve the small sample case. For instance, as-
suming n1 >> n2, one could compute the subspace
B1 ∈ �d×n1 which diagonalizes D1DT

1 if n1 >> n2.
B1 will be given by the eigenvectors of D1DT

1 (effi-
ciently computed as the eigenvectos of DT

1 D1) with
non-zero eigenvalues. Then we project D2 into the sub-
space spanned by B1 and compute the eigenvectors of
BT

1 D2DT
2 B1 ∈ �n1×n1 which will be stored in B2. It

is easy to show that the transformation B2BT
1 simul-

taneously diagonalizes D1DT
1 and D2DT

2 . Although
a closed form solution, this method is likely to overfit
the data and if some truncation is done in the first step
some discriminatory power could be lost.

6 Experiments
In this section we show results from experiments 1
and 4 of the FRGC v1.0 dataset (http://www.bee-
biometrics.org/ ).

In experiment 1, the gallery is composed of 152 im-
ages (resize to 150× 130 pixels) and the probe has 608
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images. All the images are recorded in a controlled in-
doors environment. Fig. 2 shows some images of the
gallery 2.a and probe 2.b. In the probe set, there are
small changes due to expression and mild illumination.
In this case, we have set up λ1 = 1 and λ2 = 0, so no ex-
tra training images are used. Table 3 shows the recog-
nition performance for several techniques. PCm refers

Ilu PCm PCe NN NN2 ROCA FaceIt
No 0.75 0.50 0.51 0.50 0.966 0.965
Il-1 0.88 0.75 0.68 0.75 0.966 0.965
Il-2 0.88 0.75 0.71 0.75 0.966 0.965

Table 3: Recognition comparison for experiment 1.

to performing PCA matching using the Mahalanobis
distance, the PCA basis is computed using the gallery
images and preserving all the eigenvectors, 100% en-
ergy (maximum recognition rate). Similarly PCe holds
for PCA matching using the Euclidian distance. NN
refers to the Nearest Neighbour using the Euclidean
distance and NN2 is a weighted (by the inverse of the
variance of each pixel) NN. The first row indicates the
type of illumination normalization, No indicates nor-
malizing just by the energy, Il-1 uses [6] and Il-2 [23].
In the first experiment there are no big changes in il-
lumination, but the illumination normalization algo-
rithms improve performance. As it can be observed,
ROCA outperforms PCA or NN type of techniques and
performs similarly to the commercial system. In this
dataset, combining several representations is not par-
ticularly useful or interesting, since a single classifier
with Il-2 type of normalization can achieve 95.2% of
recognition rate. However, it is still interesting to ob-
serve that by combining several representations, we are
able to improve 1.4% of recognition rate. Most of clas-
sification errors are due to changes in expression or out
of focus images.

Experiment 4 is a much more challenging one. The
gallery images (152) are taken in a controlled indoor
environment, but the probe images (608) are taken in
an uncontrolled indoor environment. Figure 7 shows
some gallery and probe images. The appearance, ex-
pression and illumination changes are strong. Also,
several images are out of focus, which makes the recog-
nition problem much harder. For this experiment,
λ1 = 1 and λ2 = 10

n3
, where n3 is the number of im-

ages in the training set. In the training set (not the
gallery), we used 212 images from the original 366 (the
ones with more than 2 samples with the same person)
to create the matrix Dg. Table 4 shows the results.

In this case PCA/NN perform very poorly because
the appearance and expression changes between the
gallery and the probe are significant. The commercial

Figure 7: Some images of the gallery and probe.

Ilu PCm PCe NN NN2 ROCA FaceIt
No 0.12 0.15 0.15 0.16 0.755 0.409
Il-1 0.33 0.20 0.27 0.20 0.755 0.409
Il-2 0.23 0.18 0.20 0.20 0.755 0.409

Table 4: Recognition comparison for experiment 4.

system also performs modestly 3. In this experiment,
the power of using several representations that are ro-
bust for different type of noises becomes evident. By
combining 150 representations ROCA, achieves a 66%
recognition rate (14% better than the best representa-
tion), Fig. 6. However, some of these representations
perform very poorly and they are more a source of con-
fusion than a help. A subset of these filters has been
selected with the purpose of trying to combine very
different representations. The best set of Gabor filters
at 4 orientations (1 scale), the best scale for the ori-
ented filter pairs [12] at 6 orientations, and the phase
of the phase congruency [9] are selected (17 filters). In
order to weight similarly the contribution of each set
of filters, we weighted twice the Gabor responses and
8 times the phase congruency (28 filters). Combining
these 28 representations for the two illumination in-
variant representations (56 classifiers), ROCA achieves
75.5% recognition rate. Fig. 8 illustrates the combi-
nation of this set of filters. This representation has
achieved 96.4% recognition in experiment 1.

The code is implemented in non optimized Matlab
code, ROCA takes 30 hours (Pentium IV- 2Mhz) to
compute the results for experiment 4. Several improve-
ments could be done (e.g. rather than computing PCA
of Σi

n for each filter, it could be computed recursively
by adding and subtracting one sample) and we feel
ROCA is suitable to process huge datasets as we ex-
pect to do in FRGC ver 2.0 dataset.

7 Conclusions
In this paper we have proposed Representational Ori-
ented Component Analysis (ROCA), an extension of

3FaceIt classified correctly 200 images and 288 incorrectly. In
the remaining 120 images FaceIt was not able to locate the face.
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Figure 8: OCA classifiers and its combination.

OCA to perform face recognition when just one sam-
ple per training class is available. By combining clas-
sifiers with different representations, ROCA is able to
improve by 20% the recognition performance over the
best individual classifier. Although combining many
representations is a promising approach, several ques-
tions remain unsolved, such as how to automatically
select the best representations or how to optimally
combine these classifiers. In particular, we plan to
use a cross-validation procedure to choose the set of
representations, and analyze the trade-off performance
versus the number of representations. On the other
hand, several numerical novelties have been introduced
to improve generalization, avoid overfitting, and deal
with high dimensional data. Finally, it is worthwhile
to mention that other vision problems (e.g. appear-
ance tracking or eigen-X problems) can greatly benefit
from multiple representations.
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