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Abstract. Most image registration problems are formulated in an asym-
metric fashion. Given a pair of images, one is implicitly or explicitly
regarded as template, and warped onto the other to match. In this pa-
per, we focus on this seemingly arbitrary choice of the roles, and reveal
how it may lead to biased warp estimates in the presence of relative
scaling. We present a principled way of selecting for the template, and
explain why only the correct asymmetric form, with the potential inclu-
sion of a blurring step, can yield unbiased estimators. Our analysis also
shows that commonly-used symmetrization/regularization of the warps
may actually lead to biased estimators. We experimentally validate our
analysis by measuring the bias of L1 and L2 norm motion estimators
when the template choice is wrong, and conclude that image registration
is inherently an asymmetric problem.
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1 Introduction

The problem of image registration underlies a vast array of computer vision
applications, such as motion estimation, model-based recognition, and change
detection [5, 9, 22]. Image registration is usually tackled by first defining a geo-
metric deformation model, and then warping one image onto another such that
they become as similar as possible according to some criterion. For instance, the
popular “sum of normed differences” objective function [25] takes the form

∑

y∈I1

[

I1(y) − I2

(
W12(y)

)]p

, (1)

where I1 and I2 are images, W12 is the mapping from the coordinate frame of
I1 to that of I2, and y is a pixel coordinate in I1. For p = 2 (L2 norm), this
amounts to modeling I1’s pixel intensities as i.i.d. Gaussian noise added versions
of those of the warped I2. Consequently, the warp which minimizes (1) is the
Maximum-Likelihood (ML) estimate, known to be asymptotically unbiased [4].

Notice that the formulation above is asymmetric: I2 is regarded as template,
and is warped onto I1. Indeed, a survey of existing methods reveals that most
image registration problems are formulated in a similar way. This paper focuses
on this seemingly arbitrary choice of the roles, and shows that it leads to biased
warp estimates under certain conditions.

The asymmetry issue of (1) has been addressed in prior work [12, 13, 15, 20,
21], where, in an attempt to remove it, the objective functions were explicitly
symmetrized1, yielding

∑

y∈I1

[

I1(y) − I2

(
W12(y)

)]

︸ ︷︷ ︸

from I2 onto I1

p

+
∑

z∈I2

[

I2(z) − I1

(
W21(z)

)]

︸ ︷︷ ︸

from I1 onto I2

p

.

In some cases, it was also necessary to enforce the relationship between W12

and W21 through additional consistency terms such as
∑

y∈I1

[

y −W21(W12(y)
)]p

+
∑

z∈I2

[

z −W12(W21(z)
)]p

,

which imposed further symmetry constraints on the warps. These past ap-
proaches essentially regarded the asymmetry as an opportunity to incorporate
more data and regularization priors into the problem at hand.

From our point of view, the scope of relevant work actually goes beyond sym-
metrization: independent of the definition of an objective function, its numerical

optimization (i.e., the fitting algorithm) may also be treating the two images in
an asymmetric fashion. For example, the original Lucas-Kanade algorithm [2]
used a Taylor expansion of the warp around its current estimate, yielding

∑

y∈I1

[

I1(y) − I2

((
W12 + ∆W12

)
(y)

)]p

,

1 Note that simply re-expressing (1) in the domain of I2 would introduce the Jacobian
|J(W21)| as a weighting term. However, the symmetrized form is not necessarily
limited to the original noise model. It may instead combine two noise models.
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and iteratively solved for the warp updates ∆W12. Observe that only image I2 is
warped in this scheme. In contrast, Baker and Matthews [23] proposed an inverse
compositional algorithm that performs the expansion on I1, and minimizes

∑

y∈I1

[

I1

(
∆W21(y)

)
− I2

(
W12(y)

)]p

with respect to ∆W21, resulting in a more efficient fitting. Note that this algo-
rithm warps both images simultaneously, albeit to different degrees.

This paper reveals a fundamental problem overlooked in the past work for
symmetrical use of images, and argues that it can only be overcome by using an
asymmetric form with the correct choice of the template, along with a necessary
blurring step. We validate our claims experimentally by showing the bias that L1
and L2 norm motion estimators have when the template choice is incorrect. Our
results also confirm that the correct template choice and correct warp direction
yield unbiased warp estimates.

2 Problem Definition
Let us consider the simplified scenario shown in Fig. 1 (left), in which a planar
scene S is observed by two pinhole cameras which capture continuous images.
Under the central projection model, scene-to-image and image-to-image coordi-
nate transformations will be homographies [17]. Note that this class of geometric
transformation will account for observed images exactly. In order to avoid com-
plications arising from non-corresponding image points, we assume that both
images have infinite extent and are free of occlusion.

As shown in Fig. 1 (right), the scene radiance S, image I1 and image I2

are related by homographies. WS1 and WS2 denote transformations which take
homogeneous scene coordinates, and compute their corresponding image point
locations in I1 and I2, respectively. W12 denotes the transformation from I1 to
I2, and W21 from I2 to I1. To render the problem as well-posed as possible,
all transforms are assumed to be invertible, i.e., W12 = W−1

21 . Thus, the image
registration task is to estimate the homography W12 (or W21) between I1’s and
I2’s coordinate frames based on image intensity measurements.

Fig. 1. A planar scene is observed by pinhole cameras (left). Under central projection,
scene-to-image and image-to-image transformations (right) are homographies.
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We will use two equivalent notations to express the fact that one image is a ge-
ometrically transformed version of another. The first one is I1(y) = S

(
W1S(y)

)
.

Using point coordinates, this notation indicates where a particular image point
maps onto the other image, and states how those image intensities relate to each
other. Alternatively, we will use I1 = WS1(S). This is an abuse of notation for
convenience, and refers to an entire domain’s transformation. It states that I1

is the image obtained by transforming every point in the domain of S by WS1.
Note the use of WS1 instead of W1S, since the transformed points are in S.

3 Image Registration Scenarios

3.1 Theoretical Case: Ideal Camera and Known Scene

We start our discussion with an idealized scenario. Suppose that we have full
knowledge of the underlying scene radiance function S, and both cameras are
ideal; their lenses can precisely focus incoming light rays parallel to the optical
axis onto the camera’s focal point, and their photo-receptive fields are continuous
(i.e., they have infinite resolution). We model the intensity at an image point as
a noisy (i.i.d., additive Gaussian) observation of the corresponding scene point’s
radiance,

I1(y) = S
(
W1S(y)

)
+ ε(y) ∀y ∈ I1, (2)

I2(z) = S
(
W2S(z)

)
+ ε(z) ∀z ∈ I2, (3)

where y and z are points in the domains of I1 and I2, respectively. Using the
alternative notation, (2) and (3) can be also expressed as

I1(y) = WS1(S)(y) + ε(y) ∀y ∈ I1, (4)

I2(z) = WS2(S)(z) + ε(z) ∀z ∈ I2. (5)

In the following, we present three equivalent methods which compute the ML
estimate of W12. Given our assumptions at this moment, these algorithms may
appear trivial. Nevertheless, the algorithms will be minimally affected while the
assumptions will be gradually relaxed throughout the paper. This will allow us
to highlight the applicability of these algorithms to different situations.

A1. Compositional Algorithm

Step 1: Find the ML parameters for scene-to-image warps WS1 and WS2:

ŴS1 = arg min
WS1

∫

y∈I1

[

I1(y) −WS1(S)(y)
]2

dy. (6)

ŴS2 = arg min
WS2

∫

z∈I2

[

I2(z) −WS2(S)(z)
]2

dz. (7)

Step 2: Compose them to obtain the ML estimate of the relative warp W12:

Ŵ12 = Ŵ1S ◦ ŴS2 = (ŴS1)−1 ◦ ŴS2.
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B1. Forward Algorithm

Step 1: Find ŴS1 and ŴS2 by (6) and (7).

Step 2: Based on the scene function S and ML estimates ŴS1 and ŴS2, set up
a direct estimation problem for the relative warp W12:

Ŵ12 = arg min
W12

∫

z∈I2

[

ŴS2(S)
︸ ︷︷ ︸

Î2

(z) −W12

(
ŴS1(S)
︸ ︷︷ ︸

Î1

)
(z)

]2

dz. (8)

By computing Î1 = ŴS1(S) and Î2 = ŴS2(S), this method essentially simulates

the formation of ML images of I1 and I2. In other words, the registration problem
is posed in terms of ML images:

Ŵ12 = arg min
W12

∫

z∈I2

[

Î2(z) −W12

(
Î1

)
(z)

]2

dz. (9)

Note the similarity between (9) and (1): they are both asymmetric, i.e., only
one of the images is warped.

C1. Backward Algorithm

Step 1: Find ŴS1 and ŴS2 by (6) and (7).

Step 2: Just as in the forward algorithm B1, set up a new warp estimation
problem. This time, however, solve for the warp in the opposite direction. This
can be done by warping the other ML image:

Ŵ21 = arg min
W21

∫

y∈I1

[

ŴS1(S)
︸ ︷︷ ︸

Î1

(y) −W21

(
ŴS2(S)
︸ ︷︷ ︸

Î2

)
(y)

]2

dy. (10)

We intentionally defined both algorithms to be asymmetric: the forward algo-
rithm B1 warps Î1 onto Î2, and the backward algorithm C1 does the opposite.
Using this setup, we can investigate whether there is a fundamental difference
between the two. In Appendix A, we show that the ML warp estimates of all
three algorithms would be the same for similarity transforms.

3.2 Practical Case: Real Camera and Unknown Scene

A real camera has blur effects. The response of a camera to an ideal point light
source is characterized by its point spread function (PSF). This means that the
scene irradiance will be subject to a convolution with the PSF. For convenience,
we still assume the images to be continuous. Instead of (4) and (5), we have

I1(y) = B
(
WS1(S)

)
(y) + ε1(y) ∀y ∈ I1, (11)

I2(z) = B
(
WS2(S)

)
(z) + ε2(z) ∀z ∈ I2, (12)
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where the blur operator B(·) indicates a convolution with the PSF:

B
(
S

)
(x) =

∫

w∈S

S(w)PSF (w − x)dw.

Due to imperfect lenses and density constraints on photo-receptive sensing el-
ements, the PSF of a real camera is not a delta function [1]. In fact, the PSF
is closely related to measurement noise characteristics. In order to operate at
prescribed frame rates and signal-to-noise ratio levels, CCD cameras accumu-
late photon counts over a finite spatial extent, a procedure called binning. The
blur model must not only account for realistic lens optics, but also capture those
binning operations which take place at the sensing element level.

In practice, we do not know the scene radiance function S. The estimation
of S is an interesting task, and has been posed as a super-resolution problem by
[7]. However, we limit the scope of our paper to warp estimation. Let us discuss
the three algorithms corresponding to those considered in Section 3.1 for the
ideal case.

A2. Compositional Algorithm

Step 1: ŴS1 = arg min
W1S

∫

y∈I1

[

I1(y) − B
(
WS1(S)

)
(y)

]2

dy, (13)

ŴS2 = arg min
W2S

∫

z∈I2

[

I2(z) − B
(
WS2(S)

)
(z)

]2

dz. (14)

Step 2: Ŵ12 = Ŵ1S ◦ ŴS2 = (ŴS1)−1 ◦ ŴS2

Since we do not know S, this algorithm remains impractical.

B2. Forward Algorithm

Step 1: Find ŴS1 and ŴS2 by (13) and (14).

Step 2: Ŵ12 = arg min
W12

∫

z∈I2

[

B
(
ŴS2(S)

)

︸ ︷︷ ︸

Î2

(z)−B
(

W12

(
ŴS1(S)

))

(z)
]2

dz. (15)

Even though S is unknown, one can still attempt to estimate the objective
function (15). Note that the observed image I2 is the ML estimate for

Î2 = B
(
ŴS2(S)

)
.

Suppose we denote by T the following “imaging” function

T = B
(
W12

(
ŴS1(S)

))
.

Then the image registration problem of (15) becomes

Ŵ12 = arg min
W12

∫

z∈I2

[

I2(z) − T (z)
]2

dz. (16)
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Fig. 2. The order of blurring and geometric warp operations is important: In this
example, we used the same Gaussian blur kernel (σ = 2 pixels) before (top row) or
after (bottom row) geometric scaling by a factor of 1/2. Resulting images, shown on
the right, differ from each other.

Since T is still a function of the unknown S, it cannot be readily computed. For
the sake of argument, consider changing the order of warp and blur operators in
T , and define a new imaging function

T ′ = W12

(

B
(
ŴS1(S)

)

︸ ︷︷ ︸

Î1

)

.

The observed image I1 is the ML estimate for Î1 = B
(
ŴS1(S)

)
, and therefore,

T ′ = W12

(
I1

)
. That is, if we replace T by T ′ in (16), we would arrive at the

commonly used form (1) of objective function in image registration (for p = 2):

Ŵ′

12 = arg min
W12

∫

z∈I2

[

I2(z) −W12(I1)(z)
]2

dz. (17)

However, the warp and blur operations do not commute in general. Fig. 2 il-
lustrates this fact on a simple example. We therefore have T 6= T ′, resulting in
Ŵ′

12 6= Ŵ12. Since Ŵ′

12 does not coincide with the ML solution Ŵ12, it will
be a biased estimator.

While Ŵ′

12 is biased, there exist, in fact, conditions under which T ′ can help
us compute the unbiased estimate Ŵ12. To reveal when this would be possible,
we express the blur operators in T and T ′ explicitly as convolution integrals. For
notational conciseness, let us define S ′ = ŴS1(S).

T (x) = B
(

W12

(
ŴS1(S)

))

(x)

= B
(

W12

(
S′

))

(x)

=

∫

w∈W12(S′)

W12

(
S′

)
(w)PSF

(
w − x

)
dw. (18)
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On the other hand,

T ′(x) = W12

(

B
(
ŴS1(S)

))

(x)

= W12

(
B(S′)

)
(x)

= B
(
S′

)(
W12

−1(x)
)

=

∫

v∈S′

S′(v)PSF
(
v −W12

−1(x)
)
dv.

To rewrite the integral above in the domain of W12(S′), we define w = W12(v).
As dv=

∣
∣J(W12

−1)
∣
∣dw, changing the variable of integration of v to w will yield

T ′(x) =

∫

w∈W12(S′)

W12

(
S′

)
(w)PSF

(
W12

−1(w) −W12
−1(x)

︸ ︷︷ ︸

!

)∣
∣J(W12

−1)
∣
∣dw. (19)

Observe that the difference between (18) and (19) is due to the transformation
of PSF’s argument in (19). Let us consider the case where W12 is a similar-
ity transformation, which can be parameterized using scale s, rotation θ, and
translation (tx, ty) variables. The argument of the PSF in (19) is then

W12
−1(w)−W12

−1(x)=





[
scosθ −ssinθ

ssinθ scosθ

]−1[
wx

wy

]

−

[
tx
ty

]


−





[
scosθ −ssinθ

ssinθ scosθ

]−1[
xx

xy

]

−

[
tx
ty

]




=

[
cosθ

s
sinθ

s
−sinθ

s
cosθ

s

][
wx

wy

]

−

[
cosθ

s
sinθ

s
−sinθ

s
cosθ

s

][
xx

xy

]

=

[
cosθ

s
sinθ

s
−sinθ

s
cosθ

s

][
wx−xx

wy−xy

]

= W′(w − x),

where W′ is a similarity transform with scale 1
s
, rotation θ, and zero translation.

Furthermore, if the camera’s PSF is rotation-invariant (i.e., isotropic),

PSF
(
W′(w − x)

)
= PSF (

w − x

s
).

In summary, when W12 is limited to similarity transforms and the PSF is
isotropic, (19) becomes

T ′(x) =

∫

w∈W12(S′)

W12

(
S′

)
(w)PSF

(w−x

s

)∣
∣J(W12

−1)
∣
∣dw. (20)

A comparison of (20) with (18) reveals how the imaging functions T ′ and T

relate to each other. Although they are both obtained by blurring W12(S
′), the

actual blur kernels are different. Imagine that T has the blur kernel PSF (·),
shown in the middle of Fig. 3. Since the blur kernel of T ′ is PSF ( ·

s
), it will have

a dilated or compressed shape. For 0 < s < 1, the kernel gets compressed (Fig.3,
left), resulting in a T ′ less blurry than T . For s = 1, we have equality between T

and T ′. Finally, for s > 1, the effective blur kernel becomes wider (Fig.3, right),
causing T ′ to be even more blurred than T .
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0 < s < 1 s > 1

Fig. 3. Given I1, we can compute T
′ = W12(I1). However, to find the ML warp

estimates, we need to evaluate T , which originally results from a convolution operation
with the PSF of the camera (middle). Depending on the value of s, estimating T from
T

′ turns out to be a blurring (0 < s < 1) or deblurring (s > 1) problem.

The analysis above provides the conditions under which T ′ can be used in
emulating T , and the forward algorithm B2 still work even if the scene function
S is unknown:

• For s = 1, T ′ can readily replace T .

• For 0 < s < 1, we may blur T ′ further to make up for the difference in blur
kernels PSF (·) and PSF ( ·

s
). Only after this blur compensation is made

would the minimizer of (17) correspond to the unbiased ML estimate.

• For s > 1, the wider blurring kernel produces an overblurred T ′, and emu-
lating T then turns out to be a deblurring problem: this is a typical ill-posed
inverse problem, and difficult to solve [8].

Note that the quantities T and T ′ in (18) and (20) were derived for the
forward algorithm. By definition, when the forward algorithm scales up (i.e.,
s > 1), the backward algorithm scales down (0 < 1

s
< 1). Therefore, in situa-

tions where s > 1, the deblurring problem can be avoided by simply switching
to the algorithm which solves for the warp in the opposite direction. Hence,
for obtaining an unbiased estimate of the warp between two images, there is a
natural choice between the forward and backward algorithms: One should pick
the direction of warp such that, after necessary blurring, it scales one image
down onto the other, i.e., the higher-resolution image should be warped onto
the lower-resolution image.

In cases where W12 is not just a similarity transform but a full homogra-
phy, the inequality between T and T ′ will still stem from the difference of blur
kernels. This time, however, the blur can vary spatially. Under a homography,
some parts of the warped image could be subject to compression (0 < s < 1)
while other parts are being dilated (s > 1). This fact calls for a mix of forward

& backward algorithms to be applied to appropriate parts of the image. While
such a hybrid algorithm is the theoretically sound way of image registration in
general, such perspective distortions do not occur frequently in practice. Thus,
we leave the discussion of such a method for future work.

C2. Backward Algorithm

The above analysis also applies to the backward algorithm.



10

4 Experiments

We have found out that the potential asymmetry between forward and back-

ward registration algorithms is due to the difference in their effective blur kernel
widths. Based on our analysis, we expect this difference to become more pro-
nounced as the relative magnification factor between images becomes larger. In
order to obtain an unbiased estimate, one must start with the higher-resolution
image (I1 or I2), blur it appropriately, then warp it onto the lower-resolution
one. If the scale-induced blur effect is ignored, or the lower-resolution image is
warped onto the higher-resolution one, one should expect the warp estimates to
be biased. In this section, we empirically verify these predictions.

4.1 Experimental Procedure

Our analysis shows that when the scene S is not known, any blur in the imaging
system will cause the forward and backward algorithms to differ from each other
in the presence of relative scaling. Quantifying the blur effect, however, is not
trivial because it is ultimately related to image content: While blurring (i.e.,
low-pass filtering) visually rich and detailed images would produce a significant
effect, it would barely alter already smooth images. This consideration led us
to consider a particular class of images, namely those of human faces. Accurate
registration algorithms are crucial in this domain, because it determines the
performance of various tracking, recognition, and biometric verification systems.
We ran our face-domain experiments on a set of 140 grayscale, frontal face images
from the FERET database [16].

In order to quantify the magnitude of image registration bias, we generated
synthetic experiments by simulating the image formation process. A real face
image, acting as S, was first blurred, then geometrically transformed according
to specific warp parameters, and finally resampled to generate images I1 and I2.
In solving this synthetically generated registration problem, only I1 and I2 were
used (i.e., unknown scene case).

Since the ground truth warp parameters were known, we could test whether
minimizing our objective function gave accurate estimates of the warp. For sim-
plicity, we limited our investigation to similarity transforms with known scaling
parameter (s). This left us with three degrees of freedom, namely, translation
(tx, ty) and rotation (θ), which we considered independently. Having assigned s

and θ their ground truth values, we exhaustively searched for the global best val-
ues for translation. Similarly, the global minimum for rotation was sought, with
s and (tx, ty) set to their correct values. These searches were repeated in the
neighborhood of their free parameters’ ground truth values, and the magnitude
of their biases was recorded.

4.2 Testing Conditions

Starting from a 384x256 pixel face image, five different scale reduction parame-
ters (by factors of 1, 2, 4, 8, and 16) were used in generating the test images I1
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Fig. 4. Our quantitative results are organized in a matrix of registration problem in-
stances (left). Entries of this matrix show the bias statistics of the forward algorithm,
with blur compensation applied as needed.

and I2. Without loss of generality, rotation and translation parameters were set
to zero. As shown in Fig. 4 (left), this resulted in a 5x5 scenario matrix M of
image pairs being registered for each face image. Note that the diagonal elements
of this matrix correspond to problem instances where images have the same res-
olution, whereas off-diagonal elements represent cases where they differ in this
respect. Our tests aimed to measure how accurately the ground truth translation
and rotation values (i.e., no translation and rotation) could be estimated.

We limited our experiments to the forward algorithm, which always warps I1

onto I2, regardless of their scale. However, since the full scenario matrix includes
all possible pairings, both downscaling and upscaling cases were covered, as ex-
emplified by the instances M(1,4) and M(5,3) in Fig. 4. Bilinear interpolation
was used whenever the source image I1 of the warp was smaller than the des-
tination image I2, and no deblurring was attempted. In simulating the imaging
process, we used a pillbox PSF whose width in scene pixels equaled the integer
downscale factor. Similarly, when I1 was being downscaled, the extra blurring
to be applied to T ′ in (19) was also obtained using a pillbox PSF whose width
in I1 pixels equaled the relative scale factor.

For practical reasons, our “global search” for the best parameter settings was
limited to the immediate neighborhood of corresponding ground truth values.
For translation, we sampled the interval of [−0.20, +0.20] pixels in 0.01 pixel
increments for both tx and ty. Similarly, we sampled the [−2, +2] degree interval
in 0.1 degree increments for rotation (around the center of the image). Fig. 5
shows example surfaces obtained by sampling translation parameters of L1 and
L2 norm objective functions for the problem M(5,3) of Fig. 4, where I1 is lower
in resolution than I2. As predicted, the global minima of these functions do not
lie at the origin, confirming a bias due to the problem formulation (i.e., objective
function) itself, rather than the assumed noise or the minimization method.
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Fig. 5. L1 (left) and L2 (right) norm objective functions for translation parameters
of problem instance M(5,3) of Fig. 4. The forward algorithm is biased in this case,
because its global solution (•) does not coincide with the ground truth (?).

4.3 Results

The forward algorithm was investigated for all 25 entries of the scenario matrix,
and repeated for 140 face images. Fig. 6 reports means and standard deviations
of the computed bias magnitudes, organized in the same matrix form as the
scenario matrix. Note that the translation biases are originally measured in I2

pixel units, because tx and ty are added onto I1 pixel coordinates after scaling.
Fig. 7 displays selected histograms of translation biases.

The lower triangle of the matrices corresponds to cases where I1 is lower
in resolution than I2, calling for bilinear interpolation of I1 during the warp.
Confirming our analysis, both translation and rotation parameters are found to
be biased. For a given column (i.e., fixed I2 resolution), we observe that the
bias in question gets larger as I1 is degraded in resolution. This is due to the
increased mismatch between T and T ′ as discussed in Section 3.2, and the fact
that the computed objective function increasingly relies on interpolation.

The diagonal and upper triangle of the matrices represent cases where I1 is
equal or higher in resolution than I2. Following our analysis, we first compensate
for the difference between T and T ′ by blurring I1 as needed, and then proceed
with the geometric warp. As expected, the bias in these cases is empirically found
to be zero. For clarity, these entries are not shown.
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Translation Bias [pixel]
L1 Norm Obj. Func. L2 Norm Obj. Func.

1 1/2 1/4 1/8 1/16

1

1/2 .01/.01

1/4 .01/.01 .01/.01

1/8 .02/.01 .02/.01 .02/.01

1/16 .03/.02 .04/.02 .04/.02 .04/.02

1 1/2 1/4 1/8 1/16

1

1/2 .01/.01

1/4 .01/.01 .02/.01

1/8 .03/.02 .03/.02 .03/.02

1/16 .04/.02 .06/.02 .07/.04 .07/.04

Rotation Bias [degree]
L1 Norm Obj. Func. L2 Norm Obj. Func.

1 1/2 1/4 1/8 1/16

1

1/2 .00/.00

1/4 .00/.00 .00/.00

1/8 .00/.02 .00/.00 .00/.00

1/16 .17/.26 .11/.26 .02/.13 .00/.00

1 1/2 1/4 1/8 1/16

1

1/2 .00/.00

1/4 .00/.00 .00/.00

1/8 .01/.03 .00/.01 .00/.00

1/16 .14/.19 .11/.21 .04/.14 .01/.07

Fig. 6. The translation and rotation bias magnitude of the forward algorithm orga-
nized in the 5x5 scenario matrix form. Rows and columns correspond to scaling factors
applied to I1 and I2, respectively. Entries are: Mean/Standard Deviation. The diagonal
and upper triangle of the matrices are expected, and empirically verified to be zero.
For clarity, zero’s are not shown in the table. Since the translation parameters are in I2

pixel units, so are their reported biases. See Appendix B for scale-normalized versions
of translation biases.

5 Discussion

5.1 Significance of the Bias in Realistic Cases

Although our discussion has been limited to image-to-image warp estimation,
model-based vision algorithms represent a rich domain in which the importance
of asymmetry would be pronounced. For instance, [24] presents an efficient track-
ing algorithm which makes use of Active Appearance Models (AAM) [19] of face
shape and appearance. In a surveillance scenario, this algorithm would be fit-
ting high-resolution face models onto low-resolution observations, where relative
scales of 1:10 would be common.

In our subsequent work [26], we derived a novel, “resolution-aware” AAM
fitting algorithm which took into account the asymmetry due to scaling. We
observed important performance differences between the (equivalent of) forward

and backward algorithms, and quantified it for the estimation accuracy of an
AAM’s shape 2 and appearance parameters. As expected, the algorithm which
blurred and warped the high-resolution model onto low-resolution observations
was significantly more accurate. This suggests that efficient fitting formulations
of [23, 24] may not be readily applicable to low-resolution model-fitting scenarios.

2 including a few non-rigid modes in addition to the similarity transform
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Fig. 7. Translation bias histograms for the L2 Norm objective function, corresponding
to the last row (i.e., I1 scaled by 1/16) of the upper-right scenario matrix M in Fig. 6.

5.2 The Bootstrapping Problem

In [15], authors argued that “without any other prior knowledge, the registration
problem is symmetric”. We claim that the blurry nature of real images breaks
this symmetry as soon as there is relative scaling (i.e., |J(W12)| 6= 1). Nonethe-
less, we agree that we don’t know a priori whether to expect any relative scaling
between two images, and if so, which of them ought to be downscaled. This
uncertainty raises the question, which algorithm should be employed initially
to guess the scaling. The empirical evidence we gathered in the face domain
suggests that the bias induced by using the non-optimal warp algorithm is not
big enough to instigate a wrong decision about the direction of the scaling (i.e.,
whether 0 < s < 1 or s > 1). In other words, we expect both algorithms to be
acceptably correct in hinting at the relative scaling, based on which one could
commit to the correct warp direction and obtain unbiased estimates.

5.3 Related Issues in Image Registration Algorithms

We have discussed the bias problem of registration algorithms. The systematic
bias issue in optical flow methods which has been addressed previously [3, 6, 10,
18] stemmed from errors in image gradient estimation. In contrast, we explored
a potential bias arising from the problem formulation itself. As such, our results
remain independent of the limitations of particular numerical implementation
and optimization methods.

In an image matching formulation with point features, the authors of [11]
and [14] observed that their interest points were not invariant to scale. As a
remedy, these points were computed for a variety of scale (i.e., blur) levels,
which parallels the extra blurring advocated in this paper.

From a practical point of view, we would expect to have difficulties if the
two cameras were defocused by different degrees: Since our blur compensation
step estimates the amount of necessary blurring from the relative scaling factor,
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it would not be able to account for the blur accurately. We plan to explore this
failure mode in future work.

In certain applications (e.g., non-rigid registration of medical images), cri-
teria such as the repeatability and robustness of registration results may be as
important as their accuracy. In such cases, trade-offs might be considered.

6 Conclusion

In this paper, we posed the bias problem in image registration in a simple yet
illuminating scenario: starting from an idealized setting wherein the underlying
scene radiance field S was known, we presented three algorithms (compositional,
forward and backward) to compute the ML estimate of the homography which
ties the image coordinate frames. We then investigated which of these algorithms
could be used in the absence of scene information S. Our analysis exposed the
conditions under which forward and backward algorithms could compute the ML
estimate based on I1 and I2 only, and prescribed a specific blurring step in the
presence of relative scaling between images. Such cases turned out to impose a
particular warp direction for ensuring unbiased estimates.

Our asymmetry claim is based on the scaling-induced extra blurring that
neither a forward nor a backward algorithm can overcome. It depends upon
whichever happens to be warping the lower-resolution image onto the higher-
resolution one. We have shown that an inability to deblur T ′ in an attempt to
approximate T results in a bias that is independent of the assumed observation
noise model: we confirmed this for both L1 and L2 norm objective functions.
Furthermore, by showcasing this bias on actual objective function surfaces, we
eliminated the possibility of confounding it with potential artifacts of particular
optimization methods that would normally search for the best warp parameters.

Finally, our analysis remains applicable to other cases where blur-related dis-
crepancies result not necessarily from camera poses and zoom levels, but from
imaging modalities or instrument characteristics.
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A The Equivalence of Forward and Backward Algorithms

Assuming the idealized scenario of Section 3.1, let us express the image warp
operations of (10) using point coordinates

Ŵ21 = arg min
W21

∫

y∈I1

[

S
(
Ŵ1S(y)

)
− S

(

Ŵ2S

(
W12(y)
︸ ︷︷ ︸

z

))]2

dy. (21)

We can rewrite the integration in (21) in the domain of I2 by defining z =
W12(y). Since dy=

∣
∣J(W21)

∣
∣dz, (21) can be written as

Ŵ21 = arg min
W21

∫

z∈I2

[

S
(

Ŵ1S

(
W21(z)

))

−S
(

Ŵ2S

(
W12

(
W21(z)

)

︸ ︷︷ ︸

z

))]2∣
∣J(W21)

∣
∣dz

= arg min
W21

∫

z∈I2

[

S
(

Ŵ1S

(
W21(z)

))

−S
(
Ŵ2S(z)

)]2∣
∣J(W21)

∣
∣dz. (22)

Switching back to image warp notation, (22) becomes

Ŵ21 = arg min
W21

∫

z∈I2

[

W−1
21

(
ŴS1(S)
︸ ︷︷ ︸

Î1

)
(z) − ŴS2(S)

︸ ︷︷ ︸

Î2

(z)
]2∣

∣J(W21)
∣
∣dz. (23)

Recalling W12 = W−1
21 , we observe that the difference between the forward (8)

and backward (23) algorithms’ objective functions is the extra Jacobian term
|J(W21)| in (23). Since a general homography’s Jacobian varies spatially, this
term would normally act as a spatial weighting function and influence the minima
of the objective function considered. However, in practically common cases of
rigid and similarity transformations, the Jacobian would remain constant across
the image. Then, the two algorithms would be equivalent, and interchangeable.
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B Scale-Normalized Translation Biases

As indicated in Section 4.3, the translation bias results of Fig. 6 are reported in
I2’s pixel units. However, since I2 has a different resolution in every column, the
entries of the matrix are not directly comparable. In Fig. 8, we replicate these
bias values in a common (highest-resolution) scale.

Translation Bias [pixel]
L1 Norm Obj. Func. L2 Norm Obj. Func.

1 1/2 1/4 1/8 1/16

1

1/2 .01/.01

1/4 .01/.01 .03/.02

1/8 .02/.01 .04/.03 .09/.05

1/16 .03/.02 .08/.04 .17/.09 .36/.19

1 1/2 1/4 1/8 1/16

1

1/2 .01/.01

1/4 .01/.01 .03/.02

1/8 .03/.03 .06/.04 .13/.07

1/16 .04/.02 .12/.04 .30/.15 .59/.33

Fig. 8. Scale-normalized translation bias values (c.f. Fig. 6)


